JPS6061637A - Composite function type differential pressure sensor - Google Patents

Composite function type differential pressure sensor

Info

Publication number
JPS6061637A
JPS6061637A JP16919883A JP16919883A JPS6061637A JP S6061637 A JPS6061637 A JP S6061637A JP 16919883 A JP16919883 A JP 16919883A JP 16919883 A JP16919883 A JP 16919883A JP S6061637 A JPS6061637 A JP S6061637A
Authority
JP
Japan
Prior art keywords
differential pressure
temperature
detection means
pressure
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16919883A
Other languages
Japanese (ja)
Other versions
JPH0629821B2 (en
Inventor
Satoshi Shimada
智 嶋田
Shigeyuki Kobori
小堀 重幸
Kanji Kawakami
川上 寛治
Yukio Takahashi
幸夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58169198A priority Critical patent/JPH0629821B2/en
Publication of JPS6061637A publication Critical patent/JPS6061637A/en
Publication of JPH0629821B2 publication Critical patent/JPH0629821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain a differential pressure signal free from statical pressure and temperature effects, by correcting an output signal from a differential pressure detecting means by an output signal from statical pressure detecting means and temperature detecting means. CONSTITUTION:When pressures P, P+DELTAP are applied on to both sides of a thinned portion 11 of a sensor substrate 10 respectively, a group of differential pressure detecting semiconductor gauge resistances 111 detects a differential pressure DELTAP and its signal is applied to an A/D convertor 20. On the other hand, a statical pressure detecting semiconductor gauge resistance 131 of a thinned part 13 detects the statical pressure P and further, a temperature detecting semiconductor gauge resistance 141 of a thinned part 14 detects the temperature and each signal is applied to the A/D convertor 20. The A/D convertor 20 delivers these signals to CPU30 after A/D conversion to perform the required computation and thus, effects of the statical pressure P is eliminated from CPU30 and further, a differential signal proportional only to the differential pressure DELTAP with correction of effects by temperature T is issued.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複合機態形差圧センサに係シ、特に静圧影響が
ない温度補正された差圧信号を得るのに好適な複合機態
形差圧センサに関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a multifunction type differential pressure sensor, and particularly to a multifunction type differential pressure sensor suitable for obtaining a temperature-compensated differential pressure signal free from static pressure effects. It relates to a differential pressure sensor.

〔発明の背景〕[Background of the invention]

差圧と温度とを検出するようにした差圧センサには多く
の例が見られる。第1図は現在用いられている差圧伝送
器の原理構造の一例を示す縦断面図である。シリコンダ
イアフラム1の薄肉部11上には差圧Δpに感応する半
導体ゲージ抵抗群111が、また、固定厚肉部12には
温度に感応する半導体ゲージ抵抗121がそれぞれ拡散
法で形成しである。これらのゲージ抵抗は高い静圧Pに
は不感応に作られており、それぞれ筐体2に設けた耐圧
気密端子3からリード線群4を介して外部回路に接続し
である。したがって、半導体ゲージ抵抗群111から差
圧Δp%また、半導体装置ジ抵抗121から温度Tに比
例する信号を得て、外部回路からは温度補償された差圧
信号を得ることができる。
There are many examples of differential pressure sensors that detect differential pressure and temperature. FIG. 1 is a longitudinal cross-sectional view showing an example of the basic structure of a currently used differential pressure transmitter. A semiconductor gauge resistor group 111 sensitive to differential pressure Δp is formed on the thin wall portion 11 of the silicon diaphragm 1, and a semiconductor gauge resistor 121 sensitive to temperature is formed on the fixed thick wall portion 12 by a diffusion method. These gauge resistors are made insensitive to high static pressure P, and are connected to an external circuit via a lead wire group 4 from a pressure-tight airtight terminal 3 provided in the housing 2, respectively. Therefore, a differential pressure Δp% can be obtained from the semiconductor gauge resistor group 111, a signal proportional to the temperature T can be obtained from the semiconductor gauge resistor 121, and a temperature-compensated differential pressure signal can be obtained from the external circuit.

