JPH04114478A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04114478A
JPH04114478A JP23405990A JP23405990A JPH04114478A JP H04114478 A JPH04114478 A JP H04114478A JP 23405990 A JP23405990 A JP 23405990A JP 23405990 A JP23405990 A JP 23405990A JP H04114478 A JPH04114478 A JP H04114478A
Authority
JP
Japan
Prior art keywords
silicon
temperature
thermal expansion
base
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23405990A
Other languages
Japanese (ja)
Other versions
JP3140033B2 (en
Inventor
Yukihiko Tanizawa
幸彦 谷澤
Yoshi Yoshino
吉野 好
Hiroshi Okada
寛 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16964944&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04114478(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP02234059A priority Critical patent/JP3140033B2/en
Publication of JPH04114478A publication Critical patent/JPH04114478A/en
Application granted granted Critical
Publication of JP3140033B2 publication Critical patent/JP3140033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To improve a semiconductor device in temperature characteristics of offset voltage by a method wherein a silicon semiconductor substrate is joined to another member, and the member concerned is formed of material other than silicon, which is specified in thermal expansion coefficient within a range of the operating temperature of a semiconductor device. CONSTITUTION:The surface of a silicon substrate 1 is coated with a protective film 5, such as a silicon oxide film, including a contact hole 6 reaching the surface of the substrate 1, and an aluminum electrode 7 is built on the contact hole 6. A pressure sensitive element 11 is electrostatically jointed to a base 8 provided with a pressure introducing hole 9 at its center. The base 8 is optionally set in height so as to prevent the thermal deformation of a member joined to the underside of the base 8 from affecting the output of the pressure sensitive element 11. The base 8 can be formed of various kinds of material other than silicon, where materials are possessed of a thermal expansion coefficient alpha[ deg.C<-1>] at a temperature of T[ deg.C] within an operating temperature range of a sensor, and alpha is so set as to satisfy a formula, alpha=aT+b, where 2.4X10<-9=a<=7.2X10<-9>[ deg.C<-2>] and 1.9X10<-9=b<=3.3X10<-6>[ deg.C<-1>].

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置に関し、主に、車両搭載用として広
い温度領域において使用される半導体式圧力センサある
いは加速度センサ等の半導体歪センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor strain sensor such as a semiconductor pressure sensor or an acceleration sensor that is mounted on a vehicle and used in a wide temperature range.

[従来の技術] 半導体歪センサの一種である半導体式圧力センサは、例
えば車両エンジンの吸気管圧力の検出に用いられ、燃料
噴射量の制御等に利用されている。
[Prior Art] A semiconductor pressure sensor, which is a type of semiconductor strain sensor, is used, for example, to detect the intake pipe pressure of a vehicle engine, and is used to control the amount of fuel injection.

半導体式圧力センサは、シリコン基板の一部を薄肉の受
圧ダイヤプラムとなし、その上面に歪ゲージ抵抗体を形
成した感圧素子を台座に接合した構造のものが一般的で
ある。ダイヤフラムに圧力が作用すると、歪ゲージの抵
抗値が変化しくピエゾ抵抗効果)、圧力に応じた出力信
号が得られる。
Semiconductor pressure sensors generally have a structure in which a part of a silicon substrate is a thin pressure-receiving diaphragm, and a pressure-sensitive element with a strain gauge resistor formed on the upper surface of the diaphragm is bonded to a pedestal. When pressure is applied to the diaphragm, the resistance value of the strain gauge changes (piezoresistance effect), and an output signal corresponding to the pressure is obtained.

感圧素子を支持する台座には、熱膨張係数の差による熱
応力を緩和する目的で、基板材料であるシリコンに比較
的熱膨張係数の近い硼珪酸ガラス系材料を用いることが
多く、通常、シリコン基板に静電接合(陽極接合)によ
り接合されている。
For the pedestal that supports the pressure-sensitive element, a borosilicate glass-based material whose coefficient of thermal expansion is relatively similar to that of silicon, which is the substrate material, is often used for the purpose of alleviating thermal stress caused by the difference in coefficient of thermal expansion. It is bonded to a silicon substrate by electrostatic bonding (anodic bonding).

[発明が解決しようとする課題] しかしながら、車載用の圧力センサは使用温度領域が広
いため、温度変化に伴い、両者のわずかな熱膨張係数の
差により接合面に熱歪が生ずる。
[Problems to be Solved by the Invention] However, since a vehicle-mounted pressure sensor has a wide operating temperature range, thermal distortion occurs in the joint surface due to a slight difference in thermal expansion coefficient between the two as the temperature changes.

