JPS58212162A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58212162A
JPS58212162A JP57095190A JP9519082A JPS58212162A JP S58212162 A JPS58212162 A JP S58212162A JP 57095190 A JP57095190 A JP 57095190A JP 9519082 A JP9519082 A JP 9519082A JP S58212162 A JPS58212162 A JP S58212162A
Authority
JP
Japan
Prior art keywords
region
crystal defects
oxygen
semiconductor device
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57095190A
Other languages
Japanese (ja)
Inventor
Shuichi Mayumi
周一 真弓
Hiroshi Oishi
大石 博司
Ichizo Kamei
亀井 市蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP57095190A priority Critical patent/JPS58212162A/en
Publication of JPS58212162A publication Critical patent/JPS58212162A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To relatively simply perform an isolated region to obtain a semiconductor device in which a circuit function element is formed in the isolated region by providing the isolated region having less crystal defects on the prescribed surface of a semiconductor substrate which has many crystal defects. CONSTITUTION:An oxygen precipitated uncleus region 1-D is transformed by heat treating in an oxygen gas into a crystal defect region 1-A, and the region 1-D becomes a no-defect region 1-B as it is. An oxidized silicon film 18 is formed on the part which is not covered with a nitrided silicon film 17 on a silicon substrate. Stepwise shape is formed at the grown part and the part in which oxidized silicon is masked with the film 17, and a photomask used in the later manufacturing steps is positioned with the stepwise shape as a reference. A memory cell 6 and an MOS transistor 10 as circuit active element are respectively formed in the region 1-B, minority carried generated in the drain region 9 is effectively recombined and removed in the matrix region of a defect layer 1-A, and does not reach the isolated region of the memory cell 6 at all.

Description

【発明の詳細な説明】 本発明は超高密度化の可能な半導体装置およびその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device capable of ultra-high density and a method for manufacturing the same.

超高集積化回路装置(VLSI) で、単体の機能要素
として利用されるメモリにおいては、同メモリセル領域
とその周辺回路の機能要素とが著しく近接したものとな
るとともに、同メモリセルに蓄積される電荷量も微小で
あるため、たとえば、上記周辺回路を構成するMOS)
ランジスタを飽和領域で動作させると、そのドレイン領
域からインパクトイオン化現象によって少数キャリアが
発生し、このキャリアが上記メモリセル領域まで拡散到
達して、そのメモリ状態を変動させるという異常動作を
生ずることがある。これはメモリ誤動作として現われる
ため、この誤動作防止対策がVLSIメモリ装置の重要
課題のひとつである0′従来、かかる誤動作防止対策を
講じた半導体装置として、第1図の断面図に示すメモリ
装置が知られている。この装置は、p型シリコン基板1
の内部に結晶欠陥領域1−Aを層状に造り込み、同基板
1の表面部を局部酸化形成膜(LOGO3膜)2で分離
し、一方の表面領域に、第1多結晶ゲート層3.第2多
結晶ゲート層4およびn+型型数散層5りなるソース領
域をそなえるメモリキャパシタ(メモリセル)6を形・
成するとともに、他方の表面領域に、多結晶ゲート層7
.n+型型数散層89よりなるソース領域、ドレイン領
域を有するMOSトランジスタ10を形成したものであ
る。なお、この装置の最浅部には、燐珪酸ガラス(PS
G)膜よりなる保護層11および外部電極配線層に結線
されるアルミニウム膜よりなる第2ゲート電極12、ソ
ース電極13.ドレイン電極14が周知の形成方法で設
けられており、また、各ゲート層下には薄いゲート絶縁
膜ならび質ゲート層間絶縁膜が存在することも、通常の
メ阜j′す)セルないしMOSトランジそ夕と同じであ
る。この装置では、上記MO3)ランジスタ10の側の
表面領域で発生した少数キャリアを下方の結晶欠陥領域
?Aで消滅させるのが狙いであるが、表面層部1−Bの
厚みの制御がなかなか困難な現状では、たとえば、その
厚さが10μm以上になると、その効果が不完全になり
、上記MO8)ランラスタ1o側で発生したキャリアが
9図中の矢印で示されるように、メモリセル6の領域ま
で拡散到達し、これによる誤動作を完全に除去すること
ができなかった。
In a memory that is used as a single functional element in a very highly integrated circuit device (VLSI), the memory cell area and the functional elements of its peripheral circuits are extremely close to each other, and the amount of data stored in the same memory cell increases. For example, since the amount of charge caused by the
When a transistor is operated in the saturation region, minority carriers are generated from its drain region due to impact ionization, and these carriers diffuse to reach the memory cell region, causing abnormal operation in which the memory state changes. . Since this appears as a memory malfunction, measures to prevent this malfunction are one of the important issues for VLSI memory devices. Conventionally, the memory device shown in the cross-sectional view of FIG. 1 is known as a semiconductor device that has taken measures to prevent such malfunction. It is being This device consists of a p-type silicon substrate 1
A crystal defect region 1-A is built in a layered manner inside the substrate 1, the surface portion of the substrate 1 is separated by a local oxidation film (LOGO3 film) 2, and a first polycrystalline gate layer 3. A memory capacitor (memory cell) 6 having a source region consisting of a second polycrystalline gate layer 4 and an n+ type scattering layer 5 is formed.
At the same time, a polycrystalline gate layer 7 is formed on the other surface region.
.. A MOS transistor 10 having a source region and a drain region made of an n+ type scattering layer 89 is formed. Note that the shallowest part of this device is made of phosphosilicate glass (PS).
G) A second gate electrode 12 and a source electrode 13 made of an aluminum film connected to a protective layer 11 made of a film and an external electrode wiring layer. The drain electrode 14 is provided by a well-known formation method, and the presence of a thin gate insulating film and a thin gate interlayer insulating film under each gate layer is also a common method for forming cells or MOS transistors. It's the same as that evening. In this device, the minority carriers generated in the surface region on the MO3) transistor 10 side are transferred to the crystal defect region below. The aim is to eliminate it with A, but in the current situation where it is difficult to control the thickness of the surface layer portion 1-B, for example, if the thickness becomes 10 μm or more, the effect will be incomplete, and the above MO8) The carriers generated on the run raster 1o side diffused and reached the memory cell 6 region as shown by the arrow in FIG. 9, and the malfunction caused by this could not be completely eliminated.