しかし、差圧伝送器の7リコンダイアフラム1の両側に
加わる静圧Pは、通常100気圧以上と高いだめ、両側
の室5,5′内の封入液の収縮量の不整や筐体2の変形
かシリコンダイアフラム1を変形させるので、それにと
もない半畳体ゲージ抵抗群111の抵抗11σが変化す
る。したがって、差圧による信号に静圧による信号が重
畳され、正確な差圧信号ができなくなる。すなわち、静
圧影響を受け、誤差を生ずる結果となる。この静圧誤差
を防止するためには、室5,5′の封入液の液鼠を厳密
に一致芒ぜたり、筐体2f:静圧Pによって変形しない
ように剛性の大きいものとしなければならず、設計、製
作上の大きな制約となり、差圧伝送器の小形化、低コス
ト化の障害となっていた。
However, the static pressure P applied to both sides of the recon diaphragm 1 of the differential pressure transmitter is usually as high as 100 atmospheres or more, which may cause irregularities in the amount of contraction of the liquid filled in the chambers 5 and 5' on both sides, and deformation of the housing 2. Since the silicon diaphragm 1 is deformed, the resistance 11σ of the semicircular gauge resistance group 111 changes accordingly. Therefore, the static pressure signal is superimposed on the differential pressure signal, making it impossible to obtain an accurate differential pressure signal. In other words, it is affected by static pressure, resulting in an error. In order to prevent this static pressure error, it is necessary to ensure that the liquid fillers in the chambers 5 and 5' are exactly aligned, and the housing 2f must be made of a material with high rigidity so that it will not be deformed by the static pressure P. However, this was a major constraint in design and manufacturing, and was an obstacle to miniaturization and cost reduction of differential pressure transmitters.

〔発明の目的〕 本発明は上記に鑑みてなされたもので、その目的とする
ところは、静圧影響がなく、かつ、温度補償された正確
な差圧信号を旬ることができ、しかも、小形化をはかる
ことができる複合機態形差圧センサを提供することにあ
る。
[Object of the Invention] The present invention has been made in view of the above, and its object is to be able to generate an accurate differential pressure signal that is free from static pressure effects and is temperature compensated, and to An object of the present invention is to provide a multifunctional differential pressure sensor that can be made smaller.

〔発明の概快〕[Summary of the invention]

本発明の特徴は、1つの筐体に差圧を検出する差圧検出
手段、静圧を検出する静圧検出手段、温度を検出する温
度検出手段および上記各検出手段からの出力信号をそれ
ぞれ取り出す手段を設け、上記差圧検出手段からの出力
信号ヲ−」1記静圧検出手段および上記温度検出手段か
らの出力信号によって補正して静圧および温度影響のな
い差圧(6号を得る補正演算手段を具備略せた構成とし
た点にある。
A feature of the present invention is that a differential pressure detection means for detecting differential pressure, a static pressure detection means for detecting static pressure, a temperature detection means for detecting temperature, and output signals from each of the above detection means are extracted from one housing. A means is provided to correct the output signal from the differential pressure detecting means by the output signals from the static pressure detecting means and the temperature detecting means to obtain a differential pressure (No. 6) that is free from static pressure and temperature effects. The point is that the configuration does not include calculation means.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第2図〜第4図に示した実施例を用いて詳
細に説明する。
The present invention will be explained in detail below using the embodiments shown in FIGS. 2 to 4.

