JPS59162250A - Magnetic alloy - Google Patents

Magnetic alloy

Info

Publication number
JPS59162250A
JPS59162250A JP3449583A JP3449583A JPS59162250A JP S59162250 A JPS59162250 A JP S59162250A JP 3449583 A JP3449583 A JP 3449583A JP 3449583 A JP3449583 A JP 3449583A JP S59162250 A JPS59162250 A JP S59162250A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
magnetic alloy
thin film
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3449583A
Other languages
Japanese (ja)
Inventor
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3449583A priority Critical patent/JPS59162250A/en
Publication of JPS59162250A publication Critical patent/JPS59162250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic alloy for a magnetic recording medium with superior noise characteristics by substituting Co for part of Fe in a Tb-Fe alloy and Dy for part of Tb. CONSTITUTION:An alloy having a composition consisting of, by atom, 2-35% Co, 4-75% Fe, 10-40% Dy and the balance Tb is refined and cast into an ingot. The ingot is cut to a suitable shape and size to form a target for sputtering, and by using the target an amorphous thin film of 1,300Angstrom thickness is formed on a glass substrate. A magnetic alloy for a magnetic recording medium with superior uniaxial magnetic anisotropy, superior coercive force, low magnetostriction and improved noise characteristics is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁性合金に関し、更に詳しくは、ノイズ特性に
優れていて磁気記録媒体に用いて有効なテルビウム(T
b )−ジスプロシウムCD>’)−鉄(Fe) −コ
バルト(Co )系の磁性合金に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to magnetic alloys, and more specifically, terbium (T), which has excellent noise characteristics and is effective for use in magnetic recording media.
b)-Dysprosium CD>')-Iron (Fe)-Cobalt (Co) based magnetic alloy.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、磁気層の磁化容易軸が基体面の垂直方向に配列
している磁気記録媒体は、その自己減磁が小さいので高
密度記録に適している。とくに、キューり点(Tc )
が室温よりやや高いところにある上記した磁気記録媒体
の薄膜は、高密度の磁気光学記録媒体としての用途が期
待されている。
Generally, a magnetic recording medium in which the axis of easy magnetization of the magnetic layer is aligned perpendicular to the substrate surface is suitable for high-density recording because its self-demagnetization is small. In particular, the cue point (Tc)
The thin film of the magnetic recording medium described above, whose temperature is slightly higher than room temperature, is expected to be used as a high-density magneto-optical recording medium.

磁気光学記録媒体とは、該媒体に光(レーデ)を照射す
ることにより反転磁区を生じさせて情報ノぐターンを記
録し、元のカー(Kerr)回転角を測定することによ
って、記録した情報音読み取ることのできる記録媒体で
ある。
A magneto-optical recording medium is a magnetic optical recording medium that records information turns by irradiating the medium with light (radical) to generate inverted magnetic domains, and then measures the original Kerr rotation angle to record the recorded information. It is a recording medium that can read sounds.

現在、このような磁気光学記録媒体の薄膜としては、M
n B +に代表される多結晶金属薄膜、GIG(ガド
リウム鉄ガーネット)に代表される化合物単結晶薄膜又
はGd−Fe、 Tb−Fe等の非晶質金属薄膜が知ら
れている。
Currently, the thin film of such magneto-optical recording media is M
Polycrystalline metal thin films represented by nB+, compound single crystal thin films represented by GIG (gadolinium iron garnet), and amorphous metal thin films such as Gd-Fe and Tb-Fe are known.

これらのうち、MnB1のような多結晶金属薄膜は、室
温で数KOeの大きな保持力を有しているので磁気記録
媒体としては優れているが、一方では、Tcが高((M
nB1の場合Tc=360℃)書き込みには大きなエネ
ルギーを必要とし、しかも、これは・多結晶体なので化
学量論的な組成の薄膜にする必要からその作成が技術的
には困難であるという欠点を有している。
Among these, polycrystalline metal thin films such as MnB1 have a large coercive force of several KOe at room temperature and are therefore excellent as magnetic recording media.
In the case of nB1, Tc = 360°C) writing requires a large amount of energy, and since it is polycrystalline, it is technically difficult to create a thin film with a stoichiometric composition. have.

また、GIGに代表される化合物単結晶薄膜は、その製
造費が著しく高く工業的実用化は極めて困難である。
Further, compound single crystal thin films typified by GIG are extremely expensive to manufacture and are extremely difficult to put into practical use industrially.

