JPS5870567A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5870567A
JPS5870567A JP56169070A JP16907081A JPS5870567A JP S5870567 A JPS5870567 A JP S5870567A JP 56169070 A JP56169070 A JP 56169070A JP 16907081 A JP16907081 A JP 16907081A JP S5870567 A JPS5870567 A JP S5870567A
Authority
JP
Japan
Prior art keywords
rom
eye
gate
film
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56169070A
Other languages
Japanese (ja)
Other versions
JPH0328833B2 (en
Inventor
Tetsuo Fujii
哲夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP56169070A priority Critical patent/JPS5870567A/en
Publication of JPS5870567A publication Critical patent/JPS5870567A/en
Publication of JPH0328833B2 publication Critical patent/JPH0328833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices

Landscapes

  • Read Only Memory (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To remarkably shorten a delivery term by a method wherein the threshold voltage is adjusted by an ion implantation after the formation of gate metallic patterns, and a mask programmable ROM (eye of ROM) is formed in the latter stage of the manufacture process. CONSTITUTION:A P type si substrate is isolated with a channel stopper and a field oxide film. and a doped poly Si gate 8 and an N layer 10 are formed on a gate oxide film 7 and covered with an SiO2 film 9. After an Si3N4 11 and a PSG15 are superposed, and the PSG is opened 15 and allowed to reflow, electrode windows 16 are formed. Next, a resist mask 17 is applied, and an enhance type MOS is converted into a depletion type by a P ion implantation resulting in the formation of the eye 18 of the PROM14. The resist 17 is removed, and an Al wiring containing Si is provided and protected with an Si3N420. Since the threshold voltage is varied by an ion implantation through the poly Si gate pattern in this manner, a special area for the eye of the ROM is un- necessitated resulting in a high integration, and the writing into the eye of the ROM can be performed in the latter process. Therefore, the delivery term of a device can be extremely shortened.

Description

【発明の詳細な説明】 本発明は半導体装置、特に!スクプ四グラマプルROM
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, especially! Scup Four Grammaple ROM
The present invention relates to a manufacturing method.

従来、マスクプルグラムROMを形成する場合一般的に
は半導体基板に形成された拡散領域と蒸着金属との接続
をおこなうか、又はおζなゎないか、すなわちコンタク
ト穴形成の有無で形成してきた。しかし、近年高集積密
度み要求されるようになり、従来の方法で鑓素子占有面
積が大きくなり高集積化の方向で問題が出てきた。さら
に近年NチャンネルE/DMO8集積回路においては上
記欠点を解決するために、ゲー)酸化膜形成後ゲート下
部のチャンネル部分にソース、ドレインと同極性の不純
物イオン管注入後ゲート金属を形成し、ソース、ドレイ
ン拡散層を形成し、コンタクト穴形成、配線金属層の蒸
着、パターン形成をおこなってマスクプ四グラマプルR
OM部ヲ形成している本のもある。しかし、この方法に
おいてはマスクプ四グラマプルROM(以下ILOMの
目という)形成がひんばんにおこなわれ71屯のにおい
て、そのROMの目の形成工程がウェファ−製造の初期
にあるために時間がかかってしま、うという欠点がある
Conventionally, when forming a mask program ROM, the diffusion region formed on the semiconductor substrate and the vapor-deposited metal are generally connected or not, that is, with or without forming a contact hole. However, in recent years, there has been a demand for higher integration density, and the area occupied by the contact elements in the conventional method has increased, creating problems in the direction of higher integration. Furthermore, in recent years, in order to solve the above-mentioned drawbacks in N-channel E/DMO8 integrated circuits, after forming a gate oxide film, impurity ion tube implantation with the same polarity as that of the source and drain is performed, and then a gate metal is formed in the channel region below the gate. , a drain diffusion layer is formed, a contact hole is formed, a wiring metal layer is vapor-deposited, a pattern is formed, and a mask pattern is formed.
Some books even form an OM department. However, in this method, the formation of the mask quadrature maple ROM (hereinafter referred to as "ILOM eye") is performed frequently, and the process of forming the ROM eye is in the early stage of wafer manufacturing, so it takes a long time. There are some drawbacks.