更に、第2図の断面図のように、第1図示構造に加えて
、上記メモリセル6と上記MOSトランジスターoとの
間に、p+型型数散層15よる分離領域を設けることに
よって、不要キャリアの拡散進入を阻止することも実施
されているが、この場合には、上記?型拡散層16を1
0μm程度の深さにしなければその効果も十分に得られ
ず、また、浅い拡散層で能動素子を形成することを基本
とするVLSI技術では、かかる深い拡散工程は製造上
□) の隘路である。尚、第′2図で第1図と同一番号は同一
部分を示す。
Furthermore, as shown in the cross-sectional view of FIG. 2, in addition to the structure shown in the first diagram, an isolation region of a p+ type scattering layer 15 is provided between the memory cell 6 and the MOS transistor o, thereby eliminating unnecessary Prevention of carrier diffusion has also been implemented, but in this case, what is the above? 1 type diffusion layer 16
The effect cannot be fully obtained unless the depth is about 0 μm, and in VLSI technology, which is based on forming active elements with a shallow diffusion layer, such a deep diffusion process is a bottleneck in manufacturing. . In FIG. 2, the same numbers as in FIG. 1 indicate the same parts.

本発明の目的は、上述の従来装置における問題j点を解
消するもので、第1に、多量の結晶欠陥を有する半導体
基板の所定表面部に結晶欠陥の少ない分離領域をそなえ
、上記分離領域内に回路能動要素を構成した半導体装置
を提供し、第2に、上記多量の結晶欠陥を有する領域と
上記結晶欠陥の少ない分離領域とを比較的簡単に実現し
得る有用な製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problem J in the conventional device.Firstly, an isolation region with few crystal defects is provided in a predetermined surface portion of a semiconductor substrate having a large number of crystal defects, and a separation region within the isolation region is provided. Second, to provide a useful manufacturing method that can relatively easily realize the region having a large amount of crystal defects and the separation region having few crystal defects. It is in.