この熱歪はシリコン基板の厚肉部を伝わってダイヤフラ
ム上の歪ゲージにまで及び、その出力に影響を及ぼす。
This thermal strain is transmitted through the thick portion of the silicon substrate to the strain gauge on the diaphragm, and affects its output.

つまり、歪ゲージは歪の大きさにはぼ比例した歪出力信
号を出すので、圧力センサとしては、圧力信号以外の信
号成分(以下、オフセット電圧と称する)に熱歪信号を
含んでしまうことになる。
In other words, since a strain gauge outputs a strain output signal that is approximately proportional to the magnitude of strain, as a pressure sensor, a thermal strain signal is included in the signal component other than the pressure signal (hereinafter referred to as offset voltage). Become.

この熱歪の大きさは温度依存性を有し、しかも、温度に
対する変化分が、センサの使用温度領域内で一定でない
。これはオフセット電圧が温度に対し非直線的に変化す
ることを意味し、簡単な電子回路では補正が難しいとい
う問題がある。
The magnitude of this thermal strain is temperature dependent, and the amount of change with respect to temperature is not constant within the operating temperature range of the sensor. This means that the offset voltage changes non-linearly with respect to temperature, which is difficult to correct using a simple electronic circuit.

しかして、本発明の目的は主にオフセット電圧の温度特
性を改善し、高精度かつ信頼性の高い半導体装置を提供
することにある。
Therefore, an object of the present invention is mainly to improve the temperature characteristics of offset voltage and to provide a highly accurate and reliable semiconductor device.

[課題を解決するための手段] 上記課題を解決するために、本発明では、シリコン半導
体基板を他の部材に接合してなり、部材を、センサ使用
領域内の温度T [℃]における熱膨張係数α[℃’]
が、 α−aT十すて示され、かつ 2.4X10  ≦a≦7.2 X 1.0−9[℃’
]1.9X10  ≦b≦3.3 X 10−6[℃−
1]である、シリコン以外の材料で構成しである。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a silicon semiconductor substrate is bonded to another member, and the member is thermally expanded at a temperature T [°C] in the sensor use area. Coefficient α [℃']
is shown for α-aT, and 2.4X10 ≦a≦7.2 X 1.0-9[℃'
]1.9X10≦b≦3.3X10-6[℃-
1], and is made of a material other than silicon.

[作用] シリコンの熱膨張係数α [℃’]は b′鴇2 、56 X 10−6[℃’]で表わされる
[Function] The coefficient of thermal expansion α [°C'] of silicon is expressed as b'2, 56 x 10-6 [°C'].

本発明では、シリコン半導体基板と接合される他の部材
を、熱膨張係数αがaT+b [℃−1]て表わされ、
かつaha−である材料で構成したので、両者の接合に
より生ずる熱歪1ε11は、εT )嬌1 (b−b”
)T+εO となる。つまり、熱歪は温度Tに関する一次式で示され
、温度変化に対し直線的に変化する。従って、半導体基
板より出力を得る場合に熱歪成分の補正が容易にでき、
精度が向上する。
In the present invention, the thermal expansion coefficient α of other members to be bonded to the silicon semiconductor substrate is expressed as aT+b [°C-1],
Since the material is made of a material that is
)T+εO. In other words, thermal strain is expressed by a linear equation related to temperature T, and changes linearly with respect to temperature changes. Therefore, when obtaining output from a semiconductor substrate, thermal distortion components can be easily corrected.
Improves accuracy.

[実施例] 以下、本発明を半導体式圧力センサに適用した例を図面
に基づいて説明する。
[Example] Hereinafter, an example in which the present invention is applied to a semiconductor pressure sensor will be described based on the drawings.

