JPS63205944A - Manufacture of mos integrated circuit - Google Patents

Manufacture of mos integrated circuit

Info

Publication number
JPS63205944A
JPS63205944A JP62039452A JP3945287A JPS63205944A JP S63205944 A JPS63205944 A JP S63205944A JP 62039452 A JP62039452 A JP 62039452A JP 3945287 A JP3945287 A JP 3945287A JP S63205944 A JPS63205944 A JP S63205944A
Authority
JP
Japan
Prior art keywords
region
oxide film
gate oxide
mos transistor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62039452A
Other languages
Japanese (ja)
Inventor
Shigeaki Nakamura
中村 茂昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP62039452A priority Critical patent/JPS63205944A/en
Publication of JPS63205944A publication Critical patent/JPS63205944A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Abstract

PURPOSE:To easily control the film thickness of two kinds of devices formed on an identical substrate by a method wherein, after nitrogen ion has been implanted rapidly into a region to form a low-voltage operating device on the substrate, two device-forming regions are treated simultaneously by a thermal oxidation process. CONSTITUTION:A region A, where a MOS transistor for a low-voltage operating circuit is formed by a device isolation film 2, and a region B, where another MOS transistor of a high-voltage operating circuit is formed, are formed on a silicon semiconductor substrate 1. Then, nitrogen ion is implanted into the region A and controls the target film thickness of a silicon oxide film. Then, this assembly is heat-treated a gate oxide film 10 whose film thickness is thin is formed on the region A and another gate oxide film 11 whose film thickness is thick is formed in the region B. After that, polycrystalline silicon films 6 acting as gate electrodes are formed on the films 10, 11 impurities are diffused into the substrate 1 then source regions 7 and drain regions 6 are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はゲートにかかる動作電圧(以後動作電圧と記す
)の異なる2種類以上のMOS)ランジスタを同一半導
体基板に形成するMOS集積回路の製造方法に関するも
のである。
Detailed Description of the Invention Field of the Invention The present invention relates to a method for manufacturing a MOS integrated circuit in which two or more types of MOS transistors having different operating voltages applied to their gates (hereinafter referred to as operating voltages) are formed on the same semiconductor substrate. It is something.

従来の技術 同一半導体基板上に動作電圧が互いに異なるMOSトラ
ンジスタを形成するMOS集積回路において、高電圧動
作回路部のトランジスタと低電圧動作回路部のトランジ
スタにそれぞれ最適な厚さのゲート酸化膜を二度の酸化
処理工程により形成している。この従来の工程を第3図
の断面図を参照して説明する。
2. Description of the Related Art In a MOS integrated circuit in which MOS transistors with different operating voltages are formed on the same semiconductor substrate, two gate oxide films with optimal thicknesses are formed for the transistors in the high-voltage operating circuit section and the transistors in the low-voltage operating circuit section. It is formed through a multiple oxidation treatment process. This conventional process will be explained with reference to the sectional view of FIG.

まず、シリコン半導体基板1の表面に選択的に素子分離
用のフィールド酸化膜2を形成する。なお、図において
低電圧動作回路部のMOSトランジスタの形成領域をA
領域、高電圧動作回路部のMOSトランジスタの形成領
域をB領域で示す6次に、シリコン半導体基板1の表面
に第1回目のゲート酸化膜3を形成した後、B領域をフ
ォトレジスト膜4でマスクし、A領域のゲート酸化膜を
通常のエツチング方法で除去する(第3図a)。
First, a field oxide film 2 for element isolation is selectively formed on the surface of a silicon semiconductor substrate 1. In the figure, the formation area of the MOS transistor in the low voltage operation circuit section is indicated by A.
6. Next, after forming the first gate oxide film 3 on the surface of the silicon semiconductor substrate 1, the B region is covered with a photoresist film 4. Using a mask, the gate oxide film in area A is removed by a normal etching method (FIG. 3a).