本発明の半導体装置は、実施例構造を第3図の要部断面
図に示したように、p型シリコン基板1の表面部に多量
の結晶欠陥を有する結晶欠陥層1−Aおよび同結晶欠陥
層゛内の所定部に結晶欠陥の少ない分離領域1−Bをそ
なえており、回路能動要素としてのメモリセル6および
MOS)ランジスタ10が、それぞれ、上記分離領域1
−B内に造り込まれたものである。なお、第3図中の各
構体符号は、前、記第1図ならびに同第2図に示した半
導体装置のものと対応した構体を表わしたものである。
The semiconductor device of the present invention has a crystal defect layer 1-A having a large amount of crystal defects on the surface of a p-type silicon substrate 1, and a crystal defect layer 1-A having a large amount of crystal defects on the surface of a p-type silicon substrate 1, as shown in the main part cross-sectional view of FIG. An isolation region 1-B with few crystal defects is provided at a predetermined portion in the layer 1, and a memory cell 6 and a MOS transistor 10 as circuit active elements are provided in the isolation region 1-B, respectively.
- It is built into B. Note that each structure reference numeral in FIG. 3 represents a structure corresponding to that of the semiconductor device shown in FIGS. 1 and 2 above.

すなわち、本発明の半導体装置によれば、近接配置され
る両回路能動要素、たとえば、前記メモリセル6および
前記MO8)ランジスタ10が、それぞれ、前記結晶欠
陥層?Aのマトリックス領域で完全に囲まれた前記分離
領域1−B内に存在するものであるから、前記MO8I
−ランジスタ10のドレイン領域9で発生した少数キャ
リアも、前記欠陥層1−Aのマトリクス領域において確
実に再結合消滅されるため、近接の前記メモリセル6の
分離領域には全く到達せず、したがって、前記メモリセ
ル6の特性を損なうという不都合が完全に排除される。
That is, according to the semiconductor device of the present invention, both circuit active elements disposed close to each other, for example, the memory cell 6 and the MO transistor 10, are located in the crystal defect layer. Since it exists in the separation region 1-B completely surrounded by the matrix region of A, the MO8I
- The minority carriers generated in the drain region 9 of the transistor 10 are also surely recombined and annihilated in the matrix region of the defect layer 1-A, so that they do not reach the isolation region of the adjacent memory cell 6 at all, and therefore , the disadvantage of impairing the characteristics of the memory cell 6 is completely eliminated.

第3図の実施例構造は、ダイナミックRAMのメモリセ
ル部と周辺回路のMOSトランジスタ部との要部構成を
示す典型例であるが、さらに、同構成の製造方法を第4
図の上記ダイナミックRAMの製造工程図により詳しく
のべる。
The structure of the embodiment shown in FIG. 3 is a typical example showing the structure of the main parts of the memory cell part of the dynamic RAM and the MOS transistor part of the peripheral circuit.
The details will be described in detail with reference to the manufacturing process diagram of the dynamic RAM shown in the figure.

例えば、炭素濃度が3X16  Cm  +酸素濃度が
10×18 cm のp型シリコン基板1−Cの上に膜
厚500への酸化ケイ素被膜16を酸素中の熱処理によ
り成長させ、さらに、゛この酸化ケイ素被膜16の上に
膜厚1o0〇への窒化ケイ素被膜17を被着する。次に
、ホトレジストマスクを用いて、上記窒化ケイ素17お
よび酸化ケイ素被膜16を工ッチングにより、所定形状
に開口する〔第3図(a)〕。
For example, on a p-type silicon substrate 1-C with a carbon concentration of 3×16 cm + oxygen concentration of 10×18 cm, a silicon oxide film 16 to a thickness of 500 mm is grown by heat treatment in oxygen. A silicon nitride film 17 is deposited on the film 16 to a thickness of 1000. Next, using a photoresist mask, the silicon nitride film 17 and the silicon oxide film 16 are etched to form openings in a predetermined shape [FIG. 3(a)].