本発明の目的は上記欠点を解決できる半導体装置の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can solve the above-mentioned drawbacks.

即ち、本発明は高集積化したROM部を形成するために
、ゲート金属パターンを形成した後このゲート金属を通
過して荷電粒子、たとえばイオン注入法によりりン、ボ
pン等をROMの目を形成するために選択的に注入し、
MIa型トテトランジスターレツショホールド電圧を変
化させるものである。また本発明によればこのROMの
目の形成はウェファ−製造の後期にあるために半導体装
置を速やかにかつ前記のように高集積化して提供できる
ようにするものである。
That is, in the present invention, in order to form a highly integrated ROM section, a gate metal pattern is formed, and then charged particles such as phosphorus, boron, etc. are introduced into the ROM through the gate metal by ion implantation. selectively injected to form
This is to change the threshold voltage of the MIa type transistor. Further, according to the present invention, since the ROM eyes are formed at a late stage of wafer manufacturing, semiconductor devices can be provided quickly and highly integrated as described above.

次に、本発明をよりよく理解するために図に示す一実施
例としてNチャンネルMOa型集積回路装置の製造プロ
セスを用いて具体的に説明する。
Next, in order to better understand the present invention, a detailed explanation will be given using a manufacturing process of an N-channel MOa type integrated circuit device as an example shown in the drawings.

第1図はP型6〜lOΩ・3(100)結晶面を有する
単結晶9/ IJコン基板lの表面に厚さgoo〜10
00ムの熱酸化膜8を形成し、その熱酸化膜8上に8i
3N、膜(窒化シリコン膜)8を形成し、MOS)ラン
シスター等となるべき活性化領域4を残して窒化シリコ
ン膜8を部分的に除去し、さらに除去した部分に寄生M
O8の反転防止のためチャンネルストッパー6としてボ
ロンをイオン注入により形成した様子を示している。な
お、このWi化Vリコン膜8の除去にはフォトレジスト
をマスクとして(!F4−0.  系のプラズマエツチ
ングによりフォトレジストにおおわれていない部分の窒
化シリコン膜8の除去をなとなった。この窒化Vリコン
膜8はシリコン基板lの熱酸化に対して耐酸化性のマス
クとして働き、いわゆる選択酸化法によりフィールド酸
化膜領域6を形成する事が出来る。その後窒化シリコン
膜8、及び熱酸化膜8を除去する。このフィールド酸化
膜6は厚さ0.7〜IJμ程度あれば十分である。
Figure 1 shows a P-type 6-10Ω single crystal with 3 (100) crystal planes on the surface of a 9/IJ controller substrate 1 with a thickness of goo-10.
A thermal oxide film 8 of 00mm is formed, and an 8i film is formed on the thermal oxide film 8.
3N, a film (silicon nitride film) 8 is formed, and the silicon nitride film 8 is partially removed leaving an active region 4 that is to become a MOS) runister, etc., and a parasitic M is formed in the removed part.
This figure shows how boron is formed by ion implantation as a channel stopper 6 to prevent the inversion of O8. The silicon nitride film 8 not covered with the photoresist was removed by using a photoresist as a mask (!F4-0. system plasma etching) to remove the silicon nitride film 8. The nitride V silicon film 8 acts as an oxidation-resistant mask against thermal oxidation of the silicon substrate l, and allows the field oxide film region 6 to be formed by a so-called selective oxidation method.Then, the silicon nitride film 8 and the thermal oxide film are formed. This field oxide film 6 should have a thickness of about 0.7 to IJμ.

