JPS6222272B2 - - Google Patents

Info

Publication number
JPS6222272B2
JPS6222272B2 JP52117538A JP11753877A JPS6222272B2 JP S6222272 B2 JPS6222272 B2 JP S6222272B2 JP 52117538 A JP52117538 A JP 52117538A JP 11753877 A JP11753877 A JP 11753877A JP S6222272 B2 JPS6222272 B2 JP S6222272B2
Authority
JP
Japan
Prior art keywords
pressure
diffused
resistance layer
semiconductor
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52117538A
Other languages
Japanese (ja)
Other versions
JPS5451489A (en
Inventor
Susumu Kimijima
Ryuzo Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11753877A priority Critical patent/JPS5451489A/en
Publication of JPS5451489A publication Critical patent/JPS5451489A/en
Publication of JPS6222272B2 publication Critical patent/JPS6222272B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】 この発明は半導体のピエゾ抵抗効果を利用して
流体圧力の測定等を行う半導体圧力変換装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor pressure transducer that measures fluid pressure by utilizing the piezoresistance effect of a semiconductor.

半導体プレーナ技術の応用により、シリコンや
ゲルマニウム等の半導体単結晶板の一部に肉薄の
ダイヤフラムを設け、このダイヤフラムに感圧素
子として拡散抵抗層を形成して、そのピエゾ抵抗
効果を利用した圧力変換装置が実用化されてい
る。実際の流体圧力測定は、ダイヤフラムに設け
た2個の拡散抵抗と2個の固定外部抵抗を用いて
ブリツジ回路を組んで行われる。この場合、2個
の拡散抵抗は、一方が流体圧力により抵抗値が増
大するもの、他方が同じ流体圧力により抵抗値が
減少するものとする。このような抵抗値変化の異
方性は、拡散抵抗層をダイヤフラムのどの領域に
どのようなパターンで設けるかによつて決まる。
By applying semiconductor planar technology, a thin diaphragm is provided on a part of a semiconductor single crystal plate such as silicon or germanium, and a diffused resistance layer is formed on this diaphragm as a pressure-sensitive element to convert pressure using the piezoresistance effect. The device has been put into practical use. Actual fluid pressure measurement is performed by constructing a bridge circuit using two diffusion resistors provided on the diaphragm and two fixed external resistors. In this case, one of the two diffusion resistances has a resistance value that increases due to fluid pressure, and the other has a resistance value that decreases due to the same fluid pressure. Such anisotropy of resistance value change is determined by which region of the diaphragm and in what pattern the diffused resistance layer is provided.

肉薄のダイヤフラムに設けられた拡散抵抗層は
検知しようとする流体圧力以外の全ての外部応力
に対して感応しないようにしなければならない。
これは、圧力変換基板の周辺肉厚部をシリコン等
の固定台に強固に接着固定することでほゞ実現で
きる。
The diffusion resistance layer on the thin diaphragm must be insensitive to all external stresses other than the fluid pressure to be sensed.
This can be practically achieved by firmly adhesively fixing the peripheral thick portion of the pressure conversion board to a fixing base made of silicon or the like.