第2図は本発明の複合機態形差圧センサの原理構造の一
実施例を示す縦断面図で、半導体ゲージ型差圧伝送器の
場合を示しである。第2図において、10はシリコン単
結晶で作ったセンナ基板(シリコンダイアフラム)で、
センサ基板10の固定厚肉部12は筐体2に図示のよう
に気密固定しである。3は筐体2に設けたガラス耐圧気
密端子で、センサ基板lOに設けた後述するそれぞれの
ゲージ抵抗からの信号をリード&? 4 fc通して外
部へ取り出すものである。筐体2の両側にはシールダイ
アフラム6.6′がその外周部で気密に固着してあり、
センサ基板10で2分された至5゜5′内にはンリコ/
油などの1.1人液が刊大しである。7.7′はセンサ
基板10に差圧Δp、静圧Pを加えるための筐体2を挾
むフランジである。
FIG. 2 is a longitudinal cross-sectional view showing an embodiment of the basic structure of the multifunction type differential pressure sensor of the present invention, and shows the case of a semiconductor gauge type differential pressure transmitter. In Figure 2, 10 is a Senna substrate (silicon diaphragm) made of silicon single crystal.
The fixed thick portion 12 of the sensor board 10 is hermetically fixed to the housing 2 as shown. Reference numeral 3 denotes a glass pressure-resistant and airtight terminal provided on the housing 2, which reads signals from each gauge resistor provided on the sensor board 1O, which will be described later. 4 It is taken out to the outside through fc. Seal diaphragms 6.6' are airtightly fixed to both sides of the housing 2 at their outer peripheries.
Within the range of 5°5′ divided into two parts by the sensor board 10, there is a
1.1 human fluids such as oil are the size of a publication. Reference numeral 7.7' denotes a flange that sandwiches the housing 2 for applying differential pressure Δp and static pressure P to the sensor board 10.

センサ基板1oの中央部は薄肉部11として、あり、両
側の室5.5′内の封入液の圧力差、すガわち、差圧Δ
pに応じて変形するようにしてあり、薄肉部11上には
、その変形を電気信号に変換する差圧検出用半導体ゲー
ジ抵抗イロ=111金拡散により形成し、さらに、薄膜
リード端子111aを蒸着しである。また、センサ基板
1oの外周固定厚肉部12の一部分を図示のように固定
側がら溝状に加工して薄肉部13を形成してあり、薄肉
部13の上面に静圧(絶対圧)検出用半導体ゲージ抵抗
131を拡散により形成し、さらに、薄膜リード端子1
31aを蒸着しである。この場合、空間132は真空ま
たは大気圧の空気とし、封入液が侵入しないようにしで
あるから、ゲージ抵抗131は、室5′内の封入液Ω圧
力(÷静圧)を測定することになる。また、センサ基板
1oの外周固定厚肉部〕2の他の一部分を図示のように
外周から加工して薄肉部14を形成し、薄肉部14の上
面に温度検出用半導体ゲージ抵抗141を拡散により形
成し、さらに、薄膜リード端子141aを蒸着しである
。薄肉部14としたのは、熱容量 ゛を小さくするため
と、筐体2の静上による変形の影響を受けないようにす
るためであり、しかも、空間142は室5′に連通させ
であるから薄肉部14が静圧P、差圧Δpによる曲は変
形を生ずることがない。
The central part of the sensor substrate 1o is a thin walled part 11, and there is a pressure difference between the filled liquid in the chambers 5.5' on both sides, that is, a differential pressure Δ.
A semiconductor gauge resistor for differential pressure detection that converts the deformation into an electric signal is formed by gold diffusion on the thin part 11, and a thin film lead terminal 111a is further deposited by vapor deposition. It is. In addition, as shown in the figure, a part of the outer peripheral fixed thick part 12 of the sensor board 1o is processed into a groove shape from the fixed side to form a thin part 13, and the static pressure (absolute pressure) is detected on the upper surface of the thin part 13. The semiconductor gauge resistor 131 for use is formed by diffusion, and the thin film lead terminal 1
31a was deposited. In this case, the space 132 is filled with vacuum or air at atmospheric pressure to prevent the filled liquid from entering, so the gauge resistor 131 measures the filled liquid Ω pressure (÷ static pressure) in the chamber 5'. . In addition, the other part of the outer periphery fixed thick part] 2 of the sensor board 1o is processed from the outer periphery as shown in the figure to form a thin part 14, and a semiconductor gauge resistor 141 for temperature detection is placed on the upper surface of the thin part 14 by diffusion. Then, thin film lead terminals 141a are deposited. The reason why the wall portion 14 is made thin is to reduce the heat capacity and to prevent the housing 2 from being affected by deformation due to static movement, and also because the space 142 is communicated with the chamber 5'. When the thin portion 14 bends under the static pressure P and the differential pressure Δp, no deformation occurs.

