JPS5856428B2 - Pressure sensor using a crystal oscillator - Google Patents
Pressure sensor using a crystal oscillatorInfo
- Publication number
- JPS5856428B2 JPS5856428B2 JP53077739A JP7773978A JPS5856428B2 JP S5856428 B2 JPS5856428 B2 JP S5856428B2 JP 53077739 A JP53077739 A JP 53077739A JP 7773978 A JP7773978 A JP 7773978A JP S5856428 B2 JPS5856428 B2 JP S5856428B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- gas pressure
- pressure
- space
- oscillators
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0001—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
- G01L9/0008—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
- G01L9/0022—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Description
【発明の詳細な説明】
発明O技術分野
本発明は2枚の水晶振動子を用いてこれらの水晶振動子
の周波数のビート信号により圧力、特に気体圧力を測定
するようにした圧力センサの構造に関するものである。Detailed Description of the Invention Technical Field The present invention relates to the structure of a pressure sensor that uses two crystal oscillators to measure pressure, particularly gas pressure, by beat signals of the frequencies of these crystal oscillators. It is something.
従来技術
従来の気体圧力測定のセンサの代表的なものに歪ゲージ
を利用したものがある。BACKGROUND OF THE INVENTION A typical conventional sensor for measuring gas pressure is one that utilizes a strain gauge.
これはダイアフラムやベローズがこれらに加えられる圧
力の変化によって変化する変形量を抵抗線の伸び縮みに
よる抵抗変化を利用して1−11+jするもので、この
歪ゲージと固定抵抗器とでブリッジ回路を構成して気体
圧力の測定を行うもので、この方式のセンサには次のよ
うな欠点がある。This uses the change in resistance due to the expansion and contraction of the resistance wire to reduce the amount of deformation of the diaphragm and bellows due to changes in the pressure applied to them by 1-11+j. This strain gauge and fixed resistor form a bridge circuit. This type of sensor has the following drawbacks:
(1)消費電力が大きい。(1) Power consumption is large.
(2) 出力信号の大きさが電源電圧に依存している
ため、電源電圧の変動が測定確度に直接影響する。(2) Since the magnitude of the output signal depends on the power supply voltage, fluctuations in the power supply voltage directly affect measurement accuracy.
(3) 出力信号がアナログ量のため遠島測定の場合
、出力電圧が伝送線の長さく抵抗値)、材質、結線の状
態等に大きく影響され測定確度が低下するので測定シス
テムを構成する上で種々の制約を受ける。(3) Since the output signal is an analog quantity, when measuring on a remote island, the output voltage will be greatly affected by the length and resistance of the transmission line, the material, the connection condition, etc., and the measurement accuracy will decrease. Subject to various restrictions.
(4)信号出力がアナログ量のため精度の高い計測をお
こなおうとする場合、被計測信号の伝送やデータ処理に
特別の配慮が必要である。(4) Since the signal output is an analog quantity, special consideration must be given to the transmission of the signal to be measured and data processing when attempting to perform highly accurate measurement.
(5)信号処理にA/D変換器を必要とすることが多い
。(5) An A/D converter is often required for signal processing.
(6)例えばベローズやダイアフラム等を介して気体圧
力を測定するようにした従来の気体圧力センサは上記ベ
ローズやダイアフラムが受ける環境の変化(例えば温度
変化)が多い。(6) For example, in a conventional gas pressure sensor that measures gas pressure via a bellows or diaphragm, the bellows or diaphragm is subject to many changes in the environment (for example, temperature changes).
斗た、歪ゲージ以外の種々の形式のセンサに於ても、概
ね抵抗値、電流、電圧の変化を利用してアナログ量とし
て被計測量の検出を行っているものが多いが、これらの
センサは総体的に上記のような欠但をもっているものが
多い。In addition, there are many types of sensors other than strain gauges that detect measured quantities as analog quantities using changes in resistance, current, and voltage. Generally speaking, many of them have the above-mentioned deficiencies.
発明の目的
本発明は以上のような従来品のアナログ出力方式の欠点
を解決して、測定確度のすぐれた圧力センサを得ること
を目的とする。OBJECTS OF THE INVENTION It is an object of the present invention to solve the above-mentioned drawbacks of conventional analog output systems and to obtain a pressure sensor with excellent measurement accuracy.