Gd−Feのような非晶質金属は、MnB1 、 GI
G と異々す非晶質なので適宜な基体の表面への薄膜形
成が容易であジ、しかも、多少の不純物を添加すること
によってTciある程度任意に制御できるという利点を
有するが、その反面では、室温における保持力が小さく
 (300〜5000e)、記録情報が不安定であると
いう欠点を有している。し力)シ、これらの非晶質金属
薄膜のうち、’rb−Fe系のものはTbの強い1イオ
ン異方性によりGd−Fe系に比べてその保持力が著し
く大きい(数KOe )という特徴を有しているので、
蹴近、Tb−Fe系のものは磁気記録媒体、と9わけ磁
気光学記録媒体として注目を集めている。
Amorphous metals such as Gd-Fe, MnB1, GI
Unlike G, it is amorphous, so it is easy to form a thin film on the surface of a suitable substrate, and it has the advantage that Tci can be controlled to some extent by adding some impurities. It has the disadvantage that the retention force at room temperature is small (300 to 5000e) and the recorded information is unstable. Of these amorphous metal thin films, it is said that the 'rb-Fe based ones have a significantly larger retention force (several KOe) than the Gd-Fe based ones due to the strong one-ion anisotropy of Tb. Because it has the characteristics
Tb--Fe based materials are attracting attention as magnetic recording media, especially as magneto-optical recording media.

・しかしながら、この’rb−Fe系磁性合金はその磁
歪定数が大きく(飽和磁歪定数、λ5)IXIO)、磁
気記録媒体として用いた場合、そのノイズ特性の点で大
きな問題を孕んでいる。
-However, this 'rb-Fe-based magnetic alloy has a large magnetostriction constant (saturation magnetostriction constant, λ5) IXIO), and when used as a magnetic recording medium, it has a big problem in terms of noise characteristics.

すなわち、Tb−Fe系磁件合金から磁気記録媒体の薄
膜を製造する際に、何んらかの原因で該媒体薄膜中に内
部応力(σ)が発生すると、磁歪の逆効果によって生ず
るσ方間の磁気異方性エネルギー(Kσ−ユλS・σ)
に基づいて該媒体薄膜の異方性等の物性が微視的には不
均一になり、その結果、SIN比の低下を招くのである
。例えは、バイアススツヤツタリング法でTb−Fe磁
性合金の薄膜を基体上に形成する場合、ベルジャ−内の
ガス圧、スパッタ時のバイアス電圧の変動によっても該
薄膜の内部応力が変動して該薄膜の物性が微視的に不均
一となりそのノイズ特性は著しく低下するという問題が
惹起している。
That is, when manufacturing a thin film of a magnetic recording medium from a Tb-Fe based magnetic alloy, if internal stress (σ) is generated in the thin film of the medium for some reason, the σ direction caused by the reverse effect of magnetostriction Magnetic anisotropy energy between (Kσ - λS・σ)
Based on this, physical properties such as anisotropy of the thin medium film become microscopically non-uniform, resulting in a decrease in the SIN ratio. For example, when a thin film of Tb-Fe magnetic alloy is formed on a substrate by the bias sputtering method, the internal stress of the thin film fluctuates due to variations in the gas pressure in the bell jar and the bias voltage during sputtering. A problem has arisen in that the physical properties of the thin film are microscopically non-uniform and its noise characteristics are significantly degraded.

〔発明の目的〕[Purpose of the invention]

本発明は、−軸磁気異方性、保磁力特性に優れかつ低磁
歪なのでノイズ特性が著しく改善された磁気記録媒体、
とりわけ磁気光学記録媒体に用いて有効な磁性合金の提
供を目的とする。
The present invention provides a magnetic recording medium which has excellent -axis magnetic anisotropy and coercive force characteristics, and has low magnetostriction and has significantly improved noise characteristics.
In particular, the object is to provide a magnetic alloy that is effective for use in magneto-optical recording media.

