JPH0455542B2 - - Google Patents

Info

Publication number
JPH0455542B2
JPH0455542B2 JP63170690A JP17069088A JPH0455542B2 JP H0455542 B2 JPH0455542 B2 JP H0455542B2 JP 63170690 A JP63170690 A JP 63170690A JP 17069088 A JP17069088 A JP 17069088A JP H0455542 B2 JPH0455542 B2 JP H0455542B2
Authority
JP
Japan
Prior art keywords
pressure
diffused
resistance layer
semiconductor
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63170690A
Other languages
Japanese (ja)
Other versions
JPS6427275A (en
Inventor
Susumu Kimijima
Ryuzo Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP17069088A priority Critical patent/JPS6427275A/en
Publication of JPS6427275A publication Critical patent/JPS6427275A/en
Publication of JPH0455542B2 publication Critical patent/JPH0455542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】 この発明は半導体のピエゾ抵抗効果を利用して
流体圧力の測定等を行う半導体圧力測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor pressure measuring device that measures fluid pressure by utilizing the piezoresistance effect of a semiconductor.

半導体プレーナ技術の応用により、シリコンや
ゲルマニウム等の半導体単結晶板の一部に肉薄の
ダイヤフラムを設け、このダイヤフラムに感圧素
子として拡散抵抗層を形成して、このピエゾ抵抗
効果を利用した圧力変換装置が実用化されてい
る。実際の流体圧力測定は、ダイヤフラムに設け
た2個の拡散抵抗と2個の固定外部抵抗を用いて
ブリツジ回路を組んで行われる。この場合、2個
の拡散抵抗は、一方が流体圧力により抵抗値が増
大するもの、他方が同じ流体圧力により抵抗値が
減少するものとする。このような抵抗値変化の異
方性は、拡散抵抗層をダイヤフラムのどの領域に
どのようなパターンで設けるかによつて決まる。
By applying semiconductor planar technology, a thin diaphragm is provided on a part of a semiconductor single crystal plate such as silicon or germanium, and a diffused resistance layer is formed on this diaphragm as a pressure-sensitive element to convert pressure using the piezoresistance effect. The device has been put into practical use. Actual fluid pressure measurement is performed by constructing a bridge circuit using two diffusion resistors provided on the diaphragm and two fixed external resistors. In this case, one of the two diffusion resistances has a resistance value that increases due to fluid pressure, and the other has a resistance value that decreases due to the same fluid pressure. Such anisotropy of resistance value change is determined by which region of the diaphragm and in what pattern the diffused resistance layer is provided.

肉薄のダイヤフラムに設けられた拡散抵抗層は
検知しようとする流体圧力以外の全ての外部応力
に対して感応しないようにしなければならない。
これは、圧力変換基板の周辺肉厚部をシリンコ等
の固定台に強固に接着固定することでほぼ実現で
きる。
The diffusion resistance layer on the thin diaphragm must be insensitive to all external stresses other than the fluid pressure to be sensed.
This can almost be achieved by firmly adhesively fixing the peripheral thick portion of the pressure conversion board to a fixing base such as a cylinder.

ところが、このような圧力変換装置を高静水圧
下で使用すると、大気圧中の場合にはみられない
誤差が生ずる。高静水圧の発生する例としては、
ダムの底部で放出流量を測定する場合や蒸気ター
ビン等200〜300℃に熱せられた加熱加圧水流を測
定する場合などで、圧力的には20〜300Kg/cm3
様々である。このような高静水圧下で誤差は、ブ
リツジオフセツト電圧(零点のずれ)として現わ
れる。
However, when such a pressure transducer is used under high hydrostatic pressure, errors occur that are not observed under atmospheric pressure. Examples of high hydrostatic pressure include:
The pressure varies from 20 to 300 kg/cm 3 in cases such as when measuring the discharge flow rate at the bottom of a dam or when measuring heated and pressurized water flow heated to 200 to 300 degrees Celsius such as from a steam turbine. Under such high hydrostatic pressure, errors appear as bridge offset voltages (shifts in the zero point).