ところが、このような圧力変換装置を高静水圧
下で使用すると、大気圧中の場合にはみられない
誤差が生ずる。高静水圧の発生する例としては、
ダムの底部で放出流量を測定する場合や蒸気ター
ビン等200〜300℃に熱せられた加熱加圧水流を測
定する場合などで、圧力的には20〜300Kg/cm3
様々である。このような高静水圧下での誤差は、
ブリツジオフセツト電圧(零点のずれ)として現
われる。具体的に例えば、高圧流体の流速或いは
流量を半導体圧力センサを用いて測定する場合の
様子を第6図により説明する。高圧流体22が流
れる配管21内に図示のように絞り部23を設け
ることにより、流速の変化による圧力の変化を生
じさせ、上流側の圧力P1と下流側の圧力P2を圧力
センサ24に導く。圧力センサ24のダイヤフラ
ム25の一方の面には上流側の圧力P1が伝達さ
れ、他方の面には下流側の圧力P2が伝達されるよ
うになつている。即ちこの圧力センサ24は差圧
計測を行つているのであつて、上流側の圧力P1
下流側の圧力P2の差△P=P1−P2に感応して出力
を出す。この差圧△Pが流速に依存することか
ら、これを測定することにより流体22の流速或
いは流量を求めることができる。例えば、P1
101Kg/cm2、P2=100Kg/cm2の場合、測定すべき圧
力差即ち差圧△Pは1Kg/cm2である。ところがこ
の場合、100Kg/cm2という大きい圧力が半導体セ
ンサ24のダイヤフラム25全体に均一に静水圧
としてかかる。これはダイヤフラム25にとつて
極めて大きい圧縮応力となり、これが大気圧にお
ける場合にはない誤差の原因となるのである。
However, when such a pressure transducer is used under high hydrostatic pressure, errors occur that are not observed under atmospheric pressure. Examples of high hydrostatic pressure include:
The pressure varies from 20 to 300 kg/cm 3 in cases such as when measuring the discharge flow rate at the bottom of a dam or when measuring heated and pressurized water flow heated to 200 to 300 degrees Celsius such as from a steam turbine. The error under such high hydrostatic pressure is
It appears as a bridge offset voltage (zero point shift). Specifically, for example, a situation in which the flow velocity or flow rate of high-pressure fluid is measured using a semiconductor pressure sensor will be explained with reference to FIG. By providing a constriction part 23 as shown in the pipe 21 through which the high-pressure fluid 22 flows, pressure changes occur due to changes in flow velocity, and the upstream pressure P 1 and the downstream pressure P 2 are sent to the pressure sensor 24. lead The upstream pressure P 1 is transmitted to one surface of the diaphragm 25 of the pressure sensor 24, and the downstream pressure P 2 is transmitted to the other surface. That is, this pressure sensor 24 measures differential pressure, and outputs an output in response to the difference ΔP=P 1 -P 2 between the upstream pressure P 1 and the downstream pressure P 2 . Since this pressure difference ΔP depends on the flow rate, by measuring it, the flow rate or flow rate of the fluid 22 can be determined. For example, P 1 =
In the case of 101 Kg/cm 2 and P 2 =100 Kg/cm 2 , the pressure difference to be measured, that is, the differential pressure ΔP, is 1 Kg/cm 2 . However, in this case, a large pressure of 100 kg/cm 2 is uniformly applied to the entire diaphragm 25 of the semiconductor sensor 24 as hydrostatic pressure. This results in an extremely large compressive stress on the diaphragm 25, which causes errors that would not occur at atmospheric pressure.

この発明は上記した点に鑑みてなされたもの
で、静水圧による誤差を補償して高精度に差圧を
測定し得るようにした半導体圧力変換装置を提供
するものである。
The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to provide a semiconductor pressure transducer that can compensate for errors caused by hydrostatic pressure and measure differential pressure with high accuracy.

この発明は、半導体単結晶板に感圧素子として
の拡散抵抗層とは別に静水圧による誤差を補償す
るための拡散抵抗層を設けたことを特徴としてい
る。具体的には、半導体単結晶板の周辺肉厚部に
補償用拡散抵抗層を形成する。この補償用拡散抵
抗層は差圧には感応せず、静水圧にのみ感応して
抵抗値が変化する。そこで、差圧を測定したとき
の静水圧による出力成分を補償用拡散抵抗層によ
り得られる静水圧による出力で相殺しようという
ものである。
The present invention is characterized in that a semiconductor single-crystal plate is provided with a diffused resistive layer for compensating for errors caused by hydrostatic pressure, in addition to the diffused resistive layer serving as a pressure-sensitive element. Specifically, a compensating diffused resistance layer is formed in the peripheral thick portion of the semiconductor single crystal board. This compensating diffused resistance layer does not respond to differential pressure, but only responds to hydrostatic pressure and changes its resistance value. Therefore, the output component due to the hydrostatic pressure when the differential pressure is measured is offset by the output due to the hydrostatic pressure obtained by the compensation diffusion resistance layer.