発明の構成の要点
以上の目的を達成するため本発明では、2枚の水晶振動
子の板面に直接気体圧力を伝達し、これら2枚の水晶振
動子によって構成される2つの水晶発振器の発振周波数
のビード信号の周波数変化を検出し、そのビート信号の
周波数値変化に基いて被測定気体圧力の大きさを測定す
るようにしたものについて2枚の水晶振動子の配置と気
体圧力伝達機構とについて新規な構成を得たものである
。In order to achieve the above objectives, the present invention transmits gas pressure directly to the plate surfaces of two crystal oscillators, and oscillates two crystal oscillators constituted by these two crystal oscillators. The arrangement of two crystal oscillators, the gas pressure transmission mechanism, and A new configuration was obtained for this.
即ち、具体的には2枚の水晶振動子を互に独立して形成
された凹部を有する支持部材に該凹部を密閉状に覆う如
く接合し、該凹部と2枚の水晶振動子とで形成される互
に独立した2つ1間に別系統の気体圧力(通常一方は既
知の気体圧力、他方は未知の被測定気体圧力)を導入し
得るように構成したものである。Specifically, two crystal oscillators are bonded to a support member having recesses formed independently from each other so as to cover the recesses in a sealed manner, and the recesses and the two crystal oscillators are formed. The structure is such that a separate system of gas pressure (normally one gas pressure is known and the other is an unknown gas pressure to be measured) can be introduced between two mutually independent systems.
発明の実施例
第1図A、第1図Bは本発明の実施例を示すそれぞれ平
面図、および側断面図である。Embodiment of the Invention FIGS. 1A and 1B are a plan view and a side sectional view, respectively, showing an embodiment of the invention.
第1図A、Bにおいて引用記号で示す各部の意味は次の
通りである。The meanings of the parts indicated by quotation marks in FIGS. 1A and 1B are as follows.
1・・・水晶振動子(被測定気体圧力に感応するもの)
2・・・水晶振動子(基準となる周波数を発振するもの
)
3・・・水晶振動子ホルダ
4・・・水晶振動子ホルダ3と水晶振動子1とによって
構成される空間(被測定気体圧力空間)5・・・水晶振
動子ホルダ3と水晶振動子2とによって構成される空間
6・・・空間4に導通する通気パイプ
7・・・空間5に導通する通気穴
8・・・基準勿体圧力空間
9・・・空間8に導通する通気パイプ
13・・・基準気体圧力容器
14.15・・・水晶振動子1,2の電極P1 ・・・
被測定気体圧力
PZ・・・基準気体圧力
第1図A、Hに於て、水晶振動子ホルダ3は水晶振動子
と同じ素材で形成され、例えば円板の水晶を中央縦断面
がH形になるように上下部をくり抜いて互に独立した円
形の凹部を有するような形状に構成されており、水晶振
動子1及び2は、水晶振動子ホルダ3の対称面に上記凹
部を密閉する状態で接合されており、それによって空間
4及び5が形成されている。1...Crystal oscillator (one that is sensitive to the gas pressure to be measured)
2... Crystal oscillator (one that oscillates at a reference frequency) 3... Crystal oscillator holder 4... Space constituted by the crystal oscillator holder 3 and the crystal oscillator 1 (measured gas pressure Space) 5... Space constituted by crystal resonator holder 3 and crystal resonator 2... Ventilation pipe 7 that communicates with space 4... Ventilation hole 8 that communicates with space 5... Reference material Pressure space 9... Ventilation pipe 13 communicating with space 8... Reference gas pressure vessel 14.15... Electrode P1 of crystal oscillators 1, 2...
Gas pressure to be measured PZ...Reference gas pressure In Fig. 1 A and H, the crystal oscillator holder 3 is made of the same material as the crystal oscillator, and is made of, for example, a disk crystal with an H-shaped center longitudinal section. The crystal resonators 1 and 2 are shaped so that the upper and lower parts are hollowed out to have mutually independent circular recesses, and the crystal resonators 1 and 2 are placed in a state in which the recesses are sealed in the symmetrical plane of the crystal resonator holder 3. are joined, thereby forming spaces 4 and 5.