次に熱酸化をおこないフィールド酸化膜6の開口部すな
わち活性領域番に厚さ500〜1000 Aのゲート絶
縁膜として二酸化シリコン膜7を形成した。次にリン又
はヒ素を高濃度にドープした多結晶シリコン8を全面に
わたり厚さ0.8〜0.4μの厚さで析出した。本実施
例では減圧式CVD法にておこなった。引続きMOS)
ランシスタのゲート部(ゲート金属パターン)及び多結
晶シリコン配線層等となるべき部分をフォトレジストで
選択的におおい、例えばCF、 +0.  系のプラズ
マエツチングにより多結晶シリコン8を選択エツチング
した。その後パターンを形成した多結晶シリコン8の表
面に熱酸化により厚さ600〜1000ムの二酸化シリ
コン膜9を形成した。引続きイオン注入法によりリン又
はヒ素を注入してM08トランジスターのソース、ドレ
インlO等を形成した様子を第2図に示す。なお、本実
施例ではイオン注入でソース、ドレインlO等を形成す
べき領域の表面は厚さ600〜1000ムのゲート絶縁
膜として形成した二酸化シリコン膜フを残してイオン注
入をおこなったが、ソース、ドレインを形成する領域の
基板lの表面を露出したままおこなってもよい。又多結
晶シリコン8の表面の二酸化Vリコン膜9を形成せずに
おこなってもよい。
Next, thermal oxidation was performed to form a silicon dioxide film 7 as a gate insulating film having a thickness of 500 to 1000 Å at the opening of the field oxide film 6, that is, at the active region. Next, polycrystalline silicon 8 doped with phosphorus or arsenic at a high concentration was deposited over the entire surface to a thickness of 0.8 to 0.4 μm. In this example, a low pressure CVD method was used. Continued to be MOS)
The gate portion (gate metal pattern) of the Lancistor and the portions that will become the polycrystalline silicon wiring layer are selectively covered with photoresist, for example, CF, +0. Polycrystalline silicon 8 was selectively etched by system plasma etching. Thereafter, a silicon dioxide film 9 having a thickness of 600 to 1000 μm was formed on the surface of the patterned polycrystalline silicon 8 by thermal oxidation. Subsequently, phosphorus or arsenic was implanted by the ion implantation method to form the source, drain IO, etc. of the M08 transistor, as shown in FIG. Note that in this example, the ion implantation was performed while leaving a silicon dioxide film formed as a gate insulating film with a thickness of 600 to 1000 μm on the surface of the region where the source, drain, etc. were to be formed. , the surface of the substrate l in the region where the drain is to be formed may be exposed. Alternatively, the process may be performed without forming the V silicon dioxide film 9 on the surface of the polycrystalline silicon 8.

次ニ、全面に窒化シリコンII!11を8oO〜100
0ムの厚さで全面に析出し、引続き4〜16重量−程度
のリンを含んだ0Vp8i0.膜(以下P2O膜)is
を厚さ0.5〜1.0μで全面に析出した。引続きMO
S)、フンシスタ一部18及びマスクデログブマプルR
OM部14等においてフォトレジストをマスクとしてP
8Glllxsを部分的にエツチングして開孔部16を
形成した。その後いわゆるP8Gリフp−技術により1
000℃前後で熱処理をおこないP8011tgの鋭角
部をゆるやかにした。この時全面に析出した窒化V 1
3フン膜11はP801i1gのエツチングに際しスト
ッパーとして働く。又P8Gリフシーに関してもたとえ
ばスチーム中でおζなった場合にはシリコン基板l及び
多結晶シリコン8に対して耐酸化性マスクとして働く。
Next, silicon nitride II on the entire surface! 11 from 8oO to 100
The 0Vp8i0. Membrane (hereinafter referred to as P2O membrane) is
was deposited on the entire surface to a thickness of 0.5 to 1.0 μm. Continued MO
S), Funsista Part 18 and Mask Derogbu Maple R
P in the OM section 14 etc. using photoresist as a mask.
8Gllllxs was partially etched to form an opening 16. After that, with the so-called P8G riff p-technology, 1
Heat treatment was performed at around 000°C to soften the sharp edges of P8011tg. At this time, nitrided V 1 precipitated over the entire surface.
The 3-layer film 11 acts as a stopper during etching of P801i1g. Regarding P8G Lift Sea, for example, when it is oxidized in steam, it acts as an oxidation-resistant mask for the silicon substrate 1 and polycrystalline silicon 8.