以下、図面を参照してこの発明の実施例を説明
する。第1図は一実施例の圧力変換装置の概略断
面構造を示している。即ち、1は例えばn型のシ
リコン単結晶板であり、その中央部に肉薄のダイ
ヤフラム2を設け、このダイヤフラム2にp型の
拡散抵抗層3を形成している。表面は絶縁層4で
覆われその上にAl等からなる電極配線層5が配
設されている。電極配線層5は絶縁層4に設けた
コンタクトホールを介して拡散抵抗層3に端部で
接触し拡散抵抗層3の内部配線や外部への電極取
出し端子の役割を果たしている。従つて、電極配
線層5には必要に応じてリード線6がボンデイン
グされている。単結晶板1はガラスあるいはAu
−Si共晶合金等の接着層7によりシリコン等から
なる固定台8に接着固定されている。固定台8に
は貫通孔9が設けられていて、この貫通孔9を介
してダイヤフラム2の裏面に伝えられる圧力Pが
表面側からの圧力との差に応じてダイヤフラム2
の変形をもたらし、拡散抵抗層3の抵抗値変化を
もたらすことになる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic cross-sectional structure of a pressure transducer according to an embodiment. That is, 1 is, for example, an n-type silicon single crystal plate, and a thin diaphragm 2 is provided in the center thereof, and a p-type diffused resistance layer 3 is formed on this diaphragm 2. The surface is covered with an insulating layer 4, and an electrode wiring layer 5 made of Al or the like is disposed thereon. The electrode wiring layer 5 contacts the diffused resistance layer 3 at its end through a contact hole provided in the insulating layer 4, and serves as an internal wiring of the diffused resistance layer 3 and an electrode lead terminal to the outside. Therefore, lead wires 6 are bonded to the electrode wiring layer 5 as required. Single crystal plate 1 is made of glass or Au
- It is adhesively fixed to a fixing base 8 made of silicon or the like with an adhesive layer 7 made of a Si eutectic alloy or the like. The fixing base 8 is provided with a through hole 9, and the pressure P transmitted to the back surface of the diaphragm 2 through the through hole 9 is applied to the diaphragm 2 according to the difference between the pressure from the front side and the pressure from the front side.
This results in a change in the resistance value of the diffused resistance layer 3.

第2図は拡散抵抗層の配置を示す平面パターン
である。3a,3b,3c,3dが差圧に感応す
る拡散抵抗層であり、これらとは別に単結晶板1
の周辺肉厚部に補償用の拡散抵抗層13a,13
b,13c,13dを設けている。補償用拡散抵
抗層13a,13b,13c,13dは勿論感応
素子としての拡散抵抗層3a,3b,3c,3d
と同時に形成されるものでよい。
FIG. 2 is a planar pattern showing the arrangement of the diffused resistance layer. 3a, 3b, 3c, and 3d are diffusion resistance layers sensitive to differential pressure, and apart from these, a single crystal plate 1
Diffused resistance layers 13a, 13 for compensation are provided on the peripheral thick portions of the
b, 13c, and 13d are provided. The compensation diffused resistance layers 13a, 13b, 13c, and 13d are of course the diffused resistance layers 3a, 3b, 3c, and 3d as sensing elements.
They may be formed at the same time.

このように構成された圧力変換基板を用いて第
3図のように測定回路を組む。即ち、感応素子と
しての拡散抵抗層のうち互いに抵抗値変化の異方
性を示す2個、例えば3aと3bを選び別に2個
の固定外部抵抗Ra,Rbを用意してブリツジ回路
B1を組む。一方、差圧に感応せず静水圧に感応
する補償用拡散抵抗層のうちの2個、例えば13
aと13bと固定外部抵抗Ra,Rbにより別にブ
リツジ回路B2を組む。そして、これらのブリツ
ジ回路B1,B2の出力をそれぞれ差動アンプ14
,14で取出し、更に差動アンプ14を通
す。差動アンプ14には固定の帰還抵抗15を
接続し、差動アンプ14には可変の帰還抵抗1
6を接続する。
A measurement circuit is assembled as shown in FIG. 3 using the pressure conversion board configured in this manner. That is, two of the diffused resistance layers serving as sensing elements exhibiting anisotropy in resistance change with respect to each other, for example 3a and 3b, are selected, and two fixed external resistances Ra and Rb are separately prepared to form a bridge circuit.
Assemble B 1 . On the other hand, two of the compensating diffused resistance layers that are not sensitive to differential pressure but sensitive to hydrostatic pressure, e.g.
A separate bridge circuit B 2 is constructed using a and 13b and fixed external resistors Ra and Rb. Then, the outputs of these bridge circuits B 1 and B 2 are respectively connected to a differential amplifier 14.
1 and 142 , and further passes through a differential amplifier 143 . A fixed feedback resistor 15 is connected to the differential amplifier 14 1 , and a variable feedback resistor 1 is connected to the differential amplifier 14 2.
Connect 6.