なお、(100)面のシリコン単結晶板にp形の不純物
であるボロンを拡散してゲージ抵抗を形成する場合には
、ピエゾ抵抗係数がほぼ零となる<100>軸に沿って
ゲージ抵抗を配列するようにすれば、わずかな変形が伝
達されても、それらは電気信号としてあられらないよう
になるので、温度検出用半導体ゲージ抵抗141は、こ
のようにして形成しである。
Note that when forming a gauge resistor by diffusing boron, which is a p-type impurity, into a silicon single crystal plate with a (100) plane, the gauge resistor is formed along the <100> axis where the piezoresistance coefficient is almost zero. By arranging them, even if a slight deformation is transmitted, it will not appear as an electric signal, so the semiconductor gauge resistor 141 for temperature detection is formed in this way.

なお、センサ基板10を固着する筐体2は、シリコンに
近い熱膨張係数を持つノくイレツクスガラスなどの材料
で作っである。
The casing 2 to which the sensor substrate 10 is fixed is made of a material such as glass having a coefficient of thermal expansion close to that of silicon.

第3図は本発明の複合機態形差圧センサの検出信号処理
フローの一実施例を示す構成図である。
FIG. 3 is a configuration diagram showing an embodiment of the detection signal processing flow of the multifunctional differential pressure sensor of the present invention.

センサ基板10の薄肉部110両側にそれぞれ圧力P、
IP+ΔP)が加わると、差圧検出用半導体ゲージ抵抗
群111は差圧ΔPを検出し、その信号はリード端子1
11a、リード線4aを経てA−D変換器20に入力す
る。一方、薄肉部13の静圧検出用半導体ゲージ抵抗1
31tま静圧Pを検出し、′また、薄肉部14の【晶度
検出用半導体ゲージ砥抗141は温度Tを検出し、それ
ぞれの18号は、リード端子131a、IJ−ド線4b
およびこれらの信号をA−111換してCI) U 3
0に与え、CP U 30で所要の演算を行い、CPU
30から静圧Pの影響が除去され、かつ、温度゛rに」
=る影響を補正した差圧ΔPのみに正確に比例した差圧
信号を送出する。40はCPU30での演算に必要なデ
ータや演算プログラムを記憶させであるメモリである。
A pressure P is applied to both sides of the thin wall portion 110 of the sensor substrate 10, respectively.
IP+ΔP), the differential pressure detection semiconductor gauge resistor group 111 detects the differential pressure ΔP, and the signal is sent to the lead terminal 1.
11a, and input to the A-D converter 20 via the lead wire 4a. On the other hand, semiconductor gauge resistor 1 for static pressure detection in thin wall portion 13
31t, the static pressure P is detected, and the [semiconductor gauge grinding resistor 141 for crystallinity detection in the thin wall portion 14] detects the temperature T.
and convert these signals into A-111 CI) U 3
0, the CPU 30 performs the necessary calculations, and the CPU
30, the influence of static pressure P is removed, and the temperature becomes r.
A differential pressure signal that is accurately proportional to only the differential pressure ΔP corrected for the influence of Reference numeral 40 denotes a memory that stores data and calculation programs necessary for calculations by the CPU 30.

