JPH0465523B2 - - Google Patents

Info

Publication number
JPH0465523B2
JPH0465523B2 JP2101602A JP10160290A JPH0465523B2 JP H0465523 B2 JPH0465523 B2 JP H0465523B2 JP 2101602 A JP2101602 A JP 2101602A JP 10160290 A JP10160290 A JP 10160290A JP H0465523 B2 JPH0465523 B2 JP H0465523B2
Authority
JP
Japan
Prior art keywords
thin film
composition
coercive force
curie point
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2101602A
Other languages
Japanese (ja)
Other versions
JPH0316049A (en
Inventor
Shinsuke Tanaka
Fujio Tanaka
Yasuyuki Nagao
Osatake Imamura
Chuichi Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP10160290A priority Critical patent/JPH0316049A/en
Publication of JPH0316049A publication Critical patent/JPH0316049A/en
Publication of JPH0465523B2 publication Critical patent/JPH0465523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、光磁気メモリー、磁気記録表示素子
などに用いられる光磁気記録媒体に係わるもの
で、具体的には膜面と垂直な方向に磁化容易軸を
有し、円形あるいは任意の形状の反転磁区を作る
ことにより情報を記録することができ、磁気カー
効果などの磁気光学効果を利用して読み出すこと
のできる磁性薄膜記録媒体に関するものである。 (従来技術) 磁化容易軸が膜面と垂直な方向にある強磁性薄
膜では、S極あるいはN極に一様に磁化された膜
面中に一様磁化極性と逆向きの磁極をもつ小さな
反転磁区を作ることができる。この反転磁区の有
無を「1」,「0」に対応させれば、このような強
磁性薄膜を高密度の光磁気記録媒体として用いる
ことができる。このような強磁性薄膜のうち、室
温にて大きな保磁力を有し、かつキユーリー点ま
たは磁気的補償温度が比較的室温に近い薄膜は、
キユーリー点または磁気的補償温度を利用して光
ビームにより、任意の位置に反転磁区を作ること
によつて情報を記録させることができるため、一
般にビーム・アドレツサブルフイルとして用いら
れている。 従来、公知である膜面と垂直な方向に磁化容易
軸を有し、かつビーム・アドレツサブルフアイル
として使用可能な強磁性薄膜としては、MnBiに
代表される多結晶金属薄膜、Gd−Co,Gd−Fe,
Tb−Fe、Dy−Fe等の非晶質金属薄膜、GIGに代
表される化合物単結晶薄膜があるが、それぞれ以
下に述べるような利点及び欠点を有している。
MnBiに代表されるキユーリー点を利用して書き
込みを行なう多結晶金属薄膜は、室温で数kOeの
大きな保磁力を有している点では光磁気記録媒体
として優れているが、キユーリー点が高い
(MnBiではTc=360℃)ために書き込みに大きな
エネルギーを必要とする欠点がある。また、多結
晶体であるため化学量論的な組成の薄膜を作製す
る必要があり、薄膜の作製が技術的に難しいとい
う欠点もある。また、Gd−Co,Gd−Feの磁気
的補償点を利用して書き込みを行なう非晶質金属
薄膜は、非晶質であるため任意の基板上に作製可
能であり、多少の不純物を加えることによつてあ
る程度磁気的補償温度を任意に制御できる等の利
点を有するが、室温における保磁力が小さく
(300〜500Oe)、記録された情報が不安定である
という欠点を有する。しかも、この程度の保磁力
を有する薄膜を作製するためにも組成をほぼ
latom%以内に制御する必要があり、薄膜作製面
でも容易でない。 さらに、GIGに代表される化合物単結晶薄膜は
他のものに比べて非常にコスト高になるという大
きな欠点を有する。 また、これらの欠点を除去した新しい磁性薄膜
記録媒体として提案された15atom%〜30atom%
のTbまたはDyを含むTbFeやDyFeの非晶質合金
薄膜は、次のような利点を有している。 膜面と垂直な方向に磁化容易軸を有し、室温
において数kOeの大きな保磁力を有するため、
高密度の情報記録が可能で、記録された情報が
極めて安定である。 保磁力が大きく所望の形状の磁区を書き込む
ことが可能である。 幅広い組成範囲にわたつて大きな保磁力を有
しており、記録媒体として優れた特性を持つて
いる組成範囲もまた広いため、組成の厳しく限
定された薄膜を作る必要がなく非常に容易に作
製でき、歩留まりも良い。 キユーリー点がTbFeでは120℃、DyFeでは
60℃と低いため、キユーリー点を利用して熱書
き込みを行なう場合には非常に小さなエネルギ