さらにフォトレジスト膜4を取除いた後に第2回目の熱
酸化工程を行い、A領域に新たなゲート酸化膜5を形成
する。この時、B領域のゲート酸化膜3は、すでに第1
回目の酸化で形成したゲート酸化膜に2回目の酸化でさ
らに、酸化膜を増加した膜厚となる。次に、ゲート酸化
膜3と5の上に多結晶シリコン膜6を形成した後、これ
らを選択的に除去し、不純物をシリコン半導体基板1中
に拡散して、A領域とB領域にそれぞれソース領域7と
ドレイン領域8を形成する(第3図b)。以上の工程に
よりA領域にはゲート酸化膜の薄いトランジスタがB領
域にはゲート酸化膜の厚いトランジスタが形成される。
Further, after removing the photoresist film 4, a second thermal oxidation step is performed to form a new gate oxide film 5 in the A region. At this time, the gate oxide film 3 in the B region has already been exposed to the first layer.
The thickness of the gate oxide film formed in the second oxidation is increased by the second oxidation. Next, after forming a polycrystalline silicon film 6 on the gate oxide films 3 and 5, these are selectively removed, and impurities are diffused into the silicon semiconductor substrate 1 to form sources in the A region and B region, respectively. A region 7 and a drain region 8 are formed (FIG. 3b). Through the above steps, a transistor with a thin gate oxide film is formed in the A region, and a transistor with a thick gate oxide film is formed in the B region.

発明が解決しようとする問題点 従来の製造方法では、酸化工程を二度行わなければなら
ないため、工程数が増加するばかりでな(第2回目の酸
化直前の酸洗浄処理等で第1回目に形成されたゲート酸
化膜の膜厚が目減りするため、最終的に得るゲート酸化
膜の膜厚の制御が困難となる。さらにA領域のゲート酸
化膜の形成において、二度の酸化工程で二度シリコン半
導体基板表面を露出して行うため、シリコン基板表面近
くの不純物が表面から放出される等により、不純物が大
きく再分布してMOSトランジスタのしきい値電圧のば
らつきが太き(なる欠点がある。
Problems to be Solved by the Invention In the conventional manufacturing method, the oxidation step has to be carried out twice, which not only increases the number of steps (the acid cleaning treatment immediately before the second oxidation removes the oxidation from the first step). As the thickness of the formed gate oxide film decreases, it becomes difficult to control the thickness of the final gate oxide film.Furthermore, in forming the gate oxide film in region A, two oxidation steps are performed twice. Since the surface of the silicon semiconductor substrate is exposed, impurities near the surface of the silicon substrate are emitted from the surface, resulting in large redistribution of impurities and wide variations in the threshold voltage of MOS transistors. .

本発明は、1回のゲート酸化工程でゲート酸化膜の膜厚
の異なるMOSトランジスタを2種類以上形成する製造
方法を提案することを目的とするものである。
An object of the present invention is to propose a manufacturing method for forming two or more types of MOS transistors having different gate oxide film thicknesses in one gate oxidation step.

問題点を解決するための手段 本発明は、半導体基板上の低電圧で動作するMOSトラ
ンジスタの形成領域に窒素イオンを加速注入した後、前
記低電圧より高い高電圧で動作するMOSトランジスタ
の形成領域と前記低電圧で動作するMOS トランジス
タの形成領域に同時に熱酸化処理を施こし、膜厚の異な
るゲート酸化膜を同時に形成するMOS集積回路の製造
方法である。
Means for Solving the Problems The present invention provides accelerated implantation of nitrogen ions into a formation region of a MOS transistor that operates at a low voltage on a semiconductor substrate, and then implants the formation region of a MOS transistor that operates at a high voltage higher than the low voltage. This is a method of manufacturing a MOS integrated circuit, in which a thermal oxidation process is simultaneously performed on the formation regions of the MOS transistors operating at low voltage, and gate oxide films having different thicknesses are simultaneously formed.

作用 本発明のMOS集積回路の製造方法によれば、低電圧動
作回路部におけるMOS)ランジスタのゲート酸化膜を
形成すべき領域に、窒素イオンをイオン注入装置を用い
て注入し、注入した窒素イオンの量により熱酸化処理時
の酸化速度を減速制御することにより、低電圧動作のM
OSトランジスタの薄いゲート酸化膜と窒素イオンを注
入していない高電圧動作回路部におけるMOSトランジ
スタの厚いゲート酸化膜を同時に唯一回の酸化で形成す
ることができる。
According to the method for manufacturing a MOS integrated circuit of the present invention, nitrogen ions are implanted using an ion implantation device into the region where the gate oxide film of the MOS transistor in the low voltage operation circuit section is to be formed. By controlling the oxidation rate during thermal oxidation treatment by controlling the amount of
A thin gate oxide film of an OS transistor and a thick gate oxide film of a MOS transistor in a high-voltage operation circuit portion in which nitrogen ions are not implanted can be simultaneously formed in a single oxidation process.

実施例 本発明のMO3集積回路の製造方法の実施例を第1図の
断面図を参照して説明する。
Embodiment An embodiment of the method for manufacturing an MO3 integrated circuit according to the present invention will be described with reference to the sectional view of FIG.