−上記差圧信号は表示装置it、 50に表示され、ま
た、I) −A変換器60でD−A/&換後他へ伝送を
れる。なお、別に切換装置1値を設けることにより、差
圧ΔPのみに正確に比例した差圧1乙号のほか、静圧P
や温度Tに比例した信号の表示、伝送を行うようにして
もよいことはいうまでイ、ない。さらに、差圧信号の外
乱補正を行うようにしてもよい。
- The above-mentioned differential pressure signal is displayed on the display device it, 50, and is also transmitted to others after being converted to D-A/& by the I)-A converter 60. In addition, by providing a separate switching device 1 value, in addition to the differential pressure 1 which is exactly proportional only to the differential pressure ΔP, the static pressure P
It goes without saying that it is possible to display and transmit a signal proportional to temperature T or temperature T. Furthermore, disturbance correction of the differential pressure signal may be performed.

上記した本発明の実施例によれは、 (1) 筐体2の静圧Pによる変形などに起因する静圧
誤差が完全に補正された差圧−Pに比例した出力を得る
ことができる。
According to the embodiment of the present invention described above, (1) It is possible to obtain an output proportional to the differential pressure -P in which the static pressure error caused by the deformation of the housing 2 due to the static pressure P is completely corrected.

(2) 周囲温度Tが変化すると、差圧ΔPや静圧Pを
検出するゲージ抵抗111や131の特性が変化するが
、温度検出用半導体ゲージ抵抗141の出力を用いて温
度補償できるので、温度影響のない差圧ΔPのみに正確
に比例した出力のほか、静圧Pに比例した出力を得るこ
とができる。
(2) When the ambient temperature T changes, the characteristics of the gauge resistors 111 and 131 that detect differential pressure ΔP and static pressure P change, but since temperature compensation can be performed using the output of the semiconductor gauge resistor 141 for temperature detection, the temperature In addition to an output that is exactly proportional to only the unaffected differential pressure ΔP, it is possible to obtain an output that is proportional to the static pressure P.

(3)各半導体ゲージ抵抗111,131,141は同
一半導体プロセスによって形成でき、壕だ、センサ基板
10の薄肉加工は、半導体微細加工技術を用い!1は容
易に行うことができ、かつ、差圧センサの小形化が可能
である。
(3) Each semiconductor gauge resistor 111, 131, 141 can be formed by the same semiconductor process, and the thin wall processing of the sensor substrate 10 uses semiconductor microfabrication technology! 1 can be easily performed, and the differential pressure sensor can be made smaller.

第4図は本発明の他の実施例を示す要部断面図である。FIG. 4 is a sectional view of a main part showing another embodiment of the present invention.

第2図においては、差圧ΔP、静圧P。In FIG. 2, differential pressure ΔP and static pressure P.

温度′Pを検出するのに手酌体ゲージ抵抗を用いるよう
にしであるが、第4図においては、これらを静電容量セ
ンサに代えである。第4図において、100はシリコン
単結晶などの弾性体よりなるセンサ基板、101,10
2はセンサ基板100を挾持するシリコンの熱膨張係数
に近い熱膨張係数のバイレックスカラスよりなる固定板
で、固定板101.102には、それぞれセンサ基板1
00の差圧検出用薄肉部100″1の両側に対向する位
置に薄膜蒸着電極1011.1021とこれらからのリ
ード線1012.1022とが埋め込んであり、薄肉部
1001と電極1011および1021との間には、固
定板101,102にそれぞれ設けた導圧口1013,
1023よシ圧力P、(P+ΔP)を導いである。また
、センサ基板100の右側には静圧(絶対圧)検出用薄
肉部1002が形成してあり、薄肉部1002の片側に
は導圧口1013より導入烙れた圧力がかか9、他方の
片側は真空(′−!iたは大気圧)としてあり。
Although hand gauge resistors were used to detect the temperature 'P, in FIG. 4 these are replaced by capacitance sensors. In FIG. 4, 100 is a sensor substrate made of an elastic material such as silicon single crystal, 101, 10
Reference numeral 2 denotes a fixing plate made of virex glass having a coefficient of thermal expansion close to that of silicon that holds the sensor substrate 100, and the fixing plates 101 and 102 each hold the sensor substrate 1.
Thin film deposited electrodes 1011 and 1021 and lead wires 1012 and 1022 from these are embedded in opposing positions on both sides of the thin wall portion 100″1 for differential pressure detection of 00, and between the thin wall portion 1001 and the electrodes 1011 and 1021. , there are pressure guiding ports 1013 provided on the fixed plates 101 and 102, respectively.
1023, the pressure P, (P+ΔP) is derived. Further, a thin wall portion 1002 for detecting static pressure (absolute pressure) is formed on the right side of the sensor board 100, and pressure introduced from a pressure guiding port 1013 is applied to one side of the thin wall portion 1002, and the other side is heated. One side is vacuum ('-!i or atmospheric pressure).