ーにより書き込みを行なうことができる。 (発明が解決しようとする問題点) しかしながら、このTbFe、DyFe等の非晶質
合金薄膜は次のような欠点がある。即ち、キユー
リー点が低いと確かに小さなエネルギーで書き込
みは出来るが、光で読み出すときのS/Nは逆に
悪くなる。図1には、非晶質合金薄膜の光再生時
の光再生出力(S)及び信号対雑音比(S/N)
を照射レーザーパワー(Io)の関数として示して
あるが、記録媒体として良い特性を有する
TbFe、DyFeは光再生の点では記録媒体として
良くないGdFeよりも悪いことがわかる。これは
この記録媒体を光磁気メモリーとして考える場合
には非常に大きな欠点となる。 本発明の目的は、上記のような膜面と垂直な方
向に磁化容易軸を有する従来のDy−Fe二元系の
非晶質金属薄膜の保磁力を大にし、かつ効率よく
光再生出力を取り出し得る光磁気記録媒体を提供
することにある。 (問題点を解決するための手段) 本発明の光磁気記録媒体は、膜面と垂直な方向
に磁化容易軸を有する非晶質Dy−Fe−Co三元系
合金薄膜を有し、Dyx(Fe1-yCoy1-xとしたとき、
xが0.15≦x≦0.35の範囲で、yが0.00<y≦
0.50の範囲であり、かつキユーリー点が120℃以
上でキユーリー点を利用した熱書き込みを行う範
囲内にして、Dy−Fe二元系非晶質合金薄膜に比
べて保磁力を大にし、効率よく光再生出力を取り
出し得るように構成されたことを特徴とするもの
である。 以下に、本発明を詳細に説明する。 本発明の光磁気記録媒体は、膜面に垂直な方向
が磁化容易軸であるとともに、120℃〜200℃の間
のキユーリー点を有するDy−Fe−Coの非晶質合
金薄膜である。膜面に垂直な方向に磁化を向ける
に充分な磁気異方性をもたせるには、非晶質にす
ることが必要であるが、この条件はスパツタリン
グ法あるいは真空蒸着法によつて薄膜作製を行な
うことによつて達成される。また、磁化を安定し
て膜面に垂直な方向に向かせるためには、膜の厚
さを100Å以上とし、前記のようにDyとFeとCo
の組成をDyx(Fe1-yCoy1-xとして、xが0.15≦x
≦0.35の範囲であり、yが0.00<y≦0.50の範囲
にすることが必要である。なお、0.50<yでは、
キユーリー点または磁気的補償温度の組成依存性
が大きく、実用性がない。また、xの範囲をこの
組成範囲外にした光磁気記録媒体は、膜面に垂直
方向に磁化容易軸を揃えることが困難であり、角
型ヒステリシス特性が劣化するので、実用性のあ
る記録再生特性は得られないことになる。 本発明の磁気光学記録媒体は120〜200℃程度の
比較的低いキユーリー点を有するにもかかわら
ず、磁気カー効果を利用した光再生出力が同程度
のキユーリー点を有するDyFeのものより大きい
ことを特徴としている。 (実施例) 図2は、本発明によるDy−Fe−Co三元系合金
薄膜のCoの添加量とカー回転角Θkとの特性図で
ある。図は膜厚が1000Åで、DyFe二元系のFeの
一部をCoに置換した場合の特性図を示しており、
約10atom%添加することにより、カー回転角は
2倍の0.2度となるため、DyFe二元系に比べて読
み出し特性を大幅に改善出来ることがわかる。な
お、図2のDyの組成は、室温が補償温度となる
ように定めた。図のようにCoの添加量を増やし
ていつた場合、Coの添加量が約40atom%からそ
の増加傾向が鈍化するが、Coの増加に伴つてカ
ー回転角も増大する。また、Dyの組成割合を増
加させた場合、カー回転角はDyの割合が増える
に従つて低下する。 一方、図3は本発明によるDy−Fe−Co三元系
合金薄膜の各補償組成(室温が補償温度となる組
成)近傍におけるCoの添加量と保磁力Hcとの特
性図である。図で特性図はyが0atom%である
DyFe二元系の場合(補償組成xa:Dy約23.7%)、
特性図はyを10atom%添加した場合(補償組
成xb:Dy約24.3%)、特性図はyを20atom%添
加した場合(補償組成xc:Dy約25.1%)、特性図
はyを34atom%添加した場合(補償組成xd
Dy約25.9%)、特性図はyを50atom%添加した
場合(補償組成Xe:Dy約26.8%)をそれぞれ示
している。保磁力が増加した場合の効果について
は、従来技術のところでも述べているように、高
密度の情報記録が可能で、記録された情報が極め
て安定し、所望の形状の磁区を書き込むことが可
能等の記録特性を向上させることができる。従つ
つて、本発明ではCoの添加量を増加することに
より、読み出し特性に関係するカー回転角と記録
特性に関係する保磁力とを共に増大させることが
できるので、記録及び光再生特性の双方を向上さ
せることができる。この光再生特性も改善される
ことを次のキユーリー温度Tcから説明する。 図4は本発明によるDy−Fe−Co三元系合金薄
膜のCoの添加量とキユーリー温度Tcとの特性図
である。キユーリー温度Tcは図のようにCoの添
加量に比例して大幅に高くなる。従つて、DyFe
二元系はキユーリー点が60℃と極めて低く、小さ
なエネルギーで書き込みが出来る反面光再生時の
S/Nの劣化を招いていたが、Coの添加によつ
てキユーリー点を120℃以上に高くすることがで
きる。なお、キユーリー点が逆に360℃以上と高
くなつた場合には、書き込みに用いる半導体レー
ザ等の光源の出力が不足してキユーリー点書き込