具体的に例えば、高圧流体の流速或いは流量を
半導体圧力センサを用いて測定する場合の様子を
第6図により説明する。高圧流体22が流れる配
管21内に図示のように絞り部23を設けること
により、流速の変化による圧力の変化を生じさ
せ、上流側の圧力P1と下流側の圧力P2を圧力セ
ンサ24に導く。圧力センサ24のダイヤフラム
25の一方の面には上流側の圧力P1が伝達され、
他方の面には下流側の圧力P2が伝達されるよう
になつている。即ちこの圧力センサ24は差圧計
測を行つているのであつて、上流側の圧力P1
下流側の圧力P2の差ΔP=P1−P2に感応して出力
を出す。この差圧ΔPが流速に依存することから、
これを測定することにより流体22の流速或いは
流量を求めることができる。例えば、P1=101
Kg/cm2,P2=100Kg/cm2の場合、測定すべき圧力
差即ち差圧ΔPは1Kg/cm2である。ところがこの
場合、100Kg/cm2という大きい圧力が半導体セン
サ24のダイヤフラム25全体に均一に静水圧と
してかかる。これはダイヤフラム25にとつて極
めて大きい圧縮応力となり、これが大気圧におけ
る場合にはない誤差の原因となるのである。
Specifically, for example, a situation in which the flow velocity or flow rate of high-pressure fluid is measured using a semiconductor pressure sensor will be explained with reference to FIG. By providing a constriction part 23 as shown in the diagram in the pipe 21 through which the high-pressure fluid 22 flows, pressure changes occur due to changes in flow velocity, and the upstream pressure P 1 and the downstream pressure P 2 are transmitted to the pressure sensor 24. lead The upstream pressure P1 is transmitted to one surface of the diaphragm 25 of the pressure sensor 24,
The downstream pressure P 2 is transmitted to the other surface. That is, this pressure sensor 24 measures differential pressure, and outputs an output in response to the difference ΔP=P 1 −P 2 between the upstream pressure P 1 and the downstream pressure P 2 . Since this pressure difference ΔP depends on the flow velocity,
By measuring this, the flow velocity or flow rate of the fluid 22 can be determined. For example, P 1 = 101
When Kg/cm 2 and P 2 =100Kg/cm 2 , the pressure difference to be measured, that is, the differential pressure ΔP, is 1Kg/cm 2 . However, in this case, a large pressure of 100 kg/cm 2 is uniformly applied to the entire diaphragm 25 of the semiconductor sensor 24 as hydrostatic pressure. This results in an extremely large compressive stress on the diaphragm 25, which causes errors that would not occur at atmospheric pressure.

この発明は上記した点に鑑みてなされたもの
で、静水圧による誤差を補償して高精度に差圧を
測定し得るようにした半導体圧力測定装置を提供
するものである。
The present invention has been made in view of the above-mentioned points, and an object thereof is to provide a semiconductor pressure measuring device capable of measuring differential pressure with high accuracy by compensating for errors caused by hydrostatic pressure.

この発明における圧力変換素子は、半導体単結
晶基板に感圧素子としての拡散抵抗層とは別に静
水圧による誤差を補償するための拡散抵抗層を肉
厚部に設けたことを基本とし、この素子を用いた
本発明の第1の測定装置は、感圧素子としての拡
散抵抗層を用いて構成されて、静水圧誤差を含む
差圧出力を得る第1のブリツジ回路と、補償用拡
散抵抗層を用いて構成されて静水圧出力を得る第
2のブリツジ回路を設ける。第2の測定装置は、
感圧素子としての拡散抵抗層と補償用拡散抵抗層
とを組込んで、静水圧による誤差が補償された出
力を得る一個のブリツジ回路を構成する。
The pressure transducer element of the present invention is basically a semiconductor single crystal substrate, in which a diffused resistive layer for compensating for errors due to hydrostatic pressure is provided in the thick part of the semiconductor single crystal substrate, in addition to a diffused resistive layer as a pressure sensitive element. A first measuring device of the present invention using a pressure sensing element includes a first bridge circuit that obtains a differential pressure output including a hydrostatic pressure error by using a diffused resistive layer as a pressure sensitive element, and a compensated diffused resistive layer. A second bridge circuit is provided which is configured using a 1. The second measuring device is
A bridge circuit is constructed by incorporating a diffused resistance layer as a pressure sensitive element and a compensation diffused resistance layer to obtain an output in which errors due to hydrostatic pressure are compensated.