このように構成して、ある静水圧下で差圧を測
定すると、一方のブリツジ回路B1には静水圧誤
差を含んだ差圧出力が得られ、他方のブリツジ回
路B2には静水圧による誤差出力が得られる。静
水圧による拡散抵抗層の抵抗値変化には微妙なば
らつきがあるので、予め静水圧を与えた状態で、
可変帰還抵抗16により差動アンプ14の利得
を調整し、差動アンプ14の出力が零となるよ
うにしておけば、差動アンプ14の出力には静
水圧誤差が除云された所望の差圧出力のみが得ら
れることになる。
With this configuration, when differential pressure is measured under a certain hydrostatic pressure, one bridge circuit B 1 will have a differential pressure output that includes a hydrostatic pressure error, and the other bridge circuit B 2 will have a differential pressure output that includes a hydrostatic pressure error. Error output is obtained. There are subtle variations in the resistance value change of the diffused resistance layer due to hydrostatic pressure, so with hydrostatic pressure applied in advance,
By adjusting the gain of the differential amplifier 142 using the variable feedback resistor 16 so that the output of the differential amplifier 143 becomes zero, the hydrostatic pressure error can be eliminated from the output of the differential amplifier 143 . Only the desired differential pressure output will be obtained.

なお、静水圧を与えたときの差動アンプ14
,14の出力の極性が互いに逆の場合は、拡
散抵抗層13aと13bの配置を入れ替えるかあ
るいは差動アンプ14の入力極性を入れ替えれ
ばよい。
In addition, the differential amplifier 14 when applying hydrostatic pressure
If the polarities of the outputs of the differential amplifiers 1 and 142 are opposite to each other, the arrangement of the diffused resistance layers 13a and 13b may be switched, or the input polarity of the differential amplifier 142 may be switched.

第4図は別の測定回路例で、感応素子としての
拡散抵抗層3a,3bと補償用拡散抵抗層13
a,13bによりブリツジを組んだものである。
静水圧に対する感度が、3aと13aが近く、3
bと13bが近い場合には、このような簡単な構
成でも静水圧誤差をある程度除くことができる。
この構成は簡単であるばかりでなく、第3図のよ
うに拡散抵抗と固定抵抗を用いた場合の両者の温
度係数の差による測定誤差等がなくなるといつた
利点を有する。
FIG. 4 shows another example of a measurement circuit, with diffused resistance layers 3a and 3b as sensing elements and a compensation diffused resistance layer 13.
A and 13b form a bridge.
The sensitivity to hydrostatic pressure is close to 3a and 13a, and 3
When b and 13b are close to each other, even with such a simple configuration, hydrostatic pressure errors can be eliminated to some extent.
This configuration is not only simple, but also has the advantage of eliminating measurement errors caused by the difference in temperature coefficient between the diffused resistor and the fixed resistor when the diffused resistor and fixed resistor are used as shown in FIG.

第4図の構成で静水圧誤差が十分除かれない場
合には、第5図に示すように調整用可変抵抗rを
入れることで静水圧誤差をほゞ零にもつていくこ
とができる。
If the hydrostatic pressure error cannot be sufficiently eliminated with the configuration shown in FIG. 4, the hydrostatic pressure error can be brought to almost zero by inserting a variable resistor r for adjustment as shown in FIG.

以上説明したように、この発明によれば、差圧
検出用の拡散抵抗層の他に同じ半導体単結晶板上
に静水圧に感応する拡散抵抗層を設けて静水圧誤
差を相殺するように測定回路を組むことで、静水
圧の影響を除去した高精度の流体圧測定が可能と
なる。また、静水圧誤差を補償するための拡散抵
抗層を差圧に感応する拡散抵抗層と同時に同一基
板上に作ることにより、温度変動による特性変動
を補償する効果も得られる。
As explained above, according to the present invention, in addition to the diffused resistive layer for detecting differential pressure, a diffused resistive layer sensitive to hydrostatic pressure is provided on the same semiconductor single crystal plate, so that measurements can be made to cancel out hydrostatic pressure errors. By assembling a circuit, it becomes possible to measure fluid pressure with high accuracy by removing the influence of hydrostatic pressure. Furthermore, by forming a diffused resistance layer for compensating hydrostatic pressure errors on the same substrate at the same time as a differential pressure sensitive diffused resistance layer, it is also possible to obtain the effect of compensating for characteristic fluctuations due to temperature fluctuations.