みが不可能となり、Gd−Fe系のごとき磁気的補
償点書込みが必要となるが、磁気的補償点書き込
みでは従来技術で述べたような欠点が生じる。 表1はDy−Fe二元系と本発明のDy−Fe−Co
三元系とを比較するための表であり、Coの組成
割合を変化させた場合の各補償組成近傍における
キユーリー温度Tc,保磁力Hc、及びカー回転角
Θkのそれぞれを示す。再生C(キヤリヤ)/N
(ノイズ)の測定条件は、ビツト長3μmで、測定
帯域幅が30kHzでの値である。表1から明らかな
ように、Coの添加量が少ない場合には、キユー
リー温度及び保磁力が小さいため、十分な再生
C/Nが得られないが、約10%以上にした場合に
はC/Nが大幅に向上する。なお、一般にCoの
添加量が一定の場合、Dyの組成割合を多くした
時には、カー回転角、保磁力及びキユーリー温度
がそれぞれ低下する方向に作用する。
(Industrial Application Field) The present invention relates to a magneto-optical recording medium used in a magneto-optical memory, a magnetic recording display element, etc., and specifically has an axis of easy magnetization in a direction perpendicular to the film surface, The present invention relates to a magnetic thin film recording medium in which information can be recorded by creating inverted magnetic domains in a circular or arbitrary shape, and in which information can be read out using magneto-optic effects such as the magnetic Kerr effect. (Prior art) In a ferromagnetic thin film in which the axis of easy magnetization is perpendicular to the film surface, there is a small reversal in which the film surface is uniformly magnetized to the S or N pole and has a magnetic pole in the opposite direction to the uniform magnetization polarity. Can create magnetic domains. If the presence or absence of this inverted magnetic domain corresponds to "1" or "0", such a ferromagnetic thin film can be used as a high-density magneto-optical recording medium. Among these ferromagnetic thin films, thin films that have a large coercive force at room temperature and whose Curie point or magnetic compensation temperature is relatively close to room temperature are
It is generally used as a beam-addressable film because information can be recorded by creating an inverted magnetic domain at an arbitrary position using a light beam using the Curie point or magnetically compensated temperature. Conventionally known ferromagnetic thin films that have an axis of easy magnetization in the direction perpendicular to the film surface and can be used as beam addressable files include polycrystalline metal thin films typified by MnBi, Gd-Co, Gd−Fe,
There are amorphous metal thin films such as Tb-Fe and Dy-Fe, and compound single crystal thin films typified by GIG, each of which has advantages and disadvantages as described below.