第1図において、シリコン半導体基板1は、エツチング
により中央部を薄肉化してダイヤフラム2となしてあり
、該ダイヤフラム2の上面には、半導体プロセスにより
歪ゲージ抵抗体3が形成しである。ここでは歪ゲージ抵
抗体3を、上記ダイヤフラム2上面の所定箇所に不純物
を熱拡散させることによって形成した。この歪ゲージ抵
抗体3は、通常、4本でホイートストンブリッジを組む
か、あるいは2本でハーフブリッジを組むようになし、
これら歪ゲージ抵抗体3間、および歪ゲージ抵抗体3と
アルミニウム電極7間には熱拡散により抵抗体部を形成
して拡散リード4となしである。
In FIG. 1, a silicon semiconductor substrate 1 has a central portion made thinner by etching to form a diaphragm 2, and a strain gauge resistor 3 is formed on the upper surface of the diaphragm 2 by a semiconductor process. Here, the strain gauge resistor 3 was formed by thermally diffusing impurities at predetermined locations on the upper surface of the diaphragm 2. This strain gauge resistor 3 is usually configured such that four pieces form a Wheatstone bridge, or two pieces form a half bridge.
A resistor portion is formed between these strain gauge resistors 3 and between the strain gauge resistor 3 and the aluminum electrode 7 by thermal diffusion, and there is no diffusion lead 4.

シリコン基板1の表面は、シリコン酸化膜等の保護膜5
で覆われており、該保護膜5の一部に基板1に達するコ
ンタクト孔6を設けて、その上に上記アルミニウム電極
7を形成しである。このようにして形成される各部を含
む全体を感圧素子11と称する。
The surface of the silicon substrate 1 is covered with a protective film 5 such as a silicon oxide film.
A contact hole 6 reaching the substrate 1 is provided in a part of the protective film 5, and the aluminum electrode 7 is formed thereon. The entire structure including each part formed in this manner is referred to as a pressure sensitive element 11.

上記感圧素子11は、中央部に圧力導入孔9を設けた台
座8に静電接合される。この台座8の高さは、台座8の
下部に接合される部材による熱歪が感圧素子11の出力
に影響を及ぼさない程度に適宜設定される。
The pressure sensitive element 11 is electrostatically bonded to a pedestal 8 having a pressure introduction hole 9 in its center. The height of the pedestal 8 is appropriately set to such an extent that thermal strain caused by the member bonded to the lower part of the pedestal 8 does not affect the output of the pressure sensitive element 11.

台座8を構成する材料としては、シリコンを除き、セン
サ使用領域内の温度T [℃]における熱膨張係数α[
℃’]がα=aT十すで示され、2.4X10’≦a≦
7 、2 X 10−9[℃−2]1.9X10−9≦
b≦3.3X10−6[℃−11を満たす各種材料が好
適に使用できる。
The material constituting the pedestal 8, excluding silicon, has a coefficient of thermal expansion α [°C] at the temperature T [°C] within the sensor usage area.
°C'] is shown as α=aT+, 2.4X10'≦a≦
7, 2 X 10-9 [℃-2] 1.9 X 10-9≦
Various materials satisfying b≦3.3×10 −6 [° C. −11] can be suitably used.

ここで、台座8の材料の熱膨張係数の違いが、シリコン
との接合面における熱歪に及ぼす影響について検討する
Here, the influence of differences in thermal expansion coefficients of the materials of the pedestal 8 on thermal strain at the joint surface with silicon will be discussed.

まず、台座8として、従来材であるパイレックス(登録
商標:コーニング社ガラスコード#7740、NazO
−8iO2−B203系ガラス材料〉を用い、シリコン
と静電接合のような強固な接合を施した場合の熱歪につ
いて検討する。
First, the pedestal 8 is made of conventional material Pyrex (registered trademark: Corning Glass Code #7740, NazO
-8iO2-B203-based glass material>, the thermal strain when a strong bond such as electrostatic bonding with silicon is applied will be studied.

このとき熱歪1εT 1は下式、 式中、T:温度 To:接合時温度 α、;従来材の熱膨張係数 α、i:シリコンの熱膨張係数 で表わされる。第2図に示されるように、b″嬌2、5
6 X 10”6[℃’]であるので、 ε0:T=0℃の熱歪 となり、熱歪1ε■1は温度依存性を持つ。上式の第1
項は温度Tについての2次成分であり、これが熱歪の温
度依存性の非直線成分を表わしている。一般的には、2
次以上の成分が非直線成分といえ、従って、熱歪の温度
依存性の非直線性をなくすには、このTについての2次
以上の成分がなければよいことがわかる。すなわち、台
座8の材料の熱膨張係数をαとすると、 α=aT+b [℃−1]のとき、ai==a−て゛あ
る材料を選択すれば、 ε、−11(b−b−)’r+εO。
At this time, the thermal strain 1εT1 is expressed by the following formula, where T: temperature To: temperature at the time of bonding α, coefficient of thermal expansion α of conventional material, i: coefficient of thermal expansion of silicon. As shown in FIG.
6 x 10"6[℃'], so the thermal strain is ε0:T=0℃, and the thermal strain 1ε■1 has temperature dependence.The first equation in the above equation
The term is a quadratic component with respect to temperature T, which represents a non-linear component of the temperature dependence of thermal strain. Generally, 2
It can be said that the components of the second or higher order are non-linear components, and therefore, in order to eliminate the non-linearity of the temperature dependence of thermal strain, it is necessary to have no component of the second or higher order with respect to T. That is, if the coefficient of thermal expansion of the material of the pedestal 8 is α, then when α=aT+b [°C-1], if ai==a- is selected, then ε, -11(bb-b-)' r+εO.