なお、実施例では、静水圧に感じる拡散抵抗層
を半導体単結晶板の周辺肉厚部に形成したが結晶
軸を適当に選ぶことにより肉薄部に配置すること
もできる。例えば、(100)面シリコン単結晶板を
用いた場合、<100>方向を長手方向とした拡散抵
抗層を形成すれば、これは肉薄部に配置されても
差圧には感応せず、従つてこの拡散抵抗層を静水
圧誤差の補償用として用いることができる。以上
の説明において用いた「差圧」は、所謂差圧計に
おける狭義のものに限られない。即ちダイヤフラ
ムに対してその両面側にそれぞれ圧力導入孔を設
けるのが差圧計であり、これに対し一方を解放端
としたものがゲージ圧計であるが、ゲージ圧計の
場合にも本質的に圧力差を測定するものであるこ
とは差圧計と変りなく、本発明はゲージ圧計とし
て構成した場合にも、これを高静水圧下という条
件で用いる場合に有効である。
In the embodiment, the diffused resistance layer that is sensitive to hydrostatic pressure was formed in the peripheral thick part of the semiconductor single crystal plate, but it can also be placed in the thin part by appropriately selecting the crystal axis. For example, when using a (100)-plane silicon single crystal plate, if a diffused resistance layer is formed with the <100> direction as the longitudinal direction, it will not be sensitive to differential pressure even if it is placed in a thin part, and will not respond to differential pressure. This diffused resistance layer can be used to compensate for hydrostatic pressure errors. The "differential pressure" used in the above description is not limited to the narrow sense of what is called a differential pressure gauge. In other words, a differential pressure gauge has pressure introduction holes on both sides of the diaphragm, whereas a gauge pressure gauge has one open end. This is the same as a differential pressure gauge, and the present invention is effective even when configured as a gauge pressure gauge and used under conditions of high hydrostatic pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の半導体圧力変換
装置の概略構造を示す断面図、第2図はその拡散
抵抗層の配置を示す平面パターン、第3図は上記
圧力変換装置を用いて組んだ流体圧測定回路の一
例を示す図、第4図および第5図は別の流体圧測
定回路例を示す図、第6図は従来の問題点を説明
するための圧力変換器使用例を示す図である。 1……シリコン単結晶板、2……ダイヤフラム
(肉薄部)、3,3a,3b,3c,3d……拡散
抵抗層(感圧素子)、4……絶縁層、5……電極
配線層、6……リード線、7……接着層、8……
固定台、9……貫通孔、13a,13b,13
c,13d……補償用拡散抵抗層、14,14
,14……差動アンプ、15……固定帰還抵
抗、16……可変帰還抵抗、Ra,Rb……固定外
部抵抗、B1,B2……ブリツジ回路。
FIG. 1 is a cross-sectional view showing a schematic structure of a semiconductor pressure transducer according to an embodiment of the present invention, FIG. 2 is a plane pattern showing the arrangement of its diffusion resistance layer, and FIG. 3 is an assembled structure using the above pressure transducer. Figures 4 and 5 are diagrams showing another example of a fluid pressure measurement circuit, and Figure 6 is an example of how a pressure transducer is used to explain conventional problems. It is a diagram. 1... Silicon single crystal plate, 2... Diaphragm (thin part), 3, 3a, 3b, 3c, 3d... Diffused resistance layer (pressure sensitive element), 4... Insulating layer, 5... Electrode wiring layer, 6... Lead wire, 7... Adhesive layer, 8...
Fixed base, 9...Through hole, 13a, 13b, 13
c, 13d... Compensation diffused resistance layer, 14 1 , 14
2 , 14 3 ...Differential amplifier, 15...Fixed feedback resistor, 16...Variable feedback resistor, Ra, Rb...Fixed external resistance, B1 , B2 ...Bridge circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体単結晶基板に肉薄部を設け、その肉薄
部に感圧素子としての拡散抵抗層を形成した圧力
変換基板を固定台に接着固定してなる半導体圧力
変換装置において、前記半導体単結晶基板に、前
記感圧素子としての拡散層とは別に静水圧による
誤差を補償するための拡散抵抗層を設けたことを
特徴とする半導体圧力変換装置。
1. In a semiconductor pressure transducer device in which a pressure transducer substrate having a thin wall portion provided on a semiconductor single crystal substrate and a pressure transducer substrate having a diffused resistance layer formed as a pressure sensitive element formed on the thin portion is adhesively fixed to a fixing base, the semiconductor single crystal substrate . A semiconductor pressure transducer device, characterized in that a diffusion resistance layer for compensating for errors due to hydrostatic pressure is provided separately from the diffusion layer as the pressure sensitive element.
JP11753877A 1977-09-30 1977-09-30 Semiconductor pressure converter Granted JPS5451489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11753877A JPS5451489A (en) 1977-09-30 1977-09-30 Semiconductor pressure converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11753877A JPS5451489A (en) 1977-09-30 1977-09-30 Semiconductor pressure converter