まず、シリコン半導体基板1の表面に選択的に素子分離
用のフィールド酸化膜2を形成する。なお、低電圧動作
回路部のMOSトランジスタ形成領域をA領域、高電圧
動作回路部のMOS)ランジスタ形成領域をB領域で表
わす。フィールド酸化膜2を形成した後、B領域のシリ
コン半導体基板1の表面を通常の写真食刻法でフォトレ
ジスト膜4でマスクし、A領域のシリコン半導体基板1
の表面に目的とする酸化膜厚に応じた窒素イオンをイオ
ン注入装置を用いて注入して窒素イオン注入層9を形成
する(第1図a)。第2図に窒素イオンのドーズ量と熱
酸化による酸化シリコンの膜厚の関係を示す。このよう
に窒素イオンのドーズ量により酸化シリコンの膜厚を制
御することができる。この窒素イオン注入層9を形成し
た後、B領域に形成されたフォトレジスト膜4を除去し
、この後熱酸化処理を行いA領域に膜厚の薄いゲート酸
化膜10を、B領域に膜厚の厚いゲート酸化膜11を形
成する。この後の製造工程は通常の方法でゲート酸化膜
10と11の上にゲート電極となる多結晶シリコン膜6
を形成した後、ゲート酸化膜と多結晶シリコン膜6を選
択的に除去し、シリコン半導体基板1の導電性と逆の導
電性の不純物をシリコン半導体基板1中に拡散して、A
領域とB領域にそれぞれソース領域7とドレイン領域8
を形成する(第1図b)。以上の工程により異なるゲー
ト酸化膜厚を有するMOSトランジスタがA領域とB領
域に形成される。
First, a field oxide film 2 for element isolation is selectively formed on the surface of a silicon semiconductor substrate 1. Note that the MOS transistor forming region of the low voltage operating circuit section is indicated by region A, and the MOS transistor forming region of the high voltage operating circuit section is indicated by region B. After forming the field oxide film 2, the surface of the silicon semiconductor substrate 1 in the region B is masked with a photoresist film 4 by a normal photolithography method, and the surface of the silicon semiconductor substrate 1 in the region A is masked with a photoresist film 4.
A nitrogen ion implantation layer 9 is formed by implanting nitrogen ions into the surface of the substrate using an ion implantation device according to the desired oxide film thickness (FIG. 1a). FIG. 2 shows the relationship between the dose of nitrogen ions and the thickness of silicon oxide formed by thermal oxidation. In this way, the thickness of the silicon oxide film can be controlled by controlling the dose of nitrogen ions. After forming this nitrogen ion implantation layer 9, the photoresist film 4 formed in the B region is removed, and then thermal oxidation treatment is performed to form a thin gate oxide film 10 in the A region and a thin gate oxide film 10 in the B region. A thick gate oxide film 11 is formed. In the subsequent manufacturing process, a polycrystalline silicon film 6 that will become the gate electrode is placed on the gate oxide films 10 and 11 using the usual method.
After forming A, the gate oxide film and the polycrystalline silicon film 6 are selectively removed, and an impurity having a conductivity opposite to that of the silicon semiconductor substrate 1 is diffused into the silicon semiconductor substrate 1.
A source region 7 and a drain region 8 are provided in the region and B region, respectively.
(Fig. 1b). Through the above steps, MOS transistors having different gate oxide film thicknesses are formed in the A region and the B region.

次に、数字で示した具体例を示す。A領域に形成するM
OSトランジスタのゲート酸化膜を40nm、B領域に
形成するMOSトランジスタのゲート酸化膜を80nm
形成する場合、A領域に50Keyの加速エネルギーで
2X10c+++  のドーズ量の窒素イオンを注入し
た後、900℃の温度で水素と酸素を1:2の割合で燃
焼させたrクエット酸化雰囲気中で1時間熱酸化する事
により目的とする2種の異なる膜厚のゲート酸化膜を同
時に形成することができる。
Next, a specific example shown in numbers will be shown. M formed in area A
The gate oxide film of the OS transistor is 40 nm, and the gate oxide film of the MOS transistor formed in the B region is 80 nm.
In the case of formation, nitrogen ions are implanted into region A at a dose of 2X10c+++ with an acceleration energy of 50 keys, and then at a temperature of 900°C, hydrogen and oxygen are burned at a ratio of 1:2 in an r Couette oxidation atmosphere for 1 hour. By thermal oxidation, it is possible to simultaneously form two desired gate oxide films with different thicknesses.