そして水晶振動子1,2と水晶賑動子ホルダ3との接合
条件は、■ 水晶振動子1,2の結晶軸に対する切断角
度と、水晶振動子ホルダ3の結晶軸に対する切断角度が
同一であること。The bonding conditions for the crystal resonators 1 and 2 and the crystal vibrator holder 3 are as follows: (1) The cutting angles of the crystal resonators 1 and 2 with respect to the crystal axes and the cutting angle of the crystal resonator holder 3 with respect to the crystal axes are the same. thing.
■ 接合の際、水晶振動子1及び2、水晶振動子ホルダ
3の各々の結晶軸を合致させて接合し、全体として一つ
の結晶体とみなせるように接合すること。(2) When bonding, align the crystal axes of the crystal resonators 1 and 2 and the crystal resonator holder 3, and bond them so that they can be regarded as one crystal body as a whole.
である。なお、水晶振動子1,2釦よび水晶振動子ホル
ダ3′にはATカット板、BTカット板等が使用される
。It is. Note that AT cut plates, BT cut plates, etc. are used for the crystal oscillators 1 and 2 buttons and the crystal oscillator holder 3'.
上記したように、水晶振動子1,2と水晶振動子ホルダ
3とが同−物質即ち水晶で形成されてあ・す、その切断
角が同一角度でしかも、水晶振動子1及び2と水晶振動
子ホルダ3の各々の結晶軸を一致させて接合し、全体と
して一結晶体であるが如くなしたため、水晶振動子1及
び2と水晶振動子ホルダ3との接合面で温度変化によっ
て当該水晶振動子1,2が受ける歪は無視できる程度に
少なくすることができ、当該圧力センサの温度特性は極
めて良好である。As mentioned above, the crystal resonators 1 and 2 and the crystal resonator holder 3 are made of the same material, that is, crystal, and their cutting angles are the same, and the crystal resonators 1 and 2 and the crystal resonator holder 3 are made of the same material, that is, crystal. Since the crystal axes of the child holders 3 are made to match and the crystal axes of the child holders 3 are aligned so that the whole is made to look like a single crystal, temperature changes at the bonding surfaces of the crystal units 1 and 2 and the crystal unit holder 3 cause the crystal vibration to occur. The strain exerted on the elements 1 and 2 can be reduced to a negligible level, and the temperature characteristics of the pressure sensor are extremely good.
水晶振動子1は水晶振動子ホルダ3に接合されると、水
晶面の表、裏で圧力空間4と8が形成され、空間4の圧
力と空間8の圧力の差が水晶振動子1に曲げモーメント
を与え、その曲げモーメントは水晶振動子1の全面に張
力として作用し、該水晶振動子1の発振周波数が変化す
る。When the crystal resonator 1 is joined to the crystal resonator holder 3, pressure spaces 4 and 8 are formed on the front and back sides of the crystal surface, and the difference between the pressure in the space 4 and the pressure in the space 8 causes the crystal resonator 1 to bend. The bending moment acts as a tension on the entire surface of the crystal resonator 1, and the oscillation frequency of the crystal resonator 1 changes.
水晶振動子2は、水晶振動子ホルダ3に接合されると水
晶面の表裏で圧力空間5と8が形成されるが、この空間
5と8は通気穴7により同一圧力空間となり、水晶振動
子2は張力を受けない。When the crystal resonator 2 is joined to the crystal resonator holder 3, pressure spaces 5 and 8 are formed on the front and back sides of the crystal surface, but these spaces 5 and 8 become the same pressure space due to the ventilation hole 7, and the crystal resonator 2 is not subjected to tension.
従って水晶振動子2の発振周波数は変化せず当該水晶振
動子2はレハレンスオシレータ(照合用基準周波数発振
器)の発振素子として作用する。Therefore, the oscillation frequency of the crystal oscillator 2 does not change, and the crystal oscillator 2 acts as an oscillating element of a reference oscillator (reference frequency oscillator).