〔発明の概要〕[Summary of the invention]

本発明者は、上記目的を達成すべ(Tb−Fe系合金の
組成及び組織につき鋭意研究を重ねた結果、Feの一部
fcoで置換すると合金のλSは低減し、また、Tbの
一部全Dyで置換すると得られた合金は零磁歪を経てλ
Sが負になっていくという新たな事実全見出し、本発明
の磁性合金を開発するに到った。
In order to achieve the above object (as a result of extensive research into the composition and structure of Tb-Fe alloys, the present inventors found that replacing part of Fe with fco reduces the λS of the alloy; When Dy is substituted, the resulting alloy undergoes zero magnetostriction and becomes λ
The new fact that S becomes negative led us to develop the magnetic alloy of the present invention.

すなわち、本発明の磁性合金は、Co 2〜35原子係
とFe 40〜75原子チとDy 10〜40原子係と
残部が災質的にTbである組成の合金であること全特徴
とする。
That is, the magnetic alloy of the present invention is characterized by having a composition of 2 to 35 atoms of Co, 40 to 75 atoms of Fe, 10 to 40 atoms of Dy, and the balance essentially being Tb.

本発明の磁性合金の組成において、COはλSの低減に
寄与する元累であるが、その含有量が2原子係未満の場
合にはλSの減少が顕著とならず本発明の目的は達成さ
れない。また、35原子%’r超えるとλSは負の値で
著減し結局はその絶対値で示される磁歪の増大を招くこ
とになる。
In the composition of the magnetic alloy of the present invention, CO is an element that contributes to the reduction of λS, but if the content is less than 2 atoms, the decrease in λS will not be significant and the object of the present invention will not be achieved. . Moreover, if it exceeds 35 at.

Feの含有量が40原子係未満の場合にはλSが増太し
、しかも保磁力の低下を招き、また、75原子q6e超
えてもλSの減少効果は充分ではないので40〜75原
子係に設定される。
If the content of Fe is less than 40 atoms, λS will increase and the coercive force will decrease, and even if it exceeds 75 atoms q6e, the effect of reducing λS will not be sufficient, so it should be set to 40 to 75 atoms. Set.

Dyが10原子チ未滴の場合には合金のλSの減少が不
充分てあり、また、40原子係を超えると保磁力の低下
を招くのでDyは10〜40原子チの範囲に設定される
If Dy is less than 10 atoms, the reduction in λS of the alloy will be insufficient, and if it exceeds 40 atoms, the coercive force will decrease, so Dy is set in the range of 10 to 40 atoms. .

本発明の磁性合金において、残部はTbと不可避的な混
入成分である。Tbは垂直磁気異方性及び保磁力特性全
向上させるためには必須の成分である。
In the magnetic alloy of the present invention, the remainder is Tb and unavoidable mixed components. Tb is an essential component for completely improving perpendicular magnetic anisotropy and coercive force characteristics.

本発明の磁性合金は、通常、薄膜若しくは粉末形状で実
用に供されるが、高密度の磁気記録が可能であるという
ことからしてi#膜形状で用いることが好ましい。
The magnetic alloy of the present invention is usually put to practical use in the form of a thin film or powder, but it is preferably used in the form of an i# film because high-density magnetic recording is possible.

合金の組織は多結晶、単結晶、非晶質のいずれであって
もよいが、結晶質と9わけ多結晶の場合には、その結晶
粒界が物性不均一の成因を構成しノイズ特性の低下を招
くので、非晶質であることが好ましい。
The structure of the alloy may be polycrystalline, single crystal, or amorphous, but in the case of crystalline and polycrystalline structures, the grain boundaries constitute a source of nonuniformity in physical properties and affect noise characteristics. Therefore, it is preferable to be amorphous.

本発明の磁性合金は、上記した組成の合金材料を周知の
方法により、真空、Ar 、 Heなどの不活性ガス若
しくはH2,COなどの還元ガス雰囲気中で融点以上の
温度に加熱して溶解した後冷却すればインゴットとして
容易に調製することができる。
The magnetic alloy of the present invention is obtained by melting an alloy material having the above-mentioned composition by heating it to a temperature above its melting point in a vacuum, an inert gas such as Ar or He, or a reducing gas atmosphere such as H2 or CO, using a well-known method. After cooling, it can be easily prepared as an ingot.

このインゴットから磁気記録媒体の薄膜を形成するため
には、例えばまずインゴットを適宜な寸法形状に切断し
てスパッタリング用のターゲットを加工し、これを用い
て例えばガラス基板の上にス/やツタリングすればよい
In order to form a thin film for a magnetic recording medium from this ingot, for example, the ingot is first cut into appropriate dimensions and shapes to form a sputtering target, and this is used to sputter or sputter onto, for example, a glass substrate. Bye.

