JPH0232690B2 - - Google Patents
Info
- Publication number
- JPH0232690B2 JPH0232690B2 JP57077677A JP7767782A JPH0232690B2 JP H0232690 B2 JPH0232690 B2 JP H0232690B2 JP 57077677 A JP57077677 A JP 57077677A JP 7767782 A JP7767782 A JP 7767782A JP H0232690 B2 JPH0232690 B2 JP H0232690B2
- Authority
- JP
- Japan
- Prior art keywords
- kerr rotation
- magnetic
- recording medium
- rotation angle
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010408 film Substances 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- 230000005415 magnetization Effects 0.000 claims description 5
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 3
- 229910017061 Fe Co Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910016629 MnBi Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/16—Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/13—Amorphous metallic alloys, e.g. glassy metals
- H01F10/133—Amorphous metallic alloys, e.g. glassy metals containing rare earth metals
- H01F10/135—Amorphous metallic alloys, e.g. glassy metals containing rare earth metals containing transition metals
- H01F10/136—Amorphous metallic alloys, e.g. glassy metals containing rare earth metals containing transition metals containing iron
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24306—Metals or metalloids transition metal elements of groups 3-10
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thin Magnetic Films (AREA)
Description
本発明は、光磁気メモリー、磁気記録、表示素
子などに用いられる光熱磁気記録媒体に関するも
ので、特に、磁気力−効果、若しくはフアラデー
効果などの磁気光学効果を用いて読み出すことの
できる磁性薄膜記録媒体に関するものである。
従来、光熱磁気記録媒体としては、MnBi、
MnCuBi等の多結晶体薄膜、Gdco、GdFe、
TbFe、DyFe、GdTbFe、TbDyFe等の非晶質薄
膜、GdIG等の単結晶薄膜等が知られている。
これらの薄膜のうち、大面積の薄膜を室温近傍
の温度で製作する製膜性、信号を小さな光熱エネ
ルギーで書き込むための書き込み効率、書き込ま
れた信号をS/Nよく読み出すための読み出し効
率等を勘案し、最近では、前記非晶質薄膜が光熱
磁気記録媒体として優れていると考えられてい
る。
然しながら、これ等の非晶質薄膜においても
種々の欠点が指摘されている。例えばGdFeは保
磁力が小さく、記録された情報が不安定である。
またGdFe、Gdcoは、磁気的補償点を利用した書
き込みを行なつており、書き込み効率を均一にす
る為に製膜の際、膜組成を厳しく管理しなければ
ならない。TbFe、DyFe、TbDyFeは、キユーリ
ー点書き込みの為、膜組成をそれほど厳しく管理
することはないが、キユーリー点が100℃以下と
低い為に、信号を読み出す時にパワーの強い光を
用いることができないという難点がある。
キユーリー温度が低ければ、書き込む為の効率
は向上するが書き込まれた信号が、周囲の温度と
か読み出し光により乱されてしまう。従つて磁気
変態温度は、使用上の状態を考慮すると、100℃
以上が望ましい。反射光による読み出しS/N
は、反射率をR、カー回転角をθKとすると、R・
θKに比例する。従つて、S/N比良く読み出す為
は、カー回転角を大きくすれば良い。表1には、
非晶質磁性膜のカー回転角が示されている。
The present invention relates to a photothermal magnetic recording medium used for magneto-optical memory, magnetic recording, display elements, etc., and in particular, magnetic thin film recording that can be read using magneto-optic effects such as magnetic force effect or Faraday effect. It's about the medium. Conventionally, MnBi,
Polycrystalline thin films such as MnCuBi, Gdco, GdFe,
Amorphous thin films such as TbFe, DyFe, GdTbFe, and TbDyFe, and single crystal thin films such as GdIG are known. Among these thin films, we are focusing on the film-forming efficiency for producing large-area thin films at temperatures near room temperature, the writing efficiency for writing signals with small photothermal energy, and the reading efficiency for reading written signals with a good S/N ratio. In view of this, recently, the amorphous thin film is considered to be excellent as a photothermal magnetic recording medium. However, various drawbacks have been pointed out even in these amorphous thin films. For example, GdFe has a small coercive force, making recorded information unstable.