被測定気体圧力P1が通気バイブロを通して空間4に導
入され、また基準気体圧力Plカ通気バイブ9を通して
空間8に導入されると、水晶振動子1は空間4と空間8
との差圧による周波数変化を生じ、その周波数変化は上
記水晶振動子2の発振周波数とのビート信号として検出
され、もって差圧測定が出来る。When the measured gas pressure P1 is introduced into the space 4 through the ventilation vibro, and the reference gas pressure Pl is introduced into the space 8 through the ventilation vibro 9, the crystal oscillator 1 moves between the spaces 4 and 8.
A frequency change occurs due to the differential pressure between the crystal resonator 2 and the oscillation frequency of the crystal resonator 2, and the frequency change is detected as a beat signal with respect to the oscillation frequency of the crystal resonator 2, thereby making it possible to measure the differential pressure.
そして空間8を真空にすれば(真空であっても気体圧力
はゝ零〃という値で存在を把握できる。If the space 8 is made a vacuum (even if it is a vacuum, the gas pressure can be understood as a value of ``zero'').
)被測定気体圧力P工の給体圧測定が出来、空間8を大
気圧にすれば被測定気体圧力P1のゲージ圧測定が出来
る。) The supply pressure of the measured gas pressure P can be measured, and if the space 8 is set to atmospheric pressure, the gauge pressure of the measured gas pressure P1 can be measured.
以上は被測定気体圧力P1 を空間4に、基準気体圧
力P2 を空間8に導入するものとして説明したが、被
測定気体圧力P1 を空間8に、基準気体圧力P2を
空間4に導入するようにしても同様の気体圧力測定が可
能である。The above explanation assumes that the measured gas pressure P1 is introduced into the space 4 and the reference gas pressure P2 is introduced into the space 8. However, it is also possible to introduce the measured gas pressure P1 into the space 8 and the reference gas pressure P2 into the space 4. Similar gas pressure measurements can be made with
以上に説明した圧力センサを使用して圧力測定を行うに
は、適宜公知の測定回路を使用する。In order to measure pressure using the pressure sensor described above, a known measurement circuit is appropriately used.
例えば上記したように水晶振動子1及び2間の発振周波
数のビート信号を得るには、当該水晶振動子1及び2を
それぞれ発振素子とする2個の発振回路の出力信号を混
合回路で混合するようにすればよへ
また、水晶振動子1及び2の固有振動周波数は必ずしも
一致している必要はなく、気体圧力が力)からない状態
、すなわち、水晶振動子1及び2に応力が加わっていな
いときのそれらの振動周波数、応力を受けたときの周波
数偏移等、水晶振動子1及び2の電気的諸元が予め判明
していれば、水晶振動子1及び2の固有振動周波数の違
いによる問題は、当該圧力センサを使用した測定回路で
処理できる問題である。For example, to obtain the beat signal of the oscillation frequency between the crystal oscillators 1 and 2 as described above, the output signals of two oscillation circuits each using the crystal oscillators 1 and 2 as oscillation elements are mixed by a mixing circuit. Also, the natural oscillation frequencies of crystal oscillators 1 and 2 do not necessarily have to match, and the natural vibration frequencies of crystal oscillators 1 and 2 do not necessarily have to match. If the electrical specifications of crystal oscillators 1 and 2 are known in advance, such as their vibration frequency when there is no vibration, frequency deviation when subjected to stress, etc., the difference in the natural vibration frequencies of crystal oscillators 1 and 2 can be determined. This problem can be handled by a measurement circuit using the pressure sensor.
第2図A−Dは第1図A、Bに示した水晶振動子ホルダ
3の他の実施態様例であり、空間4むよび5の形態を示
す、A−A矢視図(第2図D)を第2図A、B及びCに
示す。FIGS. 2A to 2D show other embodiments of the crystal resonator holder 3 shown in FIGS. D) is shown in Figure 2 A, B and C.
これらの形態は水晶振動子1,2と水晶振動子ホルダ3
の接合面に変化をもたらし、この接合面によって気体圧
力が加えられている状態(すなわち、ダイナミックな状
態)での水晶振動子1,2の温度特性を著しく改善する
ことが出来る。These forms include crystal units 1 and 2 and crystal unit holder 3.
It is possible to significantly improve the temperature characteristics of the crystal oscillators 1 and 2 in a state where gas pressure is applied (that is, in a dynamic state) by this joint surface.