以下、図面を参照してこの発明の実施例を説明
する。第1図は第1の発明の実施例に用いる圧力
変換素子の概略断面構造を示している。即ち、1
は例えばn型のシリコン単結晶板であり、その中
央部に肉薄のダイヤフラム2を設け、このダイヤ
フラム2にp型の拡散抵抗層3を形成している。
表面は絶縁層4で覆われその上にAl等からなる
電極配線層5が配設されている。電極配線層5は
絶縁層4に設けたコンタクトホールを介して拡散
抵抗層3に端部で接触し拡散抵抗層3の内部配線
や外部への電極取出し端子の役割を果たしてい
る。従つて、電極配線層5には必要に応じてリー
ド線6がボンデイングされている。単結晶板1は
ガラスあるいはAu−Si共晶合金等の接着層7に
よりシリコン等からなる固定台8に接着固定され
ている。固定台8には貫通孔9が設けられてい
て、この貫通孔9を介してダイヤフラム2の裏面
に伝えられる圧力Pが表面側からの圧力との差に
応じてダイヤフラム2の変形をもたらし、拡散抵
抗層3の抵抗値変化をもたらすことになる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic cross-sectional structure of a pressure transducer element used in an embodiment of the first invention. That is, 1
is, for example, an n-type silicon single crystal plate, and a thin diaphragm 2 is provided in the center thereof, and a p-type diffused resistance layer 3 is formed on this diaphragm 2.
The surface is covered with an insulating layer 4, and an electrode wiring layer 5 made of Al or the like is disposed thereon. The electrode wiring layer 5 contacts the diffused resistance layer 3 at its end through a contact hole provided in the insulating layer 4, and serves as an internal wiring of the diffused resistance layer 3 and an electrode lead terminal to the outside. Therefore, lead wires 6 are bonded to the electrode wiring layer 5 as required. The single crystal plate 1 is adhesively fixed to a fixing base 8 made of silicon or the like using an adhesive layer 7 of glass or Au-Si eutectic alloy. The fixing base 8 is provided with a through hole 9, and the pressure P transmitted to the back side of the diaphragm 2 through the through hole 9 deforms the diaphragm 2 according to the difference between the pressure from the front side and causes diffusion. This results in a change in the resistance value of the resistance layer 3.

第2図は拡散抵抗層の配置を示す平面パターン
である。3a,3b,3c,3dが差圧に感応す
る拡散抵抗層であり、これらとは別に単結晶板1
の周辺肉厚部に補償用の拡散抵抗層13a,13
b,13c,13dを設けている。補償用拡散抵
抗層13a,13b,13c,13dは勿論感圧
素子としての拡散抵抗層3a,3b,3c,3d
と同時に形成されるものでよい。
FIG. 2 is a planar pattern showing the arrangement of the diffused resistance layer. 3a, 3b, 3c, and 3d are diffusion resistance layers sensitive to differential pressure, and apart from these, a single crystal plate 1
Diffused resistance layers 13a, 13 for compensation are provided on the peripheral thick portions of the
b, 13c, and 13d are provided. The compensation diffused resistance layers 13a, 13b, 13c, and 13d are of course the diffused resistance layers 3a, 3b, 3c, and 3d as pressure sensitive elements.
They may be formed at the same time.

このように構成された圧力変換基板を用いて第
1の発明においては、第3図のように測定回路を
組む。即ち、感圧素子としての拡散抵抗層のうち
互いに抵抗値変化の異方性を示す2個、例えば3
aと3bを選び別に2個の固定外部抵抗Ra,Rb
を用意して第1のブリツジ回路B1を組む。一方、
差圧に感応せず静水圧に感応する補償用拡散抵抗
層のうちの2個、例えば13aと13bと固定外
部抵抗Ra,Rbにより別に第2のブリツジ回路B2
を組む。そして、これらのブリツジ回路B1,B2
の出力をそれぞれ差動アンプ141,142で取出
し、更に差動アンプ143を通す。差動アンプ1
1には固定の帰還抵抗15を接続し、差動アン
プ142には可変の帰還抵抗16を接続する。
In the first invention, a measurement circuit is assembled as shown in FIG. 3 using the pressure conversion board configured as described above. That is, two of the diffused resistance layers as a pressure sensitive element, for example, three, exhibiting anisotropy in resistance change with respect to each other.
Select a and 3b and separately install two fixed external resistors Ra and Rb.
Prepare and assemble the first bridge circuit B1 . on the other hand,
A separate second bridge circuit B 2 is formed by two of the compensating diffused resistance layers, e.g. 13a and 13b, which are not sensitive to differential pressure but sensitive to hydrostatic pressure, and fixed external resistors Ra, Rb.
Assemble. And these bridge circuits B 1 , B 2
The outputs of are taken out by differential amplifiers 14 1 and 14 2 , respectively, and further passed through differential amplifier 14 3 . Differential amplifier 1
A fixed feedback resistor 15 is connected to the differential amplifier 4 1 , and a variable feedback resistor 16 is connected to the differential amplifier 14 2 .