Furthermore, GdFe and Gdco perform writing using magnetic compensation points, and the film composition must be strictly controlled during film formation in order to make the writing efficiency uniform. TbFe, DyFe, and TbDyFe write at the Curie point, so the film composition does not need to be controlled so strictly, but because the Curie point is low at 100°C or less, it is not possible to use high-power light when reading out signals. There are some difficulties. If the Curie temperature is low, the writing efficiency will improve, but the written signal will be disturbed by the ambient temperature or read light. Therefore, considering the usage conditions, the magnetic transformation temperature is 100℃.
The above is desirable. Readout S/N by reflected light
If the reflectance is R and the Kerr rotation angle is θ K , then R・
Proportional to θK . Therefore, in order to read out data with a good S/N ratio, it is sufficient to increase the Kerr rotation angle. In Table 1,
The Kerr rotation angle of the amorphous magnetic film is shown.
【表】【table】
【表】
この中では、GdTbFeのカー回転角が最も大き
い。しかし、この値でも充分ではなく、更にカー
回転角を大きくする研究が進められている。
本発明の目的は、熱安定性に優れ、かつカー回
転角が充分に大きくS/N比の良い読み出しが可
能な光熱磁気記録媒体を提供することにある。
即ち、光熱磁気記録媒体に於いては、該媒体を
Gd−Tb−Fe−Coの4元系非晶質磁性合金より
構成することにより上記目的を達成せんとするも
のである。
また、本発明に係る上記光熱磁気記録媒体に於
いては、膜面に垂直な方向に磁化容易軸を向ける
のに充分な磁気異方性を持たせる組成としてFe
とCoとを合わせた原子比が50atom%〜90atom%
の範囲に存在することが望ましい。特に好ましく
は、70atom%〜85atom%である。更に本発明に
係る上記光熱磁気記録媒体に於いては、カー回転
角が従来の構成元素による値に比べて充分に大き
くなるためにはFeとCoとを合わせた原子比を100
%とした場合CoがFeに対して0.5atom%以上の
原子比で存在することが望ましい。以下、本発明
の光熱磁気記録媒体に関して詳述する。
本発明に係る光熱磁気記録媒体に於いては、
Gd−Tb−Fe−Coの組み合わせで非晶質磁性媒
体を形成することにより、磁気光学定数の値の優
れた記録媒体が得られたものである。この結果は
後述する実施例より明らかな様に、従来知られて
いる最も大きなカー回転角であるGdTbFeの0.27
度を大幅に凌ぐ値を有するものである。
また、本発明のGd−Tb−Fe−Co系非晶質4
元合金の光熱磁気記録媒体は、磁化容易軸が膜面
に垂直な方向に向けられるだけに充分な磁化容易
軸を持たなければならない。このためには、まず
薄膜を非晶質で構成する必要があり、これには、
スパツタリング法あるいは真空蒸着法などによつ
て薄膜を製膜することによつて達成される。充分
な磁気異方性及び充分なカー回転角を持たせるた
めの組成としては、GdとTbとFeとCoとの組成
を
(Gd1-ZTbZ)1-Y(Fe1-XCox)yとすると、X、
Y、Zが
0.005≦X≦1、0.5≦Y≦0.9、0<Z<1であ
ることが望ましい。
以下、本発明を実施例によつて詳細に説明す
る。
実施例 1
高周波スパツタ装置において、3インチ□の白
板ガラスを基板とし、ターゲツトとして4インチ
〓のFe上に5mm□のGd、Tb、Co片を均一に並べ
たものを使用した。チヤンバー内を1.5×10-5Pa
以下になるまで真空排気した後、Arガスを4×
10-1Paまで導入し、真空排気系のメインバルブ
を操作することによりAr圧を3Paにした。高周波
電源より200Wのスパツタ電力で製膜を行なつた。
この様にしてできた膜厚1500Åの膜は、膜面に垂
直な方向に磁化容易軸を有し、またX線的に非晶
質であつた。また組成分析の結果この磁性膜は、
(Gd0.5Tb0.5)0.21(Fe0.95Co0.05)0.79であり、カー
回
転角は、発振波長633nmのHe−Neレーザで測定
したところ0.37度であつた。これは同様に作成し
た(Gd0.5Tb0.5)0.21Fe0.79のカー回転角の値より約
30%大きかつた。
第1実施例に於けるFeターゲツト上のCoの量
を変化させる以外は、第1実施例と同様の方法で
作成した実施例2〜実施例5の組成及びカー回転
角は以下の様であつた。[Table] Among these, GdTbFe has the largest Kerr rotation angle. However, even this value is not sufficient, and research is underway to further increase the Kerr rotation angle. SUMMARY OF THE INVENTION An object of the present invention is to provide a photothermal magnetic recording medium that has excellent thermal stability and has a sufficiently large Kerr rotation angle and can be read with a good signal-to-noise ratio. That is, in a photothermal magnetic recording medium, the medium is
The above objective is achieved by constructing the magnet from a quaternary amorphous magnetic alloy of Gd-Tb-Fe-Co. Further, in the photothermal magnetic recording medium according to the present invention, Fe is used as a composition to have sufficient magnetic anisotropy to orient the axis of easy magnetization in a direction perpendicular to the film surface.