発明の効果
本発明は前記した従来技術の欠点を尽く解消するもので
あり、特に以上に説明したように本発明に係る圧力セン
サは別個独立した2つの空間に水晶振動子をそれだれ接
合し、一方の水晶振動子を基準周波数発振用に、他方の
水晶振動子を被測定気体圧力による周波数発振用に供す
るようにしたため、測定に当って基準となる発振周波数
と被測定気体圧力による発振周波数とを同じ環境のもと
に把握できるので精度のよい測定ができ、斗た、測定し
ようとする気体圧力はセンサである水晶振動子に直接作
用するので圧力伝達機構による誤差も生ずることがなく
、更に水晶振動子の支持部材(水晶振動子ホルダ)を水
晶振動子と同一の角度で切断した水晶片で形成し、水晶
振動子の接合に当っては当該水晶振動子の結晶軸と支持
部材の結晶軸とをプ致させるようにしであるから温度変
化等による誤差も極力抑えることができる。Effects of the Invention The present invention completely eliminates the drawbacks of the prior art described above. In particular, as explained above, the pressure sensor according to the present invention has crystal oscillators bonded to two separate spaces, One crystal oscillator is used for reference frequency oscillation, and the other crystal oscillator is used for frequency oscillation based on the gas pressure to be measured. can be measured under the same environment, making it possible to measure with high precision.Furthermore, since the gas pressure to be measured acts directly on the crystal oscillator, which is the sensor, there are no errors caused by the pressure transmission mechanism. The support member (crystal resonator holder) of the crystal resonator is formed from a crystal piece cut at the same angle as the crystal resonator, and when joining the crystal resonator, the crystal axis of the crystal resonator and the crystal of the support member are Since the shaft is aligned with the shaft, errors due to temperature changes, etc. can be suppressed as much as possible.
また、本発明に係る圧力センサでは基準周波数を発振す
る側の水晶振動子が接合されている空間の気体圧力を変
えることにより給体圧測定やゲージ圧測定が出来る等、
応用面が広いという特長もある。In addition, the pressure sensor according to the present invention can measure supply pressure and gauge pressure by changing the gas pressure in the space where the crystal oscillator that oscillates the reference frequency is connected.
Another feature is that it has a wide range of applications.
このように本発明に係る圧力センサは種々の長所を有し
、本発明は極めて顕著なる効果を奏するものである。As described above, the pressure sensor according to the present invention has various advantages, and the present invention has extremely significant effects.
第1図及び第2図はいずれも本発明の詳細な説明する図
面であり、第1図A、Bはそれぞれ実施例の圧力センサ
の平面図および側断面図、第2図A〜Dは実施例の圧力
センサの一部(水晶振動子ホルダ)の他の実施態様例を
示す図である。
主な記号、1,2・・・・・・水晶振動子、3・・・・
・・支持部材(水晶振動子ホルダ)、4・・・・・・被
測定気体圧力空間、5,8・・・・・・基準気体圧力空
間、13・・・・・・基準気体圧力容器。1 and 2 are drawings explaining the present invention in detail, and FIGS. 1A and 2B are a plan view and a side sectional view of a pressure sensor according to an embodiment, respectively, and FIGS. It is a figure which shows the other example of implementation of a part (crystal resonator holder) of the example pressure sensor. Main symbols, 1, 2...Crystal oscillator, 3...
...Supporting member (crystal resonator holder), 4...Measurement gas pressure space, 5, 8...Reference gas pressure space, 13...Reference gas pressure vessel.