このように構成して、ある静水圧下で差圧を測定
すると、第1のブリツジ回路B1には静水圧誤差
を含んだ差圧出力が得られ、第2のブリツジ回路
B2には静水圧による誤差出力が得られる。静水
圧による拡散抵抗層の抵抗値変化には微妙なばら
つきがあるので、予め静水圧を与えた状態で、可
変帰還抵抗16により差動アンプ142の利得を
調整し、差動アンプ143の出力が零となるよう
にしておけば、差動アンプ143の出力には静水
圧誤差が除去された所望の差圧出力のみが得られ
ることになる。
With this configuration, when differential pressure is measured under a certain hydrostatic pressure, the first bridge circuit B1 obtains a differential pressure output that includes a hydrostatic pressure error, and the second bridge circuit B1 obtains a differential pressure output that includes a hydrostatic pressure error.
B 2 provides the error output due to hydrostatic pressure. Since there are subtle variations in the resistance value change of the diffused resistance layer due to hydrostatic pressure, the gain of the differential amplifier 14 2 is adjusted by the variable feedback resistor 16 with the hydrostatic pressure applied in advance, and the gain of the differential amplifier 14 3 is adjusted by using the variable feedback resistor 16. If the output is set to zero, only the desired differential pressure output from which the hydrostatic pressure error has been removed will be obtained from the output of the differential amplifier 143 .

なお、静水圧を与えたときの差動アンプ141
142の出力の極性が互いに逆の場合は、拡散抵
抗層13aと13bの配置を入れ替えるあるいは
差動アンプ142の入力極性を入れ替えればよい。
In addition, the differential amplifier 14 1 when applying hydrostatic pressure,
If the polarities of the outputs of the differential amplifiers 14 2 are opposite to each other, the arrangement of the diffused resistance layers 13a and 13b may be swapped or the input polarities of the differential amplifier 14 2 may be swapped.

第4図は、第2の発明の実施例における測定回
路である。圧力変換基板は第1の発明でのそれと
同じである。感圧素子としての拡散抵抗層3a,
3bと補償用拡散抵抗層13a,13bにより一
つのブリツジ回路を組んでいる。静水圧に対する
感度が、3aと13aが近く、3bと13bが近
い場合には、このような簡単な構成でも静水圧誤
差をある程度除くことができる。この構成は簡単
であるばかりでなく、第3図のように拡散抵抗と
固定抵抗を用いた場合の両者の温度係数の差によ
る測定誤差等がなくなるといつた利点を有する。
FIG. 4 shows a measurement circuit in an embodiment of the second invention. The pressure conversion board is the same as that in the first invention. Diffused resistance layer 3a as a pressure sensitive element,
3b and the compensation diffused resistance layers 13a and 13b form one bridge circuit. If the sensitivities to hydrostatic pressure are close between 3a and 13a and between 3b and 13b, hydrostatic pressure errors can be eliminated to some extent even with such a simple configuration. This configuration is not only simple, but also has the advantage of eliminating measurement errors caused by the difference in temperature coefficient between the diffused resistor and the fixed resistor when using the diffused resistor and fixed resistor as shown in FIG.

第4図の構成で静水圧誤差が十分除かれない場
合には、第5図に示すように調整用可変抵抗rを
入れることで静水圧誤差をほぼ零にもつていくこ
とができる。
If the hydrostatic pressure error cannot be sufficiently eliminated with the configuration shown in FIG. 4, the hydrostatic pressure error can be brought to almost zero by inserting a variable resistor r for adjustment as shown in FIG.