本発明の製造方法を採用することにより、例えば、MO
S集積回路の内部回路では動作電圧が5V(ボルト)で
周辺回路では動作電圧が20VのMOSトランジスタの
設計及び製造が容易になる。以上動作電圧の異なるMO
Sトランジスタを同一基板上に2種類以上を同時に形成
するときには、有効である。
By adopting the manufacturing method of the present invention, for example, MO
It becomes easy to design and manufacture a MOS transistor whose operating voltage is 5 V (volts) in the internal circuit of the S integrated circuit and 20 V in the peripheral circuit. MOs with different operating voltages
This is effective when two or more types of S transistors are simultaneously formed on the same substrate.

発明の効果 本発明のMOS集積回路の製造方法によれば目的とする
ゲート酸化膜の膜厚に応じて窒素イオンの所定量をゲー
ト酸化膜形成前にシリコン基板中に選択的にイオン注入
しておくことにより、1回の酸化工程で2種以上の異な
るゲート酸化膜を目的とする場所に形成することができ
る。このため、従来の方法の2回の酸化工程と比べて、
工程時間が短かくなり工程費用が安(なるばかりでなく
、ゲート酸化膜の膜厚の制御が容易となる。さらにシリ
コン基板中の不純物の再分布によるしきい値電圧のばら
つきが小さくなる利点もある。
Effects of the Invention According to the method for manufacturing a MOS integrated circuit of the present invention, a predetermined amount of nitrogen ions is selectively implanted into the silicon substrate before forming the gate oxide film, depending on the thickness of the intended gate oxide film. By depositing two or more different types of gate oxide films in one oxidation step, it is possible to form two or more different types of gate oxide films at desired locations. Therefore, compared to the two oxidation steps of the conventional method,
This not only shortens process time and lowers process costs, but also makes it easier to control the thickness of the gate oxide film.Furthermore, it has the advantage of reducing variations in threshold voltage due to redistribution of impurities in the silicon substrate. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のMOS集積回路の製造方法を示す断面
図、第2図は熱酸化による窒素イオンのドーズ量と酸化
シリコンの膜厚の関係を示した図、第3図は従来のMO
S集積回路の製造方法を示す断面図である。 1・・・・・・シリコン半導体基板、2・・・・・・フ
ィールド酸化膜、4・・・・・・フォトレジスト膜、6
・・・・・・多結晶シリコン膜、7・・・・・・ソース
領域、8・・・・・・ドレイン領域、9・・・・・・窒
素イオン注入層、10・・・・・・低電圧動作MOSト
ランジスタのゲート酸化膜、11・・・・・・高電圧動
作M OS )’ランジスタのゲート酸化膜。 代理人の氏名 弁理士 中尾敏男 ほか1名N1tro
c1en  Dose  (cm−りA頗↑ぺ    
 ト傾成  ゛ 4僧1べ    5領域
FIG. 1 is a cross-sectional view showing the method of manufacturing a MOS integrated circuit according to the present invention, FIG. 2 is a diagram showing the relationship between the dose of nitrogen ions by thermal oxidation and the film thickness of silicon oxide, and FIG.
FIG. 3 is a cross-sectional view showing a method for manufacturing an S integrated circuit. 1... Silicon semiconductor substrate, 2... Field oxide film, 4... Photoresist film, 6
...Polycrystalline silicon film, 7...Source region, 8...Drain region, 9...Nitrogen ion implantation layer, 10... Gate oxide film of low voltage operation MOS transistor, 11... High voltage operation MOS)' gate oxide film of transistor. Name of agent: Patent attorney Toshio Nakao and one other person N1tro
c1en Dose (cm-riA頗↑pe
゛4 monks 1be 5 areas

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の低電圧で動作するMOSトランジスタの
形成領域に窒素イオンを加速注入した後、前記低電圧よ
り高い高電圧で動作するMOSトランジスタ形成領域と
前記低電圧で動作するMOSトランジスタ形成領域に同
時に熱酸化処理を行い、膜厚の異なるゲート酸化膜を同
時に形成することを特徴とするMOS集積回路の製造方
法。
After accelerated nitrogen ions are implanted into a formation region of a MOS transistor that operates at a low voltage on a semiconductor substrate, they are simultaneously implanted into a MOS transistor formation region that operates at a high voltage higher than the low voltage and a MOS transistor formation region that operates at a low voltage. A method for manufacturing a MOS integrated circuit, characterized by performing thermal oxidation treatment and simultaneously forming gate oxide films of different thicknesses.
JP62039452A 1987-02-23 1987-02-23 Manufacture of mos integrated circuit Pending JPS63205944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039452A JPS63205944A (en) 1987-02-23 1987-02-23 Manufacture of mos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039452A JPS63205944A (en) 1987-02-23 1987-02-23 Manufacture of mos integrated circuit