Claims (1)
の水晶結晶体で形成され、互に独立した2個所に凹部を
有する支持部材とでなり、上記2枚の水晶振動子の結晶
軸と上記支持部材の結晶軸とが互に合致し、かつ上記支
持部材の2個所の凹部を密閉状に覆うように上記2枚の
水晶振動子を上記支持部材に固着し、上記支持部材の凹
部と上記水晶振動子とによって形成された2個所の空間
にそれぞれ別系統の気体圧力を導入し得るようにしたこ
とを特徴とする水晶振動子を用いた圧力センサ。It consists of 12 crystal oscillators and a support member made of a quartz crystal with the same cutting angle as the quartz crystal oscillators and having concave portions at two independent locations, and the support member has concave portions at two independent locations. The two crystal oscillators are fixed to the support member so that the crystal axes of the support member are aligned with each other and the two recesses of the support member are tightly covered. A pressure sensor using a crystal oscillator, characterized in that gas pressures of different systems can be introduced into two spaces formed by the recess and the crystal oscillator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53077739A JPS5856428B2 (en) | 1978-06-27 | 1978-06-27 | Pressure sensor using a crystal oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53077739A JPS5856428B2 (en) | 1978-06-27 | 1978-06-27 | Pressure sensor using a crystal oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS554559A JPS554559A (en) | 1980-01-14 |
JPS5856428B2 true JPS5856428B2 (en) | 1983-12-14 |
Family
ID=13642269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53077739A Expired JPS5856428B2 (en) | 1978-06-27 | 1978-06-27 | Pressure sensor using a crystal oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5856428B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712342A (en) * | 1980-06-24 | 1982-01-22 | Citizen Watch Co Ltd | Crystal barometer |
CH639762A5 (en) * | 1980-11-12 | 1983-11-30 | Centre Electron Horloger | PRESSURE TRANSDUCER WITH VIBRATING ELEMENT. |
JPS5989206U (en) * | 1982-12-09 | 1984-06-16 | ソニ−マグネスケ−ル株式会社 | position detection device |
JPS59141026A (en) * | 1983-01-31 | 1984-08-13 | Shimadzu Corp | Vacuum gauge |
JPS59218961A (en) * | 1984-05-07 | 1984-12-10 | Matsushita Electric Ind Co Ltd | Anemometer |
JPH0519795Y2 (en) * | 1985-01-25 | 1993-05-25 | ||
JPS6348133U (en) * | 1986-09-17 | 1988-04-01 | ||
JP2764754B2 (en) * | 1989-12-20 | 1998-06-11 | セイコーインスツルメンツ株式会社 | Pressure detector using crystal oscillator |
JP4657867B2 (en) * | 2005-09-27 | 2011-03-23 | セイコーインスツル株式会社 | Microreactor and microreactor system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3355949A (en) * | 1964-08-17 | 1967-12-05 | Albert A Elwood | Crystal temperature and pressure transucer |
-
1978
- 1978-06-27 JP JP53077739A patent/JPS5856428B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3355949A (en) * | 1964-08-17 | 1967-12-05 | Albert A Elwood | Crystal temperature and pressure transucer |
Also Published As
Publication number | Publication date |
---|---|
JPS554559A (en) | 1980-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4175243A (en) | Temperature compensated oscillating crystal force transducer systems | |
JPS604836A (en) | Vibration quartz diaphragm pressure sensor | |
US8011252B2 (en) | Pressure sensor | |
JPH0367210B2 (en) | ||
JPH08504512A (en) | Coupling force transducer and temperature sensor | |
JPS5856428B2 (en) | Pressure sensor using a crystal oscillator | |
US7155980B2 (en) | Resonating transducer | |
US5844141A (en) | Pressure sensor having stress sensitive member | |
US4331022A (en) | Sensor using two tunable oscillators connected to a frequency mixer comprising a device for calibrating the frequency of the output signal and a process for calibrating this frequency | |
JPH0933371A (en) | Semiconductor pressure gauge | |
JPS60186725A (en) | Pressure sensor | |
SU960559A2 (en) | Pressure pickup | |
JPH0455542B2 (en) | ||
JPS6222272B2 (en) | ||
JPH03239938A (en) | Capacity type pressure sensor | |
JPS6110197Y2 (en) | ||
WO2020228738A1 (en) | Pressure-sensitive element, preparation method for pressure-sensitive element, and pressure sensor | |
JP2512220B2 (en) | Multi-function sensor | |
JPS6333144Y2 (en) | ||
JPS5967437A (en) | Quartz vibrator pressure sensor | |
JPH0431728A (en) | Semiconductor pressure gage | |
JPS6210371B2 (en) | ||
JPS6333145Y2 (en) | ||
JPS6033057A (en) | Acceleration sensor | |
US4703657A (en) | Gas pressure sensor |