Polycrystalline metal thin films, such as MnBi, which perform writing using the Curie point, are excellent as magneto-optical recording media in that they have a large coercive force of several kOe at room temperature, but the Curie point is high ( MnBi has the disadvantage that it requires a large amount of energy for writing because Tc = 360°C). Furthermore, since it is a polycrystalline material, it is necessary to produce a thin film with a stoichiometric composition, which also has the disadvantage that it is technically difficult to produce a thin film. In addition, since the amorphous metal thin film that performs writing using the magnetic compensation points of Gd-Co and Gd-Fe is amorphous, it can be fabricated on any substrate, without adding some impurities. Although it has the advantage that the magnetic compensation temperature can be arbitrarily controlled to some extent, it has the disadvantage that the coercive force at room temperature is small (300 to 500 Oe) and the recorded information is unstable. Moreover, in order to produce a thin film with this level of coercive force, the composition must be adjusted to approximately
It is necessary to control within latom%, which is not easy in terms of thin film production. Furthermore, compound single crystal thin films typified by GIG have a major drawback in that they are extremely expensive compared to other films. In addition, 15atom% to 30atom% has been proposed as a new magnetic thin film recording medium that eliminates these drawbacks.
TbFe or DyFe amorphous alloy thin films containing Tb or Dy have the following advantages. It has an axis of easy magnetization perpendicular to the film surface and has a large coercive force of several kOe at room temperature.
High-density information recording is possible, and the recorded information is extremely stable. It has a large coercive force and can write magnetic domains in a desired shape. It has a large coercive force over a wide composition range, and has excellent properties as a recording medium.Because the composition range is also wide, there is no need to create a thin film with a strictly limited composition, and it can be produced very easily. , yield is also good. The Curie point is 120℃ for TbFe and 120℃ for DyFe.
Since the temperature is as low as 60°C, when performing thermal writing using the Curie point, writing can be performed with extremely small energy. (Problems to be Solved by the Invention) However, this amorphous alloy thin film of TbFe, DyFe, etc. has the following drawbacks. That is, if the Curie point is low, it is true that writing can be performed with small energy, but the S/N ratio when reading with light becomes worse. Figure 1 shows the optical reproduction output (S) and signal-to-noise ratio (S/N) during optical reproduction of an amorphous alloy thin film.
is shown as a function of the irradiated laser power (Io), and it has good characteristics as a recording medium.
It can be seen that TbFe and DyFe are worse than GdFe, which is not good as a recording medium, in terms of optical reproduction. This is a very serious drawback when considering this recording medium as a magneto-optical memory. The purpose of the present invention is to increase the coercive force of the conventional Dy-Fe binary amorphous metal thin film having the axis of easy magnetization in the direction perpendicular to the film surface, and to efficiently reproduce optical output. The object of the present invention is to provide a removable magneto-optical recording medium. (Means for Solving the Problems) The magneto-optical recording medium of the present invention has an amorphous Dy-Fe-Co ternary alloy thin film having an axis of easy magnetization in a direction perpendicular to the film surface . (Fe 1-y Co y ) When 1-x ,
x is in the range of 0.15≦x≦0.35, y is in the range of 0.00<y≦
0.50, and the Curie point is within the range of 120℃ or higher for thermal writing using the Curie point, which increases the coercive force compared to the Dy-Fe binary amorphous alloy thin film and efficiently writes. The device is characterized in that it is configured so that optical reproduction output can be taken out. The present invention will be explained in detail below. The magneto-optical recording medium of the present invention is an amorphous alloy thin film of Dy-Fe-Co having an axis of easy magnetization in the direction perpendicular to the film surface and a Curie point between 120°C and 200°C. In order to have sufficient magnetic anisotropy to orient the magnetization in the direction perpendicular to the film surface, it is necessary to make it amorphous, but this condition is achieved by forming a thin film by sputtering or vacuum evaporation. This is achieved by In addition, in order to stably direct the magnetization in the direction perpendicular to the film surface, the film thickness should be 100 Å or more, and as described above, Dy, Fe, Co
Assuming the composition of Dy x (Fe 1-y Co y ) 1-x , x is 0.15≦x
The range is ≦0.35, and it is necessary that y be in the range of 0.00<y≦0.50. In addition, when 0.50<y,
The Curie point or magnetic compensation temperature largely depends on the composition, making it impractical. In addition, magneto-optical recording media in which the x range is outside this composition range have difficulty aligning the axis of easy magnetization in the direction perpendicular to the film surface, and the square hysteresis characteristic deteriorates, making it difficult for practical recording and reproduction. The characteristics will not be obtained. Although the magneto-optical recording medium of the present invention has a relatively low Curie point of about 120 to 200°C, it has been found that the optical reproduction output using the magnetic Kerr effect is greater than that of DyFe, which has a similar Curie point. It is a feature. (Example) FIG. 2 is a characteristic diagram of the amount of Co added and the Kerr rotation angle Θ k of the Dy-Fe-Co ternary alloy thin film according to the present invention. The figure shows the characteristics when the film thickness is 1000 Å and part of the Fe in the DyFe binary system is replaced with Co.