以上説明したように、この発明によれば、差圧
検出用の拡散抵抗層の他に同じ半導体単結晶板上
に静水圧に感応する拡散抵抗層を設け、これらの
拡散抵抗層を用いて静水圧誤差を相殺するように
ブリツジ回路を組むことで、静水圧の影響を除去
した高精度の流体圧測定が可能となる。静水圧誤
差を含む差圧を出力する第1のブリツジ回路と、
静水圧のみを出力する第2のブリツジ回路とを別
個に構成する第1の発明では、第2のブリツジ回
路の出力アンプを可変利得型とすることにより、
高精度の補償が可能となる。一個のブリツジ回路
内に感圧素子としての拡散抵抗と補償用拡散抵抗
を組込む第2の発明は、簡便な構成で静水圧誤差
の補償ができる。また、静水圧誤差を補償するた
めの拡散抵抗層を流体圧に感応する拡散抵抗層と
同時に同一基板上に作ることにより、温度変動に
よる特性変動を補償する効果も得られる。
As explained above, according to the present invention, in addition to the diffused resistive layer for differential pressure detection, a diffused resistive layer sensitive to hydrostatic pressure is provided on the same semiconductor single crystal board, and these diffused resistive layers are used to detect static pressure. By constructing a bridge circuit to offset water pressure errors, it is possible to measure fluid pressure with high precision by eliminating the effects of hydrostatic pressure. a first bridge circuit that outputs a differential pressure including a hydrostatic pressure error;
In the first invention, in which the second bridge circuit that outputs only hydrostatic pressure is configured separately, by making the output amplifier of the second bridge circuit a variable gain type,
Highly accurate compensation becomes possible. The second invention, which incorporates a diffused resistor as a pressure-sensitive element and a compensated diffused resistor in one bridge circuit, can compensate for hydrostatic pressure errors with a simple configuration. Furthermore, by forming a diffusion resistance layer for compensating hydrostatic pressure errors on the same substrate at the same time as a diffusion resistance layer sensitive to fluid pressure, it is also possible to obtain the effect of compensating for characteristic fluctuations due to temperature fluctuations.

なお、実施例では、静水圧に感じる拡散抵抗層
を半導体単結晶板の周辺肉厚部に形成したが結晶
軸を適当に選ぶことにより肉薄部に配置すること
もできる、例えば(100)面シリコン単結晶板を
用いた場合、〈100〉方向を長手方向とした拡散抵
抗層を形成すれば、これは肉薄部に配置されても
差圧には感応せず、従つてこの拡散抵抗層を静水
圧誤差の補償用として用いることができる。
In the example, the diffused resistance layer that feels hydrostatic pressure was formed in the peripheral thick part of the semiconductor single crystal plate, but it can also be placed in the thin part by appropriately selecting the crystal axis. When using a single-crystal plate, if a diffused resistance layer is formed with its longitudinal direction in the <100> direction, it will not be sensitive to differential pressure even if it is placed in a thin part. It can be used to compensate for water pressure errors.