固定板102の薄肉板1002に対向する部分に薄膜蒸
着電極1024とこれからのリード線1025とが埋め
込んである。1003はセンサ基板100に接続したリ
ード線である。したがって、リード線1003と101
2および1022との間では差圧ΔPに応動して靜電容
址変化が起こシ、リード線1003と1025との間で
は静圧Pに応動して静電容量変化が起こる。=&フζ、
電極1011および1021と薄肉部1001との間に
封入さ九た封入液の誘電率が温度によって変化するので
、これを利用して温度信号’t (4Iることかでき、
第4図のように構成し−Cも第2図の場合と同様の効果
を得ることができる。
A thin film deposition electrode 1024 and a lead wire 1025 from the thin film electrode 1024 are embedded in a portion of the fixed plate 102 facing the thin plate 1002. 1003 is a lead wire connected to the sensor board 100. Therefore, lead wires 1003 and 101
A capacitance change occurs between lead wires 1003 and 1022 in response to differential pressure ΔP, and a capacitance change occurs in response to static pressure P between lead wires 1003 and 1025. =&Fζ,
Since the dielectric constant of the liquid sealed between the electrodes 1011 and 1021 and the thin part 1001 changes depending on the temperature, this can be used to generate a temperature signal 't (4I).
With the configuration shown in FIG. 4, -C can also obtain the same effect as in the case of FIG. 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、静圧影響がなく
、かつ、温度補償された正確な差圧信号を得ることがで
き、しかも、小形化をはかることができるという効果が
ある。
As described above, according to the present invention, it is possible to obtain an accurate differential pressure signal that is free from static pressure effects and is temperature compensated, and moreover, it is possible to achieve miniaturization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の差圧伝送器の原理構造の一例を示す縦断
面図、第2図は本発明の複合機能形差圧セ/すの原理構
造の一実施例を示す縦断面図、第3図は本発明の複合機
能形麦圧センサの検出信号処理フローの一実施例を示す
構成図、第4図は本発明の他の実施例を示す要部新曲図
である。 2・・・筐体、5.5’・・・M、6.6’・・・7−
ルダイヤフラム、7.7’・・・フランジ、10・・・
センサ基板、11,13.14・・・薄肉部、12・・
・固定厚肉部、111・・・差圧検出用十店1体ゲージ
抵抗群、131・・・静圧検出用半導体ゲージ、141
・・・温度第1 図 第 2 口 第 3 固 第4 図 1グめ
FIG. 1 is a vertical sectional view showing an example of the principle structure of a conventional differential pressure transmitter, and FIG. FIG. 3 is a configuration diagram showing one embodiment of the detection signal processing flow of the multifunctional barley pressure sensor of the present invention, and FIG. 4 is a new music diagram of the main part showing another embodiment of the present invention. 2...Housing, 5.5'...M, 6.6'...7-
Diaphragm, 7.7'...Flange, 10...
Sensor board, 11, 13. 14... Thin wall part, 12...
・Fixed thick part, 111... 1-piece gauge resistance group for differential pressure detection, 131... Semiconductor gauge for static pressure detection, 141
...Temperature 1st figure 2nd mouth 3rd hardness 4th figure 1gume