By adding about 10 atom%, the Kerr rotation angle is doubled to 0.2 degrees, so it can be seen that the readout characteristics can be significantly improved compared to the DyFe binary system. Note that the composition of Dy in FIG. 2 was determined so that room temperature was the compensation temperature. As shown in the figure, when the amount of Co added is increased, the increasing trend slows down from about 40 atom%, but as the amount of Co increases, the Kerr rotation angle also increases. Further, when the composition ratio of Dy is increased, the Kerr rotation angle decreases as the ratio of Dy increases. On the other hand, FIG. 3 is a characteristic diagram of the amount of Co added and the coercive force Hc in the vicinity of each compensation composition (composition where room temperature is the compensation temperature) of the Dy-Fe-Co ternary alloy thin film according to the present invention. In the diagram, y is 0atom% in the characteristic diagram.
In the case of DyFe binary system (compensation composition x a : Dy approximately 23.7%),
The characteristic diagram shows the case where y is added at 10 atom% (compensation composition x b : Dy approximately 24.3%), the characteristic diagram shows the case where y is added at 20 atom% (compensation composition x c : Dy approximately 25.1%), and the characteristic diagram shows the case where y is added at 34 atom % (compensation composition x d :
Dy approximately 25.9%), and the characteristic diagram shows the case where 50 atom% of y is added (compensation composition X e : Dy approximately 26.8%). Regarding the effect of increasing coercive force, as mentioned in the section on conventional technology, it is possible to record high-density information, the recorded information is extremely stable, and it is possible to write magnetic domains in the desired shape. It is possible to improve recording characteristics such as Therefore, in the present invention, by increasing the amount of Co added, it is possible to increase both the Kerr rotation angle, which is related to readout characteristics, and the coercive force, which is related to recording characteristics, so that both recording and optical reproduction characteristics are improved. can be improved. The fact that this optical reproduction characteristic is also improved will be explained from the following Curie temperature Tc. FIG. 4 is a characteristic diagram of the amount of Co added and the Curie temperature Tc of the Dy-Fe-Co ternary alloy thin film according to the present invention. As shown in the figure, the Curie temperature Tc increases significantly in proportion to the amount of Co added. Therefore, DyFe
The binary system has an extremely low Curie point of 60°C, and while it can be written with small energy, it causes a deterioration of S/N during optical reproduction, but by adding Co, the Curie point can be raised to over 120°C. be able to. On the other hand, if the Curie point becomes higher than 360°C, the output of the light source such as a semiconductor laser used for writing becomes insufficient, making it impossible to write the Curie point, and magnetically compensated points such as Gd-Fe system Although writing is necessary, magnetically compensated point writing suffers from the drawbacks mentioned in the prior art. Table 1 shows the Dy-Fe binary system and the Dy-Fe-Co of the present invention.
This is a table for comparison with a ternary system, and shows the Curie temperature Tc, coercive force Hc, and Kerr rotation angle Θ k in the vicinity of each compensation composition when the Co composition ratio is changed. Reproduction C (carrier)/N
The measurement conditions for (noise) are a bit length of 3 μm and a measurement bandwidth of 30 kHz. As is clear from Table 1, when the amount of Co added is small, the Curie temperature and coercive force are small, so sufficient regeneration C/N cannot be obtained, but when the amount of Co added is about 10% or more, C/N is not obtained. N is significantly improved. Generally, when the amount of Co added is constant, when the composition ratio of Dy is increased, the Kerr rotation angle, coercive force, and Curie temperature each decrease.