〔発明の実施例〕[Embodiments of the invention]

実施例1 Co 13.2原子%、Fe63.8原子%、Dy20
.0原子係、残部が実質的にTbで、ある合金材料全真
空誘導溶解炉で溶解(1500℃)した後冷却して合金
インゴットにした。ついで、このインゴットからスノや
ツタ用のターゲットを切り出した。
Example 1 Co 13.2 at%, Fe63.8 at%, Dy20
.. An alloy material having 0 atoms and the remainder being substantially Tb was melted in a full vacuum induction melting furnace (1500°C) and then cooled to form an alloy ingot. Next, I cut out targets for snow and ivy from this ingot.

このターグラトラ用いて、アルゴンガス圧6×10−’
Torr、基板バイアス電圧−50Vのバイアススパッ
タリング法によりガラス基板上に厚み1300Aの薄膜
を形成した。薄膜は非晶質であった。
Using this targrater, the argon gas pressure is 6×10-'
A thin film with a thickness of 1300 A was formed on a glass substrate by a bias sputtering method using Torr and a substrate bias voltage of -50 V. The thin film was amorphous.

この薄膜は垂直磁気異方性であり、飽和磁束密度(4y
rMs)は9 Q Q Gauss、保持力(IHC)
は7KOe。
This thin film has perpendicular magnetic anisotropy and saturation magnetic flux density (4y
rMs) is 9 Q Q Gauss, retention force (IHC)
is 7KOe.

キューり温度(Tc)は150℃、飽和磁歪(λS)は
l×10 より小であった。
The cue temperature (Tc) was 150°C, and the saturation magnetostriction (λS) was less than 1×10.

比較のため、Fe 80原子係、残部が実質的にTbで
あることを除いては上記と同様の方法で厚み1100A
のTb −Fe非晶質薄膜を形成しこれを比較例1とし
た。この薄膜の4πMsは700 Gauss +IH
cは5 KOe 、 Tcは110℃、λSは1000
 X 10−6より犬であった。
For comparison, a film with a thickness of 1100A was prepared in the same manner as above except that 80 atoms of Fe were used and the remainder was substantially Tb.
A Tb-Fe amorphous thin film was formed as Comparative Example 1. 4πMs of this thin film is 700 Gauss +IH
c is 5 KOe, Tc is 110℃, λS is 1000
It was a dog from X 10-6.

以上2種類の薄膜につき磁気元学記録妹体として用いた
場合の書換え可能ディスクの諸元を第1表に示した。
Table 1 shows the specifications of the rewritable disk when the two types of thin films mentioned above are used as a magnetic recording medium.

実施例2〜6 第2表に各種組成(原子係)の合金材料を9種類調製し
、これを用いて実施例1と同様の方法で非晶質の磁性合
金薄膜全形成した。これらの諸特性全一括して第2表に
併記した。
Examples 2 to 6 Nine types of alloy materials with various compositions (atomic) as shown in Table 2 were prepared, and amorphous magnetic alloy thin films were entirely formed using the same methods as in Example 1. All of these properties are listed together in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の磁性合金は、■
λSの絶対値がlX1O−6より小さいので、その加工
時(例えば薄膜形成時)の内部応力に基因する磁気異方
性の微視的変動が起らず物性の均一性は保持され、その
結果、磁気記録媒体として適用した場合そのS/N比が
大きくなってノイズ特性に優れる。とくに、磁気光学記
録媒体にあっては、光磁気書き込み(熱磁気)時の熱的
外乱に基づく該媒体の特性劣化全防止し得るー■また、
添加するCoの効果により磁気光学記録媒体にあっては
そのカー回転角が犬きくなり、上記した■との相乗効果
によりノイズ特性が著しく向上する。■更には、本発明
の磁性合金は、1イオン異方性の犬なるTb系合金なの
で一軸磁気異方性及び保持力特性にも優れている。■そ
して、Tcが50〜200℃の範囲内にあるので、光磁
気書き込みには大きなエネルギーを必要としない。
As is clear from the above explanation, the magnetic alloy of the present invention has:
Since the absolute value of λS is smaller than lX1O-6, microscopic fluctuations in magnetic anisotropy due to internal stress during processing (for example, during thin film formation) do not occur, and the uniformity of physical properties is maintained. When applied as a magnetic recording medium, the S/N ratio increases and noise characteristics are excellent. In particular, in the case of magneto-optical recording media, it is possible to completely prevent the deterioration of the characteristics of the medium due to thermal disturbances during magneto-optical writing (thermal magnetism).
Due to the effect of added Co, the Kerr rotation angle of the magneto-optical recording medium becomes sharper, and the synergistic effect with the above-mentioned (2) significantly improves the noise characteristics. (2) Furthermore, since the magnetic alloy of the present invention is a Tb-based alloy with one ion anisotropy, it also has excellent uniaxial magnetic anisotropy and coercive force characteristics. (2) Since Tc is within the range of 50 to 200° C., large energy is not required for magneto-optical writing.