この後、酸素濃度が01係のアルゴン−酸素混合ガス中
で1100℃ 、4時間の熱処理を施す。この時、シリ
コン基板1−C中に含丑れる酸素は上記被膜開口部から
外方拡散されるので、同シリコン基板1−Cの内部およ
び上記窒化ケイ素被膜17で覆われた部分は初期の酸素
濃度を保つが、それ以外のシリコン基板1−Cの表面近
傍は低酸素濃度領域1−Bとなる〔第3図(b) ) 
O引き続き、酸素ガス中で700℃、16時間の熱処理
を施す。この時、低酸素濃度領域1−Bでは酸素濃度が
低いために酸素の析出はないが、高酸素濃度領域1−C
では酸素析出核が発生する〔第3図(C) ) O更に
、酸素ガス中で1000℃、6時間の熱処理を施すこと
によって、先に生成された酸素析出後は結晶欠陥に成長
するため、酸素析出核領域1−Dは結晶欠陥領域1−A
に転化し、酸素無析出核領域ゆそのまま無欠陥領域1−
Bとなる。尚、この熱処理により、シリコン基板上の窒
化ケイ素被膜17で覆われていない部分すなわち、基板
露出部分は約4000人の酸化ケイ素被膜18が成長す
る〔第3図(d)〕。この後、前記窒化ケイ素被膜17
を150℃のリン酸によってエツチングし、更に、前記
酸化ケイ素被膜16.1Bを弗酸水溶液によシ除去する
。この時、シリコン基板の主面において、前工程で酸化
ケイ素被膜18が成長した部分と窒化ケイ素被膜17に
よりシリコンの酸化がマスクされた部分で段差形状が生
じる〔第3図(e)〕。後の製造工程に使用されるフォ
トマスクはこの段差形状を基準にして位置合わせが実施
される。以後の製造工程は通常のダイナミックRAMの
製造工程と同様であシ。
Thereafter, heat treatment is performed at 1100° C. for 4 hours in an argon-oxygen mixed gas with an oxygen concentration of 01. At this time, the oxygen contained in the silicon substrate 1-C is diffused outward from the opening of the film, so that the inside of the silicon substrate 1-C and the portion covered with the silicon nitride film 17 are exposed to the initial oxygen. The oxygen concentration is maintained, but the rest of the area near the surface of the silicon substrate 1-C becomes a low oxygen concentration region 1-B [Figure 3(b)]
Subsequently, heat treatment is performed at 700° C. for 16 hours in oxygen gas. At this time, there is no precipitation of oxygen in the low oxygen concentration region 1-B because the oxygen concentration is low, but in the high oxygen concentration region 1-C
Then, oxygen precipitate nuclei are generated [Figure 3 (C)]. Furthermore, by applying heat treatment at 1000°C for 6 hours in oxygen gas, the previously generated oxygen precipitates grow into crystal defects. Oxygen precipitation nucleus region 1-D is crystal defect region 1-A
Defect-free region 1-
It becomes B. By this heat treatment, about 4,000 silicon oxide films 18 grow on the parts of the silicon substrate not covered with the silicon nitride film 17, that is, the exposed parts of the substrate [FIG. 3(d)]. After this, the silicon nitride coating 17
is etched with phosphoric acid at 150° C., and the silicon oxide film 16.1B is further removed with a hydrofluoric acid aqueous solution. At this time, on the main surface of the silicon substrate, a step shape is generated at the part where the silicon oxide film 18 was grown in the previous step and the part where silicon oxidation was masked by the silicon nitride film 17 [FIG. 3(e)]. A photomask used in a subsequent manufacturing process is aligned based on this step shape. The subsequent manufacturing process is similar to that of a normal dynamic RAM.

LOCO8膜2.ゲート酸化膜19.第1多結晶シリコ
ンゲート層3.第1層間絶縁膜20.第2多結晶シリコ
ンゲート層4.メモリセル部のソース拡散層6ならびに
MOS)ランシスターのソース。
LOCO8 membrane 2. Gate oxide film 19. First polysilicon gate layer 3. First interlayer insulating film 20. Second polycrystalline silicon gate layer 4. The source diffusion layer 6 of the memory cell section and the source of the MOS) run sister.

ドレイン、拡散層8,9を順次形成する[第3図(f)
]0更に、PSG膜11を・植着した後、コンタクト窓
を開孔し、PSGフローを実施して後アルミニウム膜の
電極層12,13.14を形成して完成する(第3図)
Drain and diffusion layers 8 and 9 are sequentially formed [Fig. 3(f)]
]0 Furthermore, after implanting the PSG film 11, a contact window is opened and a PSG flow is performed to form electrode layers 12, 13, and 14 of aluminum film to complete the process (Fig. 3).
.

本実施例の場合、MOS)ランシスター10のドレイン
とメモリセル6のキャノ(ジター間の距離は70μmで
あり、ドレイン電圧を6vに設定した場合、メモリセル
の電荷保持時間は40秒であった0尚、従来方法により
製造した第1図構造のものでは、同一条件で測定した場
合、電荷保持時間は26秒であり、明らかに、本実施例
を用いた構造のものがメモリセルの電荷保持時間が長い
In the case of this example, the distance between the drain of the MOS transistor 10 and the capacitor of the memory cell 6 was 70 μm, and when the drain voltage was set to 6 V, the charge retention time of the memory cell was 40 seconds. 0 In the case of the structure shown in FIG. 1 manufactured by the conventional method, the charge retention time was 26 seconds when measured under the same conditions, and it is clear that the structure using this example has a longer charge retention time in the memory cell. It's a long time.