となり、温度依存性の非直線性が改善されることがわか
る。
It can be seen that the temperature-dependent nonlinearity is improved.

なお、ここで、a=a−かつb=b−ならば両者の熱膨
張係数は完全に一致し、熱歪は生じないが、温度依存性
の非直線性をなくすという本発明の目的を達成するため
には、aha−1つまりTの2次以上の成分がなければ
十分である。
Note that if a = a- and b = b-, the thermal expansion coefficients of both will completely match and no thermal distortion will occur, but the purpose of the present invention of eliminating temperature-dependent nonlinearity can be achieved. In order to do this, it is sufficient that there is no component of aha-1, that is, the second or higher order of T.

次に、aおよびbがどの範囲にあれば良好な改善効果が
得られるかを検討する。上記従来材を用いた場合に対し
、温度依存性の非直線性が半減すればよいとすると、 a=a−±0.5 t a  −a −1[℃−2]=
2.4X10’〜7 、2 X 10−9[”C−”]
また、熱歪の大゛きさを従来付程度におさえようとする
と、T=O℃において、シリコンと従来材の熱膨張係数
の差は約0 、7 X 10’ [”C−11であるか
ら、 b=b  −±0. 7xlO−6[℃−1コ=2. 
6X10   ±0. 7X10−6[℃−1コロ =1.9X10’〜3 、3 X 10−” [℃−1
]となる。以上より、台座8の材料の熱膨張係数α[℃
−1]が、α=aT+bで示され、 2.4X10’≦a≦7 、2 X 10−9[℃−”
]=9 1.9X10  ≦b≦3.3X10−6[”C−’]
であれば、温度特性の非直線性を改善できることがわか
る。
Next, we will consider in what range a and b should be in order to obtain a good improvement effect. Assuming that the temperature-dependent nonlinearity should be halved compared to the case of using the above conventional material, a=a-±0.5 ta-a-1[℃-2]=
2.4X10'~7, 2X10-9["C-"]
In addition, if we try to suppress the magnitude of thermal strain to the conventional level, at T=O℃, the difference in thermal expansion coefficient between silicon and conventional material is approximately 0.7 x 10'["C-11"] From, b=b −±0.7×lO−6[℃−1=2.
6X10 ±0. 7X10-6 [℃-1 Colo = 1.9X10'~3, 3 X 10-'' [℃-1
]. From the above, the thermal expansion coefficient α [℃
-1] is shown by α=aT+b, 2.4X10'≦a≦7, 2X10-9[℃-"
]=9 1.9X10 ≦b≦3.3X10-6["C-']
If so, it can be seen that the nonlinearity of temperature characteristics can be improved.

続いて、本発明の効果を確認するために、下記第1表お
よび第2図に示す熱膨張係数α(30℃〜150℃〉を
有する試料(実施例1.2)を用いて、検証した。これ
らは、静電接合可能で、かつ熱膨張係数の温度依存性の
傾きがシリコンに近い(aha−)という条件をあわせ
もつように成分調合されたガラス材料である。
Next, in order to confirm the effects of the present invention, verification was carried out using a sample (Example 1.2) having a coefficient of thermal expansion α (30°C to 150°C) shown in Table 1 and Figure 2 below. These are glass materials whose components are mixed so that they can be electrostatically bonded and have a slope of the temperature dependence of the coefficient of thermal expansion close to that of silicon (aha-).