以上の説明において用いた「差圧」は、所謂差
圧計における狭義のものに限られない。即ちダイ
ヤフラムに対してその両面側にそれぞれ圧力導入
孔を設けるのが差圧計であり、これに対し一方を
解放端としたものがゲージ圧計であるが、ゲージ
圧計の場合にも本質的に圧力差を測定するもので
あることは差圧計と変りなく、本発明はゲージ圧
計として構成した場合にも、これを高静水圧下と
いう条件で用いる場合に有効である。
The "differential pressure" used in the above description is not limited to the narrow sense of what is called a differential pressure gauge. In other words, a differential pressure gauge has pressure introduction holes on both sides of the diaphragm, whereas a gauge pressure gauge has one open end. This is the same as a differential pressure gauge, and the present invention is effective even when configured as a gauge pressure gauge and used under conditions of high hydrostatic pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明における半導体圧力変換装置
の概略構造例を示す断面図、第2図はその拡散抵
抗層の配置を示す平面パターン、第3図は上記圧
力変換装置を用いて組んだ第1の発明による流体
圧測定回路構成例を示す図、第4図および第5図
は第2の発明による流体圧測定回路構成例を示す
図、第6図は静水圧誤差を説明するための図であ
る。 1……シリコン単結晶板、2……ダイヤフラム
(肉薄部)、3,3a,3b,3c,3d……拡散
抵抗層(感圧素子)、4……絶縁層、5……電極
配線層、6……リード線、7……接着層、8……
固定台、9……貫通孔、13a,13b,13
c,13d……補償用拡散抵抗層、141,14
,143……差動アンプ、15……固定帰還抵
抗、16……可変帰還抵抗、Ra,Rb……固定外
部抵抗、B1,B2……ブリツジ回路。
FIG. 1 is a cross-sectional view showing a schematic structural example of a semiconductor pressure transducer according to the present invention, FIG. 2 is a plane pattern showing the arrangement of a diffusion resistance layer, and FIG. FIG. 4 and FIG. 5 are diagrams showing an example of the fluid pressure measurement circuit configuration according to the second invention, and FIG. 6 is a diagram for explaining hydrostatic pressure error. be. 1... Silicon single crystal plate, 2... Diaphragm (thin part), 3, 3a, 3b, 3c, 3d... Diffused resistance layer (pressure sensitive element), 4... Insulating layer, 5... Electrode wiring layer, 6... Lead wire, 7... Adhesive layer, 8...
Fixed base, 9...Through hole, 13a, 13b, 13
c, 13d... Compensation diffused resistance layer, 14 1 , 14
2 , 14 3 ...Differential amplifier, 15...Fixed feedback resistor, 16...Variable feedback resistor, Ra, Rb...Fixed external resistance, B1 , B2 ...Bridge circuit.

Claims (1)

【特許請求の範囲】 1 半導体単結晶基板に肉薄部を設け、その肉薄
部に感圧素子としての拡散抵抗層を形成した圧力
変換基板を固定台に接着固定して構成される半導
体圧力測定装置において、前記半導体単結晶基板
の肉厚部に前記感圧素子としての拡散抵抗層とは
別に静水圧による誤差を補償するための拡散抵抗
層が設けられ、前記感圧素子としての拡散抵抗層
を用いて構成されて静水圧誤差を含む差圧出力を
得る第1のブリツジ回路と、前記静水圧による誤
差を補償するための拡散抵抗層を用いて構成され
て静水圧出力を得る第2のブリツジ回路とを有す
ることを特徴とする半導体圧力測定装置。 2 第1のブリツジ回路には利得固定の出力アン
プが接続され、第2のブリツジ回路には利得可変
の出力アンプが接続されて、これらの出力アンプ
の差をとることにより、静水圧による誤差を補償
するようにしたことを特徴とする特許請求の範囲
第1項記載の半導体圧力測定装置。 3 半導体単結晶基板に肉薄部を設け、その肉薄
部に感圧素子としての拡散抵抗層を形成した圧力
変換基板を固定台に接着固定して構成される半導
体圧力変換素子を用いた圧力測定装置において、
前記半導体単結晶基板の肉厚部に前記感圧素子と
しての拡散抵抗層とは別に静水圧による誤差を補
償するための拡散抵抗層が設けられ、前記感圧素
子としての拡散抵抗層と前記静水圧による誤差を
補償するための拡散抵抗層とから構成されて、静
水圧による誤差が補償された出力を得るブリツジ
回路を有することを特徴とする半導体圧力測定装
置。
[Scope of Claims] 1. A semiconductor pressure measuring device configured by providing a thin part on a semiconductor single crystal substrate, and fixing a pressure transducer substrate, which has a diffused resistance layer as a pressure sensitive element formed on the thin part, to a fixing base by adhesively fixing the same to a fixed base. In addition to the diffused resistive layer as the pressure sensitive element, a diffused resistive layer for compensating for errors due to hydrostatic pressure is provided in the thick part of the semiconductor single crystal substrate, and the diffused resistive layer as the pressure sensitive element is a first bridge circuit constructed using a diffusion resistance layer to obtain a differential pressure output including a hydrostatic pressure error, and a second bridge circuit constructed using a diffusion resistance layer for compensating for an error due to the hydrostatic pressure to obtain a hydrostatic pressure output. A semiconductor pressure measuring device characterized by having a circuit. 2 A fixed gain output amplifier is connected to the first bridge circuit, and a variable gain output amplifier is connected to the second bridge circuit, and by taking the difference between these output amplifiers, errors due to hydrostatic pressure can be eliminated. 2. The semiconductor pressure measuring device according to claim 1, wherein the semiconductor pressure measuring device is adapted to compensate. 3. A pressure measuring device using a semiconductor pressure transducer element, which is constructed by providing a thin part on a semiconductor single crystal substrate, and fixing a pressure transducer substrate, which has a diffused resistance layer as a pressure sensitive element on the thin part, to a fixing base by adhesive. In,
A diffused resistance layer for compensating for errors due to hydrostatic pressure is provided in a thick part of the semiconductor single crystal substrate separately from the diffused resistance layer as the pressure sensitive element, and the diffused resistance layer as the pressure sensitive element and the static 1. A semiconductor pressure measuring device comprising a bridge circuit comprising a diffusion resistance layer for compensating for errors caused by water pressure, and obtaining an output in which errors caused by hydrostatic pressure are compensated.
JP17069088A 1988-07-08 1988-07-08 Semiconductor pressure measuring apparatus Granted JPS6427275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17069088A JPS6427275A (en) 1988-07-08 1988-07-08 Semiconductor pressure measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17069088A JPS6427275A (en) 1988-07-08 1988-07-08 Semiconductor pressure measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6427275A JPS6427275A (en) 1989-01-30
JPH0455542B2 true JPH0455542B2 (en) 1992-09-03