Publications (2)

Publication Number Publication Date
JPS5451489A JPS5451489A (en) 1979-04-23
JPS6222272B2 true JPS6222272B2 (en) 1987-05-16

Family

ID=14714266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11753877A Granted JPS5451489A (en) 1977-09-30 1977-09-30 Semiconductor pressure converter

Country Status (1)

Country Link
JP (1) JPS5451489A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1186163A (en) * 1982-01-04 1985-04-30 James B. Starr Semiconductor pressure transducer
JPS60138431A (en) * 1983-09-28 1985-07-23 シユラムバ−ガ− オ−バ−シ−ズ ソシエテ アノニム Surface sound wave sensor
JPH0650270B2 (en) * 1984-05-21 1994-06-29 株式会社日本自動車部品総合研究所 High pressure detector
JPS6156465A (en) * 1984-08-28 1986-03-22 Toshiba Corp Semiconductor pressure converter
US4672853A (en) * 1984-10-30 1987-06-16 Burr-Brown Corporation Apparatus and method for a pressure-sensitive device
JP6090742B2 (en) * 2013-02-28 2017-03-08 日立オートモティブシステムズ株式会社 Pressure detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945783A (en) * 1972-07-07 1974-05-01 Siemens Ag Zerotengosano hoshokairosochi
JPS5016486A (en) * 1973-06-11 1975-02-21
JPS5182680A (en) * 1974-11-27 1976-07-20 Itt
JPS5245377A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Silicon mechanical-electrical converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945783A (en) * 1972-07-07 1974-05-01 Siemens Ag Zerotengosano hoshokairosochi
JPS5016486A (en) * 1973-06-11 1975-02-21
JPS5182680A (en) * 1974-11-27 1976-07-20 Itt
JPS5245377A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Silicon mechanical-electrical converter

Also Published As

Publication number Publication date
JPS5451489A (en) 1979-04-23

Similar Documents

Publication Publication Date Title
US4333349A (en) Binary balancing apparatus for semiconductor transducer structures
US3270554A (en) Diffused layer transducers
US7866215B2 (en) Redundant self compensating leadless pressure sensor
JPH0546488B2 (en)
JPH038482B2 (en)
KR20040079323A (en) Semiconductor pressure sensor having diaphragm
JPH0797010B2 (en) Semiconductor strain gage bridge circuit
JPH029704B2 (en)
JPH01197621A (en) Dual side type pressure sensor
JPS6222272B2 (en)
JPH0455542B2 (en)
JPH0350424B2 (en)
KR20030053501A (en) Pressure sensor
JP2730152B2 (en) Combined pressure and temperature detector
US3490272A (en) Temperature compensated resistance measurement bridge
JP2512220B2 (en) Multi-function sensor
JPH0313537B2 (en)
JPS59217374A (en) Semiconductor strain converter
JPH0542610B2 (en)
JP2002039888A (en) Method of setting position of gage resistance of semiconductor pressure sensor
JPS59163533A (en) Pressure trnsducer and its driving method
JPS6124836B2 (en)
JPH0560672B2 (en)
JPH0682844B2 (en) Semiconductor strain converter
SU1377633A1 (en) Pressure transducer