第1表 これら実施例1.2のガラス材料を台座8材料として用
いて、上記第1図の圧力センサを試作した。オフセット
電圧変動量ΔVoF、の温度依存性を測定した結果を第
3図に示す。図に明らかなように、従来材ではオフセッ
ト電圧変動量△■OFFが非直線的に変化しているのに
対し、実施例1.2では非直線性がほとんどなく、温度
特性が大幅に改善されていることがわかる。
Table 1 Using the glass materials of Example 1.2 as the material for the pedestal 8, the pressure sensor shown in FIG. 1 was prototyped. FIG. 3 shows the results of measuring the temperature dependence of the offset voltage fluctuation amount ΔVoF. As is clear from the figure, in the conventional material, the amount of offset voltage fluctuation △■OFF changes nonlinearly, whereas in Example 1.2, there is almost no nonlinearity and the temperature characteristics are significantly improved. It can be seen that

ところで、オフセット電圧変動量の大きさは、シリコン
の熱膨張係数に近い実施例1の方が実施例2よりも大き
くなっており、−見矛盾しているかのように見えるが、
これは歪ゲージ抵抗体3がシリコン酸化膜等で形成され
た保護膜5とシリコン基板1との間に生じる熱歪の影響
をも受けているからと考えられる。
By the way, the magnitude of the offset voltage fluctuation is larger in Example 1, which is closer to the coefficient of thermal expansion of silicon than in Example 2, which may seem contradictory, but
This is considered to be because the strain gauge resistor 3 is also affected by thermal strain generated between the silicon substrate 1 and the protective film 5 formed of a silicon oxide film or the like.

なお、ここでは台座8の材料としてガラス系材料を例示
したが、上記条件を満たすシリコン以外の材料であれば
、ガラス系材料に限られない。
Note that although a glass-based material is exemplified here as the material for the pedestal 8, it is not limited to a glass-based material as long as it is a material other than silicon that satisfies the above conditions.

また、本実施例では圧力センサのシリコン基板1と台座
8との接合について説明したが、接合される部材は台座
に限らず、シリコン基板1と接合されるそれ以外の用途
、役割のものでも同様の効果が得られる。また接合方法
も静電接合(陽極接合)である必要はない。
Further, in this embodiment, the bonding between the silicon substrate 1 and the pedestal 8 of the pressure sensor has been described, but the bonded member is not limited to the pedestal, but the same applies to other uses and roles that are bonded to the silicon substrate 1. The effect of this can be obtained. Further, the bonding method does not need to be electrostatic bonding (anodic bonding).

上記実施例において、歪ゲージ抵抗体3および拡散リー
ド4は熱拡散によって形成したが、それ以外の形成方法
によってもよく、また歪ゲージ抵抗体3はブリッジ回路
を構成している必要はない。
In the above embodiment, the strain gauge resistor 3 and the diffusion lead 4 are formed by thermal diffusion, but other methods may be used, and the strain gauge resistor 3 does not need to constitute a bridge circuit.

さらに台座8は圧力導入孔9がない構成のものでもよく
、保護膜5およびアルミニウム電極6はなくてもよい。
Furthermore, the pedestal 8 may have a structure without the pressure introduction hole 9, and the protective film 5 and the aluminum electrode 6 may not be provided.

上記実施例では圧力センサについて説明したが、本発明
は加速度センサ等、他の半導体装置に適用することもも
ちろん可能である。
Although the above embodiments have been described with respect to pressure sensors, it is of course possible to apply the present invention to other semiconductor devices such as acceleration sensors.

[発明の効果] このように、本発明によれば、シリコン基板に接合され
る部材を、熱膨張係数が所定の温度依存性を有する材料
で構成したので、これらの接合面に生じる熱歪が、温度
変化に対し非直線性を有することがない。従って、シリ
コン基板から出力信号を得る場合に温度補正が容易にで
き、センサ精度を著しく向上することができるので、車
両用など広い温度領域で使用される歪センサ等として有
用である。
[Effects of the Invention] As described above, according to the present invention, the member to be bonded to the silicon substrate is made of a material whose coefficient of thermal expansion has a predetermined temperature dependence. , there is no non-linearity with respect to temperature changes. Therefore, temperature correction can be easily performed when obtaining an output signal from a silicon substrate, and sensor accuracy can be significantly improved, making it useful as a strain sensor used in a wide temperature range, such as in a vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例を示し、第1図は半
導体式圧力センサの全体断面図、第2図は熱膨張係数の
温度依存性を示す図、第3図はオフセット電圧変動量の
温度依存性を示す図である。 1・・・・・・シリコン基板 2・・・・・・ダイヤフラム 3・・・・・・歪ゲージ抵抗体 8・・・・・・台座(部材) 11・・・・・・感圧素子 第2図 編 度 T じc]−+ 第3図 騙 曵 T [’c ] −m
Figures 1 to 3 show an embodiment of the present invention, Figure 1 is an overall sectional view of a semiconductor pressure sensor, Figure 2 is a diagram showing the temperature dependence of the coefficient of thermal expansion, and Figure 3 is an offset diagram. FIG. 3 is a diagram showing the temperature dependence of voltage fluctuation amount. 1... Silicon substrate 2... Diaphragm 3... Strain gauge resistor 8... Pedestal (member) 11... Pressure sensitive element No. 2nd figure knitting T ['c] -+ 3rd figure trick T ['c] -m