The combined atomic ratio of and Co is 50atom% to 90atom%
It is desirable to exist within the range of . Particularly preferred is 70 atom% to 85 atom%. Furthermore, in the photothermal magnetic recording medium according to the present invention, in order for the Kerr rotation angle to be sufficiently large compared to the value of conventional constituent elements, the combined atomic ratio of Fe and Co must be 100.
%, it is desirable that Co exists in an atomic ratio of 0.5 atom% or more to Fe. Hereinafter, the photothermal magnetic recording medium of the present invention will be explained in detail. In the photothermal magnetic recording medium according to the present invention,
By forming an amorphous magnetic medium using a combination of Gd-Tb-Fe-Co, a recording medium with excellent magneto-optic constant values was obtained. As is clear from the examples described later, this result is 0.27 for GdTbFe, which is the largest known Kerr rotation angle.
It has a value that far exceeds the average. In addition, the Gd-Tb-Fe-Co amorphous 4 of the present invention
The original alloy photothermal magnetic recording medium must have a sufficient easy axis of magnetization so that the easy axis of magnetization is oriented in a direction perpendicular to the film surface. To achieve this, it is first necessary to compose the thin film with an amorphous material, which requires the following steps:
This is achieved by forming a thin film using a sputtering method, a vacuum evaporation method, or the like. The composition to have sufficient magnetic anisotropy and sufficient Kerr rotation angle is the composition of Gd, Tb, Fe, and Co (Gd 1-Z Tb Z ) 1-Y (Fe 1-X Cox) Let y be X,
It is desirable that Y and Z satisfy 0.005≦X≦1, 0.5≦Y≦0.9, and 0<Z<1. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 In a high-frequency sputtering device, a 3-inch square white glass plate was used as a substrate, and a 5-mm square piece of Gd, Tb, and Co uniformly arranged on a 4-inch Fe surface was used as a target. 1.5×10 -5 Pa inside the chamber
After evacuating to below, add Ar gas 4×
Ar pressure was introduced to 10 -1 Pa, and the Ar pressure was brought to 3 Pa by operating the main valve of the vacuum exhaust system. The film was formed using a sputtering power of 200W from a high frequency power source.
The film thus formed with a thickness of 1500 Å had an axis of easy magnetization in the direction perpendicular to the film surface, and was amorphous based on X-rays. Also, as a result of compositional analysis, this magnetic film is
(Gd 0.5 Tb 0.5 ) 0.21 (Fe 0.95 Co 0.05 ) 0.79 , and the Kerr rotation angle was 0.37 degrees when measured using a He--Ne laser with an oscillation wavelength of 633 nm. This is approximately from the Kerr rotation angle value of (Gd 0.5 Tb 0.5 ) 0.21 Fe 0.79 , which was created in the same way.
It was 30% larger. The compositions and Kerr rotation angles of Examples 2 to 5, which were prepared in the same manner as in the first example except for changing the amount of Co on the Fe target in the first example, were as follows. Ta.