引続き電気的接続のためのコンタクト穴16を形成した
のを第8v!Jに示す。
In the 8th v!, a contact hole 16 for electrical connection was subsequently formed. Shown in J.

次にマスクデ四グラマプルROM部にROMの目を形成
するためにフォトレジスト膜lフでROMノ目ツバター
ンを形成した。このフォトレジスト膜17をマスクにし
て選択的にイオン注入法により例えばリンを多結晶シリ
コン8を通過して注入した。フォトレジスト除去後、引
続いて熱処理を400〜900tl:、N、の雰囲気中
でおこなった。
Next, in order to form ROM eyes in the four-grammar ROM portion of the mask, ROM eye ribs were formed using a photoresist film. Using this photoresist film 17 as a mask, phosphorus, for example, was selectively implanted through the polycrystalline silicon 8 by ion implantation. After removing the photoresist, heat treatment was subsequently performed in an atmosphere of 400 to 900 tl:,N.

この実施例ではソース、ドレインと同極性の不純物、を
注入し、エンハンスメント型のMO8)フンマスクをデ
ィプレッション型に変更してROMの目1Bを形成して
いる。なお、第1図においては4個中1個のROMの目
を形成した様子を示しているが、この数にとられれる必
要はない。また、注入した不純物は全部が多結晶シリコ
ンを通過しなくてもよく部分的であってもよい。また不
純物はゲート絶縁膜としての二酸化シリコン膜70部分
に注入して4よいし、さらにその下部のシリコン基板1
0部分にまで及んでもよい。@4図はシリコン基板lに
まで注入した不純物が通過した状態を示している。
In this embodiment, impurities having the same polarity as the source and drain are implanted, and the enhancement type MO8) mask is changed to the depletion type to form the ROM eye 1B. Although FIG. 1 shows that one ROM eye is formed out of four, it is not necessary to limit the number to this number. Further, the implanted impurity does not need to pass through the polycrystalline silicon entirely, and may only partially pass through the polycrystalline silicon. Further, the impurity may be implanted into the silicon dioxide film 70 portion as a gate insulating film, and furthermore, the impurity may be implanted into the silicon dioxide film 70 portion as a gate insulating film.
It may even extend to the 0 part. Figure @4 shows a state in which the impurity implanted up to the silicon substrate l has passed through.

引続き、配線金属層19として1−B4のシリコンを含
んだアル導二つムムlを析出して所望のパターンを形成
し、パッシペーVヨン用膜トシてプラズマデポジション
により析出した窒化シリコン膜goを形成した様子を第
5図に示す。
Subsequently, as the wiring metal layer 19, a 1-B4 silicon-containing aluminum film is deposited to form a desired pattern, and a silicon nitride film deposited by plasma deposition is then deposited as a passivation film. The state of formation is shown in FIG.

なお、本実施例ではNMO8においてソース。Note that in this embodiment, the source is NMO8.

ドレインと同極性の不純物を注入したが、これはPMO
8、CMOBにおいても、また他の半導体装置にも適用
できる事はいうまで4ない。さらにソース、ドレインと
は異極性の不純物を注入してもよく、場合によってはス
レッシュホールド電圧を変化するような非極性不純物を
注入してもよい。
An impurity with the same polarity as the drain was implanted, but this
8. It goes without saying that the present invention can be applied to CMOB as well as other semiconductor devices. Further, an impurity having a different polarity from that of the source and drain may be implanted, and in some cases, a non-polar impurity that changes the threshold voltage may be implanted.