Family

ID=15909590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17069088A Granted JPS6427275A (en) 1988-07-08 1988-07-08 Semiconductor pressure measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6427275A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218412A (en) * 1990-01-24 1991-09-26 Rohm Co Ltd Angle sensor
JP2689744B2 (en) * 1990-03-19 1997-12-10 株式会社日立製作所 Compound sensor, compound transmitter and plant system using the same
ATE470844T1 (en) * 2004-09-24 2010-06-15 Grundfos As PRESSURE SENSOR
US7554666B2 (en) * 2006-05-25 2009-06-30 Ric Investments, Llc. Sensor with optical pressure transducer and method of manufacturing a sensor component
DE102012102020A1 (en) * 2012-03-09 2013-09-12 Epcos Ag Micromechanical measuring element
JP6318760B2 (en) * 2014-03-25 2018-05-09 セイコーエプソン株式会社 Physical quantity sensor, altimeter, electronic equipment and mobile object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016486A (en) * 1973-06-11 1975-02-21
JPS5182680A (en) * 1974-11-27 1976-07-20 Itt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016486A (en) * 1973-06-11 1975-02-21
JPS5182680A (en) * 1974-11-27 1976-07-20 Itt

Also Published As

Publication number Publication date
JPS6427275A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
US4986127A (en) Multi-functional sensor
US4333349A (en) Binary balancing apparatus for semiconductor transducer structures
US5259248A (en) Integrated multisensor and static and differential pressure transmitter and plant system using the integrated multisensor
US5471884A (en) Gain-adjusting circuitry for combining two sensors to form a media isolated differential pressure sensor
US3270554A (en) Diffused layer transducers
US7775117B2 (en) Combined wet-wet differential and gage transducer employing a common housing
US7866215B2 (en) Redundant self compensating leadless pressure sensor
KR20040079323A (en) Semiconductor pressure sensor having diaphragm
JPH038482B2 (en)
US20020086460A1 (en) Pressure transducer employing on-chip resistor compensation
JPH01197621A (en) Dual side type pressure sensor
US7284440B2 (en) Line pressure compensated differential pressure transducer assembly
JPH0455542B2 (en)
JPS6222272B2 (en)
WO2002006786A1 (en) Pressure sensor
JP2730152B2 (en) Combined pressure and temperature detector
JPH05107090A (en) Differential pressure flowermeter
JP2512220B2 (en) Multi-function sensor
JP3081352B2 (en) Pressure sensor
JPS59217374A (en) Semiconductor strain converter
JPH03249532A (en) Semiconductor pressure gauge
JPH06102128A (en) Semiconductor composite function sensor
JP2002039888A (en) Method of setting position of gage resistance of semiconductor pressure sensor
JPH0542610B2 (en)
JPH04114478A (en) Semiconductor device