【表】
第1図は、このCoの量の変化に対してカー回
転角が変化する様子を示したもので縦軸にカー回
転角を、横軸にCoの量を示している。この様に
Feに対してCoの量を変化させることにより、
種々の異なつた値のカー回転角を有する磁性膜が
得られ、それ等のカー回転角は従来の構成の磁性
膜より充分に大きな値を有するものであつた。
第1実施例に於ける、Feターゲツト上のGd、
Tb、Coの量を変化させる以外は、第1実施例と
同様の方法で作成した実施例6〜実施例12の組成
及びカー回転角は以下の様であつた。[Table] Figure 1 shows how the Kerr rotation angle changes in response to changes in the amount of Co. The vertical axis shows the Kerr rotation angle, and the horizontal axis shows the amount of Co. like this
By changing the amount of Co relative to Fe,
Magnetic films having Kerr rotation angles of various different values were obtained, and their Kerr rotation angles were significantly larger than those of magnetic films of conventional construction. Gd on the Fe target in the first example,
The compositions and Kerr rotation angles of Examples 6 to 12, which were prepared in the same manner as in the first example except for changing the amounts of Tb and Co, were as follows.
【表】
第6実施例〜第12実施例に於けるカー回転角も
従前の構成に於けるカー回転角に比して充分な大
きいものであつた。
以上、本発明に係る光熱磁気記録媒体に於いて
は、Gd−Tb−Fe−Coより成る4元非晶質磁性
膜として形成することにより、従来得られなかつ
た大きい磁気光学定数が得られ、S/N比が良く
読み出し可能であり、製膜性も容易な優れた光熱
磁気記録媒体と言えるものである。[Table] The Kerr rotation angles in the sixth to twelfth embodiments were also sufficiently large compared to the Kerr rotation angles in the previous configurations. As described above, in the photothermal magnetic recording medium according to the present invention, by forming it as a quaternary amorphous magnetic film made of Gd-Tb-Fe-Co, a large magneto-optical constant that could not be obtained conventionally can be obtained. It can be said to be an excellent photothermal magnetic recording medium that can be read with a good S/N ratio and is easy to form.
第1図は、本発明に係る光熱磁気記録媒体の一
組成に於いて、Coの量とカー回転角の関係を示
す図。
FIG. 1 is a diagram showing the relationship between the amount of Co and the Kerr rotation angle in one composition of a photothermal magnetic recording medium according to the present invention.
Claims (1)
金薄膜からなる記録層を有する光熱磁気記録媒体
において、前記磁性合金が以下の組成、 (Gd1-XTbX)1-Y(Fe1-ZCoZ)Y 但し、0<X<1 0.5≦Y≦0.9 0.005≦Z<1 から成ることを特徴とする光熱磁気記録媒体。[Claims] 1. A photothermal magnetic recording medium having a recording layer made of a magnetic alloy thin film having an axis of easy magnetization perpendicular to the film surface, wherein the magnetic alloy has the following composition: (Gd 1-X Tb X ) 1 -Y (Fe 1-Z Co Z ) Y , where 0<X<1 0.5≦Y≦0.9 0.005≦Z<1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7767782A JPS58196639A (en) | 1982-05-10 | 1982-05-10 | Photothermic and magnetic recording medium |
DE3348423A DE3348423C2 (en) | 1982-05-10 | 1983-05-10 | Use of an amorphous magnetic quaternary GdTbFeCo alloy for the production of a magneto-optical recording layer |
DE19833317101 DE3317101A1 (en) | 1982-05-10 | 1983-05-10 | Magneto-optical recording base |
US06/671,978 US4693943A (en) | 1982-05-10 | 1984-11-16 | Magnetooptical recording medium |
US08/485,159 US5738950A (en) | 1982-05-10 | 1995-06-07 | Magnetooptical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7767782A JPS58196639A (en) | 1982-05-10 | 1982-05-10 | Photothermic and magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58196639A JPS58196639A (en) | 1983-11-16 |
JPH0232690B2 true JPH0232690B2 (en) | 1990-07-23 |
Family