Publications (1)

Publication Number Publication Date
JPS63205944A true JPS63205944A (en) 1988-08-25

Family

ID=12553429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039452A Pending JPS63205944A (en) 1987-02-23 1987-02-23 Manufacture of mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS63205944A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297298A (en) * 1994-04-21 1995-11-10 Lg Semicon Co Ltd Manufacture of memory device
GB2327810A (en) * 1997-02-07 1999-02-03 United Microelectronics Corp Manufacturing integrated circuit devices with different gate oxide thicknesses
NL1006803C2 (en) * 1997-08-20 1999-02-23 United Microelectronics Corp Implanting nitride to produce gate oxide with different-thickness in hybrid and insertion ULSI
US6140185A (en) * 1998-05-15 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
EP0766870B1 (en) * 1995-04-21 2001-10-10 Koninklijke Philips Electronics N.V. Method of manufacturing a progammable semiconductor device in the form of an anti-fuse
US6410991B1 (en) 1998-06-15 2002-06-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
KR100411025B1 (en) * 2001-12-11 2003-12-18 주식회사 하이닉스반도체 Method of manufacturing a semiconductor device
KR100473735B1 (en) * 2002-10-14 2005-03-10 매그나칩 반도체 유한회사 Method of manufacturing a semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297298A (en) * 1994-04-21 1995-11-10 Lg Semicon Co Ltd Manufacture of memory device
EP0766870B1 (en) * 1995-04-21 2001-10-10 Koninklijke Philips Electronics N.V. Method of manufacturing a progammable semiconductor device in the form of an anti-fuse
GB2327810A (en) * 1997-02-07 1999-02-03 United Microelectronics Corp Manufacturing integrated circuit devices with different gate oxide thicknesses
FR2767965A1 (en) * 1997-02-07 1999-03-05 United Microelectronics Corp Implanting nitride to produce gate oxide with different-thickness in hybrid and insertion ULSI
GB2327810B (en) * 1997-02-07 1999-06-09 United Microelectronics Corp Manufacturing integrated circuit devices with different gate oxide thicknesses
NL1006803C2 (en) * 1997-08-20 1999-02-23 United Microelectronics Corp Implanting nitride to produce gate oxide with different-thickness in hybrid and insertion ULSI
US6140185A (en) * 1998-05-15 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
US6410991B1 (en) 1998-06-15 2002-06-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
KR100411025B1 (en) * 2001-12-11 2003-12-18 주식회사 하이닉스반도체 Method of manufacturing a semiconductor device
KR100473735B1 (en) * 2002-10-14 2005-03-10 매그나칩 반도체 유한회사 Method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
JPH04360580A (en) Field-effect transistor and manufacture thereof
JPH023269A (en) Manufacture of integrated circuit
JPS63205944A (en) Manufacture of mos integrated circuit
JPH02219253A (en) Manufacture of semiconductor integrated circuit device
JP3487844B1 (en) LDMOS type semiconductor device manufacturing method
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
JP2859332B2 (en) Method for manufacturing semiconductor device
JPH06140421A (en) Manufacture of thin film transistor
JPH02237037A (en) Manufacture of semiconductor integrated circuit
JPH04297063A (en) Manufacture of semiconductor device
JPH0964193A (en) Manufacture of semiconductor device
JPH02208943A (en) Manufacture of silicon thin film semiconductor device
JPH07131028A (en) Fabrication of thin film transistor
JPS61166154A (en) Manufacture of mis type semiconductor device
JPS6072274A (en) Manufacture of semiconductor device
JPH0274042A (en) Manufacture of mis transistor
JPH04338650A (en) Semiconductor device and manufacture thereof
JPH0354833A (en) Manufacture of mis type transistor
JPS6235554A (en) Semiconductor device and manufacture thereof
JPS632349A (en) Manufacture of semiconductor device
JPS63311756A (en) Manufacture of semiconductor device
JPH08213596A (en) Manufacture of semiconductor integration circuit
JPH03289174A (en) Manufacture of mos transistor using varied channel
JPS60257173A (en) Manufacture of semiconductor device
JPH06163450A (en) Manufacture of semiconductor device