Claims (1)

【特許請求の範囲】[Claims] 1.1つの筐体に差圧を検出する差圧検出手段。 静圧を検出する静圧検出手段、温度を検出する温度検出
手段および前記各検出手段からの出力信号をそれぞれ取
シ出す手段を設け、前記差圧検出手段からの出力信号を
前記静圧検出手段および前記温度検出手段からの出力イ
ム号によって補正して静圧および温度影響のない差圧信
号を得る補正演算手段を具備嘔せたことを特徴と1−る
複合機能形差圧センサ。 2 前記各検出手段は、それぞれF+iJ記筐体に外周
厚肉部を固定したシリコン単結晶よシなるダイアフラム
の中央部の尚内部の上面に形成した差圧検出用半導体ゲ
ージ抵抗群k MiJ記外周厚肉部内部部分を固定側か
ら溝状に加工して形成した薄肉部の上面に形成した静圧
検出用半導体ゲージ抵抗、前記外周厚肉部の他の一部分
を外周から加工して形ゲージ抵抗よシなる特許請求の範
囲第1項記載の複合機態形差圧センサ。
1. Differential pressure detection means for detecting differential pressure in one housing. A static pressure detection means for detecting static pressure, a temperature detection means for detecting temperature, and a means for extracting output signals from each of the detection means are provided, and the output signal from the differential pressure detection means is transmitted to the static pressure detection means. and a correction calculation means for correcting the output signal from the temperature detection means to obtain a differential pressure signal free from static pressure and temperature effects. 2. Each of the above-mentioned detection means is a group of semiconductor gauge resistors for differential pressure detection formed on the upper surface inside the central part of a diaphragm made of a silicon single crystal whose thick outer peripheral part is fixed to a housing described by F+iJ, respectively. A semiconductor gauge resistor for static pressure detection is formed on the upper surface of a thin wall part formed by processing the inner part of the thick wall part into a groove shape from the fixed side, and a shaped gauge resistor is formed by processing another part of the outer thick wall part from the outer periphery. A multifunctional differential pressure sensor according to claim 1.
JP58169198A 1983-09-16 1983-09-16 Multi-function differential pressure sensor Expired - Lifetime JPH0629821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169198A JPH0629821B2 (en) 1983-09-16 1983-09-16 Multi-function differential pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169198A JPH0629821B2 (en) 1983-09-16 1983-09-16 Multi-function differential pressure sensor

Publications (2)

Publication Number Publication Date
JPS6061637A true JPS6061637A (en) 1985-04-09
JPH0629821B2 JPH0629821B2 (en) 1994-04-20

Family

ID=15882024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169198A Expired - Lifetime JPH0629821B2 (en) 1983-09-16 1983-09-16 Multi-function differential pressure sensor

Country Status (1)