また、本実施例ではコンタクト穴形成後ROMの目の形
成をおこなったが、金属配線層パターン形成後おこなう
事もできる。またコンタクト大形成前の工程でおこなっ
てもよい。
Further, in this embodiment, the ROM mesh was formed after the contact holes were formed, but it can also be formed after the metal wiring layer pattern is formed. Alternatively, it may be performed in a step before large-scale contact formation.

以上述べたように本発明にかいては、多結晶シリコンの
ゲート金属パターンを通過してイオン注入法等により不
純物をMO8トランジスタのチャンネル領域等に注入し
てスレッシュホールド[EEを変化させる事ができるの
で、ROMの目としての特別の面積はいらず高集積化で
きる。また本実施例に示したような場合、このROMの
目の書き込みのプロセスはウェファ−デルセスの後期で
おこなえるので(実施例ではフンタクト穴形成後おこな
っている)、半導体装置を提供するための納期を非常に
短縮する事ができ、従来おこなっていたゲート金属パタ
ーン形成前にROMの目を形成する方法に比較して優位
性は顕微であり、ウェファ−プロセスの長い0MO8集
積回路装蓋の製造においては特にその差は大きなもので
ある。このように高集積化したマスクプルグラムROM
を含んだ半導体装置を短い納期で提供することが可能に
なる。
As described above, in the present invention, the threshold [EE] can be changed by injecting impurities into the channel region of the MO8 transistor by ion implantation or the like through the gate metal pattern of polycrystalline silicon. Therefore, there is no need for a special area for the ROM, and high integration can be achieved. In addition, in the case shown in this embodiment, the writing process of the ROM can be performed in the later stage of wafer delta processing (in this embodiment, it is carried out after the formation of the tact hole), which reduces the delivery time for providing semiconductor devices. It can be extremely shortened, and has a microscopic advantage over the conventional method of forming ROM eyes before forming the gate metal pattern. The difference is particularly large. This highly integrated mask program ROM
It becomes possible to provide semiconductor devices including the following in a short delivery period.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明による半導体装置について説
明するための一実施例となる各製造工程における側面断
面図である。 l・・・単結晶シリコン基板、6・・・フィールド醗化
膜、8・・・多結晶シリコン、10−・・ソース、ドレ
イン拡散層、11・・・窒化シリコン膜、19・・・P
2O膜、17・・・フォトレジスト膜、18・・・RO
Mの目、19・−・配線金属層。 代理人弁理士   岡 部   隆
FIGS. 1 to 6 are side cross-sectional views at various manufacturing steps as an example for explaining a semiconductor device according to the present invention. l...Single crystal silicon substrate, 6...Field film, 8...Polycrystalline silicon, 10-...Source, drain diffusion layer, 11...Silicon nitride film, 19...P
2O film, 17... Photoresist film, 18... RO
M-eye, 19 --- wiring metal layer. Representative Patent Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】 (1) M I B型半導体装置においてゲート絶縁膜
管形成する工程と、該ゲー)絶縁膜上にゲート金属パタ
ーンを形成する工程と、ソース、ドレイン拡散層を形成
する工程と、荷電粒子の少なくと4一部は前記ゲート金
属パターンの選択された領域の該ゲート金属を通過して
該荷電粒子を注入する工程とを有することを特徴とする
半導体装置の製造方法。 (8)前記MI 8I!半導体装置の前記ゲート金属パ
ターンの選択された領域のN紀ゲー)金属を通過して荷
電粒子を注入すゐ前記工程に先立ち、窒化シリコン膜を
形成する工程と、P2O膜を形成する工程と、所望の領
域のP 8 Gjlを選択的に除去する工程とを含むこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
の製造方法@
[Claims] (1) A step of forming a gate insulating film tube in an M I B type semiconductor device, a step of forming a gate metal pattern on the insulating film, and a step of forming source and drain diffusion layers. and injecting the charged particles so that at least four portions of the charged particles pass through the gate metal in a selected region of the gate metal pattern. (8) Said MI 8I! forming a silicon nitride film and forming a P2O film prior to the step of injecting charged particles through the metal in the selected region of the gate metal pattern of the semiconductor device; A method for manufacturing a semiconductor device according to claim 1, comprising the step of selectively removing P 8 Gjl in a desired region.
JP56169070A 1981-10-22 1981-10-22 Manufacture of semiconductor device Granted JPS5870567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56169070A JPS5870567A (en) 1981-10-22 1981-10-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56169070A JPS5870567A (en) 1981-10-22 1981-10-22 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5870567A true JPS5870567A (en) 1983-04-27
JPH0328833B2 JPH0328833B2 (en) 1991-04-22