本実施例を用いたものでは、MOS)ランシスター10
を完全に包囲した結晶欠陥領域に含まれる結晶欠陥がキ
ャリアーの再結合中心となるため、MOS)ランシスタ
ー1oにおいてインノくクトイオン化現象により生成さ
れた少数キャリアーはこの結晶欠陥領域を通る際、こと
ごとく再結合により消滅し、近接のメモリセルには到達
しないことが認められる。
In this example, MOS) Runsister 10
Since the crystal defects contained in the crystal defect region completely surrounding the crystal defect region become carrier recombination centers, all the minority carriers generated by the innocent ionization phenomenon in the MOS) run sister 1o pass through this crystal defect region. It is observed that the light disappears due to recombination and does not reach neighboring memory cells.

以上のように、本発明によれば、周辺トランジスターに
おけるインパクトイオン化によるメモリー誤動作を防止
することができる。更に、結晶欠陥がMOS)ランシス
ターを包囲した構造になっているため、デバイスプロセ
ス中に起り得る重金属等汚染下純物侵入に対して効率の
良いゲッタリングが可能であり、また、メモ、リセル部
をこの結晶欠陥領域によって包囲した場合、α線による
メモリー誤動作も改善されることが期待される。尚、本
発明実施例ではMOS)ランシスターを包囲する結晶欠
陥領域をシリコン基板中に含まれる酸素の析出によって
形成したが、例えばAr+イオン等のイオン注入によっ
て形成される結晶欠陥を用いても同様な効果が得られる
As described above, according to the present invention, memory malfunctions due to impact ionization in peripheral transistors can be prevented. Furthermore, since the crystal defects surround the MOS (MOS) run sister, efficient gettering is possible against the intrusion of contaminants such as heavy metals that may occur during the device process. If the area is surrounded by this crystal defect region, it is expected that memory malfunctions caused by alpha rays will also be improved. Incidentally, in the embodiment of the present invention, the crystal defect region surrounding the MOS (MOS) run sister was formed by precipitation of oxygen contained in the silicon substrate, but the same effect can be obtained by using crystal defects formed by ion implantation such as Ar+ ions. You can get the following effect.