Country Link
JP (1) JPH0629821B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141328A (en) * 1987-11-27 1989-06-02 Hitachi Ltd Differential pressure transmitter
JPH01311229A (en) * 1988-03-08 1989-12-15 Ppg Hellige Bv Differential pressure measuring apparatus for bidirectional gas flow
JPH027539U (en) * 1988-06-29 1990-01-18
JPH0288921A (en) * 1988-09-27 1990-03-29 Yamatake Honeywell Co Ltd Pressure correcting type differential pressure transmitter
JPH04212032A (en) * 1990-03-19 1992-08-03 Hitachi Ltd Compound sensor and compound transmitter and plant system using it
JP2003315193A (en) * 2002-04-24 2003-11-06 Denso Corp Pressure sensor
KR100411476B1 (en) * 2001-09-24 2003-12-18 주식회사코닉스 Method for manufacturing capacitance type vacuum sensor and vacuum detecting device by using the same
JP2005291946A (en) * 2004-03-31 2005-10-20 Masaki Esashi Optical fiber sensor
JP2006518041A (en) * 2003-02-18 2006-08-03 ドレッサ、インク Pressure measurement
JP2007101548A (en) * 2005-10-03 2007-04-19 Delphi Technologies Inc Device for performing immersion measurement of fluid pressure
JP2013190325A (en) * 2012-03-14 2013-09-26 Azbil Corp Differential pressure transmitter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401522B2 (en) * 2005-05-26 2008-07-22 Rosemount Inc. Pressure sensor using compressible sensor body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640735A (en) * 1979-09-10 1981-04-17 Toshiba Corp Transmitter for differential pressure
JPS56137238A (en) * 1980-03-31 1981-10-27 Toshiba Corp Differential pressure transmitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640735A (en) * 1979-09-10 1981-04-17 Toshiba Corp Transmitter for differential pressure
JPS56137238A (en) * 1980-03-31 1981-10-27 Toshiba Corp Differential pressure transmitter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141328A (en) * 1987-11-27 1989-06-02 Hitachi Ltd Differential pressure transmitter
US5012677A (en) * 1987-11-27 1991-05-07 Hitachi, Ltd. Differential pressure transmitter
JPH01311229A (en) * 1988-03-08 1989-12-15 Ppg Hellige Bv Differential pressure measuring apparatus for bidirectional gas flow
JPH027539U (en) * 1988-06-29 1990-01-18
JPH0288921A (en) * 1988-09-27 1990-03-29 Yamatake Honeywell Co Ltd Pressure correcting type differential pressure transmitter
JPH04212032A (en) * 1990-03-19 1992-08-03 Hitachi Ltd Compound sensor and compound transmitter and plant system using it
KR100411476B1 (en) * 2001-09-24 2003-12-18 주식회사코닉스 Method for manufacturing capacitance type vacuum sensor and vacuum detecting device by using the same
JP2003315193A (en) * 2002-04-24 2003-11-06 Denso Corp Pressure sensor
JP2006518041A (en) * 2003-02-18 2006-08-03 ドレッサ、インク Pressure measurement
JP2005291946A (en) * 2004-03-31 2005-10-20 Masaki Esashi Optical fiber sensor
JP2007101548A (en) * 2005-10-03 2007-04-19 Delphi Technologies Inc Device for performing immersion measurement of fluid pressure
JP2013190325A (en) * 2012-03-14 2013-09-26 Azbil Corp Differential pressure transmitter

Also Published As

Publication number Publication date
JPH0629821B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JPH01141328A (en) Differential pressure transmitter
JP4726481B2 (en) Barometric pressure sensor
JP2544435B2 (en) Multi-function sensor
US6295875B1 (en) Process pressure measurement devices with improved error compensation
EP0572375B1 (en) Extended measurement capability transmitter having shared overpressure protection means
US7775117B2 (en) Combined wet-wet differential and gage transducer employing a common housing
US4527428A (en) Semiconductor pressure transducer
JPS61500633A (en) pressure transducer
US5959213A (en) Semiconductor differential pressure measuring device
JPS6061637A (en) Composite function type differential pressure sensor
US7698951B2 (en) Pressure-sensor apparatus
JPH029704B2 (en)
EP0049955A1 (en) Dual cavity pressure sensor
CA1193464A (en) Semiconductor pressure transducer
JPH07174652A (en) Semiconductor pressure sensor and its manufacture as well as pressure detection method
JPH10148593A (en) Pressure sensor and capacitance-type pressure sensor chip
JPS583081Y2 (en) Diffusion type semiconductor pressure sensor
JPS59145940A (en) Differential pressure and pressure transmitting device
JPH10132684A (en) Semiconductor pressure sensor
JPH109979A (en) Type pressure detector
JP2750550B2 (en) Remote seal type differential pressure / pressure transmitter
US11359985B2 (en) Oil filled transducers with isolated compensating capsule
JPS60171429A (en) Pressure-electricity converter
JP2512220B2 (en) Multi-function sensor
JP3080212B2 (en) Semiconductor differential pressure measuring device