【表】【table】

【表】 表1から明らかなように、補償組成からのDy
組成のずれ量がほぼ等しい場合、y−Fe二元系
にCoを僅かに添加したDy−Fe−Co三元系では、
キユーリー温度Tc,保磁力Hc、カー回転角Θk
び再生C/Nが改善されるが、その効果が顕著に
現れるのはキユーリー温度が120℃以上の時であ
る。特に、キユーリー温度とカー回転角はDyの
組成によつても変わり、一般にDyの組成割合が
減少するとキユーリー温度とカー回転角が増加す
る傾向にある。 (発明の効果) 以上のように、本発明の光磁気記録媒体は良く
知られた非晶質合成薄膜DyFeと同じく膜面に垂
直な方向に磁化容易軸を有し、かつ室温で大きな
保磁力を有し、作製も容易であるという非晶質合
金薄膜の利点を有しており、しかも効率よく光再
生出力を取り出すことができる。従つて、光ビー
ムを用いて書き込み、カー効果を利用して読み出
しを行なう、いわゆる光磁気メモリの貯蔵媒体と
して使用すれば、極めて高密度でS/Nの大きい
優れたメモリ装置を実現することができる。書き
込み方法としては光ビームに限らず、針型磁気ヘ
ツド、熱ペン、電子ビームなどの反転磁区を生じ
せしめるのに必要なエネルギーを供給するいかな
る方法で行なつても良い。
[Table] As is clear from Table 1, Dy from the compensation composition
When the amount of deviation in composition is approximately equal, in the Dy-Fe-Co ternary system in which a small amount of Co is added to the y-Fe binary system,
The Curie temperature Tc, coercive force Hc, Kerr rotation angle Θk , and reproduction C/N are improved, but the effects become noticeable when the Curie temperature is 120°C or higher. In particular, the Curie temperature and Kerr rotation angle vary depending on the composition of Dy, and generally, as the composition ratio of Dy decreases, the Curie temperature and Kerr rotation angle tend to increase. (Effects of the Invention) As described above, the magneto-optical recording medium of the present invention has an axis of easy magnetization in the direction perpendicular to the film surface, like the well-known amorphous synthetic thin film DyFe, and has a large coercive force at room temperature. It has the advantage of an amorphous alloy thin film that it is easy to produce, and moreover, optical reproduction output can be extracted efficiently. Therefore, if it is used as a storage medium for so-called magneto-optical memory, in which writing is performed using a light beam and reading is performed using the Kerr effect, an excellent memory device with extremely high density and high S/N can be realized. can. The writing method is not limited to a light beam, and may be performed by any method that supplies the energy necessary to generate reversed magnetic domains, such as a needle-shaped magnetic head, a thermal pen, or an electron beam.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は従来の非晶質合金薄膜の光再生特性図、
図2は本発明によるDyFeCo薄膜のCo添加量とカ
ー回転角との特性図、図3は本発明による
DyFeCo薄膜のCo添加量と保磁力との特性図、図
4は本発明によるDyFeCo薄膜のCo添加量とキユ
ーリー温度との特性図である。
Figure 1 shows the optical reproduction characteristics of a conventional amorphous alloy thin film.
Figure 2 is a characteristic diagram of Co addition amount and Kerr rotation angle of the DyFeCo thin film according to the present invention, and Figure 3 is a characteristic diagram according to the present invention.
A characteristic diagram of Co addition amount and coercive force of a DyFeCo thin film. FIG. 4 is a characteristic diagram of Co addition amount and Curie temperature of a DyFeCo thin film according to the present invention.

Claims (1)

【特許請求の範囲】 1 膜面と垂直な方向に磁化容易軸を有する非晶
質Dy−Fe−Co三元系合金薄膜を有し、 Dyx(Fe1-yCoy1-xとしたとき、xが0.15≦x≦
0.35の範囲で、yが0.00<y≦0.50の範囲にあり、
かつキユーリー点が120℃以上で該キユーリー点
を利用した熱書き込みを行う範囲内にして、Dy
−Fe二元系非晶質合金薄膜に比べて保磁力を大
にし、効率よく光再生出力を取り出し得るように
構成されたことを特徴とする光磁気記録媒体。
[Claims] 1. An amorphous Dy-Fe-Co ternary alloy thin film having an axis of easy magnetization perpendicular to the film surface, Dy x (Fe 1-y Co y ) 1-x and When x is 0.15≦x≦
In the range of 0.35, y is in the range of 0.00<y≦0.50,
And the Curie point is 120℃ or higher and within the range where thermal writing using the Curie point is performed.