Claims (1)

【特許請求の範囲】  シリコン半導体基板を他の部材に接合してなり、上記
部材を、半導体装置使用領域内の温度T[℃]における
熱膨張係数α[℃^−^1]が、 α=aT+bで示され、かつ 2.4×10^−^9≦a≦7.2×10^−^9[℃
^−^2]1.9×10^−^6≦b≦3.3×10^
−^6[℃^−^1]である、シリコン以外の材料で構
成したことを特徴とする半導体装置。
[Claims] Consisting of a silicon semiconductor substrate bonded to another member, the member has a coefficient of thermal expansion α [°C^-^1] at a temperature T [°C] in the region in which the semiconductor device is used, α= It is represented by aT+b, and 2.4×10^-^9≦a≦7.2×10^-^9[℃
^-^2] 1.9×10^-^6≦b≦3.3×10^
-^6 [°C^-^1], and is characterized by being made of a material other than silicon.
JP02234059A 1990-09-04 1990-09-04 Semiconductor device Expired - Lifetime JP3140033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02234059A JP3140033B2 (en) 1990-09-04 1990-09-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02234059A JP3140033B2 (en) 1990-09-04 1990-09-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH04114478A true JPH04114478A (en) 1992-04-15
JP3140033B2 JP3140033B2 (en) 2001-03-05

Family

ID=16964944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02234059A Expired - Lifetime JP3140033B2 (en) 1990-09-04 1990-09-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3140033B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436491A (en) * 1992-10-19 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Pressure sensor for high temperature vibration intense environment
US5761957A (en) * 1996-02-08 1998-06-09 Denso Corporation Semiconductor pressure sensor that suppresses non-linear temperature characteristics
JP2002310831A (en) * 2001-04-19 2002-10-23 Denso Corp Semiconductor sensor
US7197939B2 (en) 2004-02-09 2007-04-03 Denso Corporation Pressure sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436491A (en) * 1992-10-19 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Pressure sensor for high temperature vibration intense environment
US5761957A (en) * 1996-02-08 1998-06-09 Denso Corporation Semiconductor pressure sensor that suppresses non-linear temperature characteristics
JP2002310831A (en) * 2001-04-19 2002-10-23 Denso Corp Semiconductor sensor
US7197939B2 (en) 2004-02-09 2007-04-03 Denso Corporation Pressure sensor

Also Published As

Publication number Publication date
JP3140033B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
JP2544435B2 (en) Multi-function sensor
JPH01141328A (en) Differential pressure transmitter
JPS6341080A (en) Semiconductor acceleration sensor
KR19980032489A (en) Semiconductor pressure sensor
JPH038482B2 (en)
JPH07103837A (en) Sensor for detecting physical amount
JPH0264430A (en) Semiconductor pressure converter
JPS60195830A (en) Electrostatic capacity type pressure detector
US20170074740A1 (en) Reduction of non-linearity errors in automotive pressure sensors
JP2002527767A (en) Circuit arrangement for temperature non-linearity compensation of the characteristic curve of a piezoresistive measuring resistor connected in a bridge circuit
JPH04114478A (en) Semiconductor device
JPS6061637A (en) Composite function type differential pressure sensor
CN111426413A (en) Novel pressure sensor and design method
Ansermet et al. Cooperative development of a piezoresistive pressure sensor with integrated signal conditioning for automotive and industrial applications
JPS5887880A (en) Semiconductor diaphragm type sensor
Roylance A MINIATURE INTEGRATED CIRCUIT ACCELEROMETER FOR BIOMEDICAL APPLICATIONS.
JPH10170367A (en) Semiconductor pressure sensor
JPH0455542B2 (en)
JPS5845533A (en) Pressure detector
JPH02196938A (en) Pressure sensor
JPS6222272B2 (en)
JPH0419495B2 (en)
JPH0571148B2 (en)
Pons et al. Low-cost high-sensitivity integrated pressure and temperature sensor
JP3404092B2 (en) Gas sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10