本発明はダイナミックRAMの構造およびその製造方法
を例示して説明したが、本発明はCODイメージセンサ
、0MO3あるいはその他の半導体装置にも応用できる
ものである。
Although the present invention has been described by exemplifying the structure of a dynamic RAM and its manufacturing method, the present invention can also be applied to COD image sensors, OMO3, and other semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の半導体装置(RAM)の要部構
造断面図、第3図は本発明の一実施例半導体装置(RA
M)の要部断面図、第4図(a)〜(f)は本発明の一
実施例に係る製造工程断面図である。 1・・・・・・シリコン基板(p型)、1−Ao・・・
・結晶欠陥領域、1−B・・・・・・無欠陥領域、1−
C・・・・・・高酸素濃度領域、?D・・・・・・酸素
析出核領域、20・・・・LOCO8膜、6・・・・・
・n十数散層、11@…−PSG膜、15116111
11111 p生鉱散層、600000.メモリセノペ
10−−−−−−MO3トランジスタ。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第3図 第4図 (C) 第4図
1 and 2 are structural sectional views of main parts of a conventional semiconductor device (RAM), and FIG. 3 is a semiconductor device (RA) according to an embodiment of the present invention.
FIGS. 4(a) to 4(f) are sectional views of main parts of M) and sectional views of manufacturing steps according to an embodiment of the present invention. 1...Silicon substrate (p type), 1-Ao...
・Crystal defect region, 1-B...Defect-free region, 1-
C...High oxygen concentration area? D...Oxygen precipitation nucleus region, 20...LOCO8 film, 6...
・N tens of scattered layers, 11@…-PSG film, 15116111
11111 p raw mineral dispersion layer, 600000. Memory Senope 10---MO3 transistor. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 3 Figure 4 (C) Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)多量の結晶欠陥を有する半導体基板の所定表面部
に結晶欠陥の少ない分離島領域をそなえ、前記分離島領
域内に回路能動要素を構成したことを特徴とする半導体
装置。
(1) A semiconductor device characterized in that an isolation island region with few crystal defects is provided on a predetermined surface portion of a semiconductor substrate having a large amount of crystal defects, and a circuit active element is configured in the isolation island region.
(2)多量の結晶欠陥が酸素析出核から生成された結晶
欠陥でなることを特徴とする特許請求の範囲第1項に記
載の半導体装置。
(2) The semiconductor device according to claim 1, wherein a large amount of crystal defects are crystal defects generated from oxygen precipitation nuclei.
(3)多量の結晶欠陥がアルゴンイオン注入により形成
された結晶欠陥でなることを特徴とする特許請求の範囲
第1項に記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein a large number of crystal defects are crystal defects formed by argon ion implantation.
(4)酸素を含む半導体基板の表面に不活性被膜を形成
したのち、前記不活性被膜に所定開口部を選択する工程
と、前記半導体基板を熱処理することによって、前記半
導体基板内の酸素を前記開口部より外方拡散で抜き出し
酸素析出核を形成する工程と、前記半導体基板の熱処理
によって、前記酸素析出核から結晶欠陥を生成する工程
を有することを特徴とする半導体装置の製造方法。
(4) After forming an inert film on the surface of a semiconductor substrate containing oxygen, selecting a predetermined opening in the inert film and heat-treating the semiconductor substrate to eliminate oxygen in the semiconductor substrate. A method for manufacturing a semiconductor device, comprising the steps of: extracting oxygen precipitate nuclei from an opening by outward diffusion; and generating crystal defects from the oxygen precipitate nuclei by heat treating the semiconductor substrate.
JP57095190A 1982-06-03 1982-06-03 Semiconductor device and manufacture thereof Pending JPS58212162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095190A JPS58212162A (en) 1982-06-03 1982-06-03 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095190A JPS58212162A (en) 1982-06-03 1982-06-03 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58212162A true JPS58212162A (en) 1983-12-09

Family

ID=14130831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095190A Pending JPS58212162A (en) 1982-06-03 1982-06-03 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58212162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299265A (en) * 1987-05-29 1988-12-06 Nissan Motor Co Ltd Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649532A (en) * 1979-09-28 1981-05-06 Toshiba Corp Manufacture of silicon substrate
JPS56147446A (en) * 1980-04-17 1981-11-16 Nec Corp Semiconductor integrated circuit device
JPS56155565A (en) * 1980-05-01 1981-12-01 Toshiba Corp Charge accumulating type semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649532A (en) * 1979-09-28 1981-05-06 Toshiba Corp Manufacture of silicon substrate
JPS56147446A (en) * 1980-04-17 1981-11-16 Nec Corp Semiconductor integrated circuit device
JPS56155565A (en) * 1980-05-01 1981-12-01 Toshiba Corp Charge accumulating type semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299265A (en) * 1987-05-29 1988-12-06 Nissan Motor Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JPS63314868A (en) Manufacture of mos semiconductor device
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0324727A (en) Manufacture of semiconductor device
JPS58212162A (en) Semiconductor device and manufacture thereof
JP2662029B2 (en) Method for manufacturing MOS transistor
JPH033360A (en) Semiconductor device and its manufacture
JPS63205944A (en) Manufacture of mos integrated circuit
JPS5817655A (en) Manufacture of semiconductor device
JPH01303727A (en) Impurity gettering process
JPS5870567A (en) Manufacture of semiconductor device
JPH04150018A (en) Semiconductor device and its manufacture
JPS59111367A (en) Manufacture of semiconductor device
JPH027558A (en) Semiconductor device and manufacture thereof
JPH05110001A (en) Manufacture of semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPS63271972A (en) Manufacture of thin film transistor
JPH0582734A (en) Manufacture of mos semiconductor device
JPS597228B2 (en) Zetsuen Gate Handout Taisouchino Seizouhouhou
JPS5976431A (en) Semiconductor device and manufacture thereof
JPS60153146A (en) Aluminum wiring of semiconductor device
JPH05335515A (en) Manufacture of semiconductor memory device
JPS6041243A (en) Manufacture of semiconductor device
JPH02194653A (en) Mis transistor
JPS59191375A (en) Manufacture of semiconductor memory device
JPH03108722A (en) Manufacture of semiconductor device