以上の点からして、本発明の磁性合金はとくに磁気光学
記録媒体に適用して有効であってその工業的価値は極め
て大である。
In view of the above points, the magnetic alloy of the present invention is particularly effective when applied to magneto-optical recording media, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1 コバルト2〜35原子チと鉄40〜75原子係とジ
スプロシウム10〜40原子係と残部が実質的にテルビ
ウムであることを特徴とする磁性合金。 2 該磁性合金が薄膜形状である特許請求の範囲第1項
記載の磁性合金。 3 該磁性合金が非晶質合金である特許請求の範囲−1
項又は第2項記載の磁性合金。
Claims: 1. A magnetic alloy comprising 2 to 35 atoms of cobalt, 40 to 75 atoms of iron, 10 to 40 atoms of dysprosium, and the remainder substantially terbium. 2. The magnetic alloy according to claim 1, wherein the magnetic alloy is in the form of a thin film. 3 Claim-1 in which the magnetic alloy is an amorphous alloy
The magnetic alloy according to item 1 or 2.
JP3449583A 1983-03-04 1983-03-04 Magnetic alloy Pending JPS59162250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3449583A JPS59162250A (en) 1983-03-04 1983-03-04 Magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3449583A JPS59162250A (en) 1983-03-04 1983-03-04 Magnetic alloy

Publications (1)

Publication Number Publication Date
JPS59162250A true JPS59162250A (en) 1984-09-13

Family

ID=12415826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3449583A Pending JPS59162250A (en) 1983-03-04 1983-03-04 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPS59162250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068607A (en) * 1983-09-14 1985-04-19 Sumitomo Metal Mining Co Ltd Magnetic thin film recording medium
EP0288010A2 (en) * 1987-04-20 1988-10-26 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068607A (en) * 1983-09-14 1985-04-19 Sumitomo Metal Mining Co Ltd Magnetic thin film recording medium
EP0288010A2 (en) * 1987-04-20 1988-10-26 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
US4957549A (en) * 1987-04-20 1990-09-18 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
US5062885A (en) * 1987-04-20 1991-11-05 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
US5098649A (en) * 1987-04-20 1992-03-24 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same

Similar Documents

Publication Publication Date Title
JPS59103314A (en) Photomagnetic recording medium
JPS6079702A (en) Photomagnetic recording medium
JPH0515778B2 (en)
JP2619623B2 (en) Magneto-optical recording medium
JPS59162250A (en) Magnetic alloy
EP0324854A1 (en) Optomagnetic recording medium and process for its manufacture
CN1042025A (en) Thin film of amorphous alloy
JPH0418023B2 (en)
JPS60187954A (en) Magnetic recording medium consisting of thin magnetic film
JPH0470705B2 (en)
JPS59113162A (en) Magnetic alloy
JPS6243847A (en) Photomagnetic recording medium
JPS61165846A (en) Photomagnetic recording medium
JPS62222609A (en) Photomagnetic recording medium
JPS63164049A (en) Magneto-optical recording medium and its production
JPH0614488B2 (en) Magneto-optical recording medium
JPH0483313A (en) Soft magnetic thin film and magnetic head
JPS61234510A (en) Soft magnetic thin film
JPH03178105A (en) Thin garnet film for magneto-optical recording medium
JPS62165753A (en) Magnetooptic recording medium
JPS61234508A (en) Soft magnetic thin film
JPS5996713A (en) Magnetic recording medium
JPH0664759B2 (en) Amorphous magneto-optical layer
JPH04120233A (en) Nickel-iron material
JPS62104107A (en) Soft magnetic thin film