ID=13640514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7767782A Granted JPS58196639A (en) | 1982-05-10 | 1982-05-10 | Photothermic and magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58196639A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59148157A (en) * | 1983-02-14 | 1984-08-24 | Yoshifumi Sakurai | Photomagnetic recording medium |
JPS59217249A (en) * | 1983-05-25 | 1984-12-07 | Sony Corp | Photomagnetic recording medium |
JPS60107751A (en) * | 1983-11-17 | 1985-06-13 | Canon Inc | Photothermomagnetic recording medium |
JPH0619859B2 (en) * | 1984-02-16 | 1994-03-16 | 株式会社ニコン | Magneto-optical recording medium |
JPS60189208A (en) * | 1984-03-09 | 1985-09-26 | Nippon Hoso Kyokai <Nhk> | Photomagnetic recording medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4947043A (en) * | 1972-08-29 | 1974-05-07 | ||
JPS5637607A (en) * | 1979-09-05 | 1981-04-11 | Nissei Electric | Method of manufacturing electronic part |
JPS5674843A (en) * | 1979-11-21 | 1981-06-20 | Fuji Photo Film Co Ltd | Photomagnetic recording medium |
JPS56126907A (en) * | 1980-03-12 | 1981-10-05 | Kokusai Denshin Denwa Co Ltd <Kdd> | Magnetic optical recording medium |
JPS56143547A (en) * | 1980-04-09 | 1981-11-09 | Sharp Corp | Magnetooptical storage disk |
JPS5873746A (en) * | 1981-10-27 | 1983-05-04 | Kokusai Denshin Denwa Co Ltd <Kdd> | Photomagnetic recording medium |
-
1982
- 1982-05-10 JP JP7767782A patent/JPS58196639A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4947043A (en) * | 1972-08-29 | 1974-05-07 | ||
JPS5637607A (en) * | 1979-09-05 | 1981-04-11 | Nissei Electric | Method of manufacturing electronic part |
JPS5674843A (en) * | 1979-11-21 | 1981-06-20 | Fuji Photo Film Co Ltd | Photomagnetic recording medium |
JPS56126907A (en) * | 1980-03-12 | 1981-10-05 | Kokusai Denshin Denwa Co Ltd <Kdd> | Magnetic optical recording medium |
JPS56143547A (en) * | 1980-04-09 | 1981-11-09 | Sharp Corp | Magnetooptical storage disk |
JPS5873746A (en) * | 1981-10-27 | 1983-05-04 | Kokusai Denshin Denwa Co Ltd <Kdd> | Photomagnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPS58196639A (en) | 1983-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0118506B2 (en) | ||
JPH0123927B2 (en) | ||
US5738950A (en) | Magnetooptical recording medium | |
US4670353A (en) | Magnetooptical recording medium | |
US4612068A (en) | Magneto-optical recording medium | |
JPS60117436A (en) | Magnetooptic storage element | |
JPH0232690B2 (en) | ||
EP0330394B1 (en) | Two-layered type opto-magnetic recording medium having low-coercive force layer containing Gd and at least one of Tb and Dy | |
JPS60107751A (en) | Photothermomagnetic recording medium | |
JPS63107008A (en) | Thin-film having large kerr's angle of rotation and manufacture thereof | |
JPH0351082B2 (en) | ||
JP2550633B2 (en) | Photothermal magnetic recording medium | |
JPH0570922B2 (en) | ||
US4734334A (en) | Magneto-optical recording medium | |
JPH0555941B2 (en) | ||
JPH0795376B2 (en) | Photothermal magnetic recording medium | |
JPH0343697B2 (en) | ||
JPH0795377B2 (en) | Photothermal magnetic recording medium | |
JPS6257145A (en) | Photothermomagnetic recording medium | |
JPH0823944B2 (en) | Method for manufacturing magneto-optical recording medium | |
JPH0589555A (en) | Information recording and reproducing method | |
JP2705066B2 (en) | Photothermal magnetic recording media | |
JPH05174437A (en) | Magneto-optical recording medium | |
JP2647958B2 (en) | Magneto-optical recording medium | |
JPH05182265A (en) | Magneto-optical recording medium |