- A magneto-optical recording medium characterized in that it has a larger coercive force than a Fe binary amorphous alloy thin film and is configured to efficiently extract optical reproduction output.
JP10160290A 1990-04-19 1990-04-19 Magneto-optical recording medium Granted JPH0316049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10160290A JPH0316049A (en) 1990-04-19 1990-04-19 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10160290A JPH0316049A (en) 1990-04-19 1990-04-19 Magneto-optical recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17083781A Division JPS5873746A (en) 1981-10-27 1981-10-27 Photomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPH0316049A JPH0316049A (en) 1991-01-24
JPH0465523B2 true JPH0465523B2 (en) 1992-10-20

Family

ID=14304939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10160290A Granted JPH0316049A (en) 1990-04-19 1990-04-19 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0316049A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229096A (en) * 1990-11-19 1993-07-20 Scm Chemicals, Inc. Silica gel
JPH0773516A (en) * 1993-09-02 1995-03-17 Nikon Corp Magneto-optical recording medium and magneto-optical recording method
JP3360717B2 (en) * 1997-09-29 2002-12-24 日本電気株式会社 Dynamic semiconductor memory device
US7106961B2 (en) * 2002-08-27 2006-09-12 Pentax Corporation Lens barrel incorporating the advancing/retracting mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1390563A (en) * 1971-12-21 1975-04-16 Siemens Ag Information storage systems
JPS52109193A (en) * 1976-03-11 1977-09-13 Kokusai Denshin Denwa Co Ltd Magnetoooptic memory medium
JPS5441179A (en) * 1977-09-08 1979-04-02 Citizen Watch Co Ltd Multivibrator for temperature detection
JPS5674843A (en) * 1979-11-21 1981-06-20 Fuji Photo Film Co Ltd Photomagnetic recording medium
JPS5873746A (en) * 1981-10-27 1983-05-04 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium
JPS60237655A (en) * 1984-05-10 1985-11-26 Sony Corp Optomagnetic recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579489B2 (en) * 1987-07-13 1997-02-05 順彦 佐藤 Bag opening / closing holder with adhesive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1390563A (en) * 1971-12-21 1975-04-16 Siemens Ag Information storage systems
JPS52109193A (en) * 1976-03-11 1977-09-13 Kokusai Denshin Denwa Co Ltd Magnetoooptic memory medium
JPS5441179A (en) * 1977-09-08 1979-04-02 Citizen Watch Co Ltd Multivibrator for temperature detection
JPS5674843A (en) * 1979-11-21 1981-06-20 Fuji Photo Film Co Ltd Photomagnetic recording medium
JPS5873746A (en) * 1981-10-27 1983-05-04 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium
JPS60237655A (en) * 1984-05-10 1985-11-26 Sony Corp Optomagnetic recording medium

Also Published As

Publication number Publication date
JPH0316049A (en) 1991-01-24

Similar Documents

Publication Publication Date Title
JPH0123927B2 (en)
JPS6032331B2 (en) magneto-optical recording medium
JPH0118506B2 (en)
US4612068A (en) Magneto-optical recording medium
JPS6079702A (en) Photomagnetic recording medium
JPH0330963B2 (en)
JPS5968854A (en) Photomagnetic recording medium
JPS60117436A (en) Magnetooptic storage element
JPS6131533B2 (en)
JPH0465523B2 (en)
JPH0351082B2 (en)
JP2550633B2 (en) Photothermal magnetic recording medium
JPS5873030A (en) Optical magnetic recording medium
JPS59168954A (en) Optical magnetic recording medium
JPS6243848A (en) Photomagnetic recording medium
JPS6122451A (en) Photomagnetic recording medium
JPS634443A (en) Magneto-optical recording medium
JPS63253553A (en) Magneto-optical recording medium
JPH0259603B2 (en)
JPH0481269B2 (en)
JPS6297153A (en) Thin film magnetic recording medium
JPS6289254A (en) Photomagnetic recording medium
JPS6068607A (en) Magnetic thin film recording medium
JPS5968853A (en) Photomagnetic recording medium
JPS6228947A (en) Photomagnetic recording medium