Family

ID=15879764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56169070A Granted JPS5870567A (en) 1981-10-22 1981-10-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5870567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212152A (en) * 1985-07-09 1987-01-21 Nippon Denso Co Ltd Manufacture of semiconductor device
JPS63202061A (en) * 1987-02-17 1988-08-22 Nec Corp Semiconductor memory device
JPH02209767A (en) * 1989-02-09 1990-08-21 Fujitsu Ltd Manufacture of semiconductor device
KR100401004B1 (en) * 2001-08-27 2003-10-10 동부전자 주식회사 mask ROM and fabricating method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859783A (en) * 1971-11-25 1973-08-22
JPS5553454A (en) * 1978-10-16 1980-04-18 Fujitsu Ltd Method for producing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859783A (en) * 1971-11-25 1973-08-22
JPS5553454A (en) * 1978-10-16 1980-04-18 Fujitsu Ltd Method for producing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212152A (en) * 1985-07-09 1987-01-21 Nippon Denso Co Ltd Manufacture of semiconductor device
JPS63202061A (en) * 1987-02-17 1988-08-22 Nec Corp Semiconductor memory device
JPH02209767A (en) * 1989-02-09 1990-08-21 Fujitsu Ltd Manufacture of semiconductor device
KR100401004B1 (en) * 2001-08-27 2003-10-10 동부전자 주식회사 mask ROM and fabricating method thereof

Also Published As

Publication number Publication date
JPH0328833B2 (en) 1991-04-22

Similar Documents

Publication Publication Date Title
JP2558931B2 (en) Semiconductor device and manufacturing method thereof
JPS6140035A (en) Manufacture of semiconductor device
JPS5870567A (en) Manufacture of semiconductor device
JPH0779101B2 (en) Manufacturing method of semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JPH027558A (en) Semiconductor device and manufacture thereof
RU2244985C1 (en) Method for manufacturing complementary vertical bipolar transistors as parts of integrated circuits
JPS6331124A (en) Manufacture of semiconductor device
JPS59111367A (en) Manufacture of semiconductor device
JPH0444250A (en) Manufacture of semiconductor device
JPS6117143B2 (en)
JPH0318034A (en) Manufacture of semiconductor device
JPH04162519A (en) Manufacture of mos semiconductor device
KR0150684B1 (en) A manufacturing method of a semiconductor device with multi-well
RU2046454C1 (en) Process of manufacture of large-scale integrated cos/mos circuits
JPS60128635A (en) Forming process of element isolation region
JPS6194356A (en) Manufacture of semiconductor device
JPH0152900B2 (en)
JP2000100970A (en) Semiconductor device and its manufacture
JPH01256147A (en) Manufacture of semiconductor device
JPS59126628A (en) Manufacture of semiconductor device
JPS6191962A (en) Manufacture of semiconductor device
JPS58158968A (en) Manufacture of semiconductor device
JPH07161963A (en) Manufacture of quantum wire structure
JPS58212162A (en) Semiconductor device and manufacture thereof