JPS6033057A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPS6033057A
JPS6033057A JP14158783A JP14158783A JPS6033057A JP S6033057 A JPS6033057 A JP S6033057A JP 14158783 A JP14158783 A JP 14158783A JP 14158783 A JP14158783 A JP 14158783A JP S6033057 A JPS6033057 A JP S6033057A
Authority
JP
Japan
Prior art keywords
acceleration
crystal
output frequency
crystal resonator
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14158783A
Other languages
Japanese (ja)
Other versions
JPH022105B2 (en
Inventor
Tetsuo Konno
哲郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP14158783A priority Critical patent/JPS6033057A/en
Publication of JPS6033057A publication Critical patent/JPS6033057A/en
Publication of JPH022105B2 publication Critical patent/JPH022105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • G01P15/10Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements by vibratory strings

Abstract

PURPOSE:To improve detection precision by providing a weight attached by a support member and a circuit which calculates the difference in output frequency between two oscillation circuits which oscillate two piezoelectric vibrators, and measuring acceleration from the output of the circuit. CONSTITUTION:When an acceleration sensor moves with acceleration alpha as shown by an arrow A, the tensile strength applied to a left-side crystal resonator 3 becomes F0-malpha, and the tensile strength applied to a right-side crystal resonator 4 becomes F0+malpha. Consequently, the tensile force applied to the crystal resonator 3 decreases, so the output frequency of the crystal oscillation circuit 10a increases up to f3=f0+DELTAf. Further, the tensile strength applied to the crystal resonator 4 increases, so the output frequency of the crystal oscillation circuit 10b decreases to f4=f0-DELTAf. Consequently, the acceleration alpha is calculated through a mixer 10c from two-fold output frequency variation. Thus, a high-precision measurement of the acceleration is taken.

Description

【発明の詳細な説明】 本発明は加速度を測定する加速度センサに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acceleration sensor that measures acceleration.

従来の加速度センサの一例として、重錘を片持梁などに
て支持し、加速度による片持梁のひずみを抵抗線ひずみ
計などを用いて電気抵抗の変化に変換し測定するものが
あった。この種の加速度センサは電気抵抗を測定するた
め、抵抗線ひずみ計を交換するときなどは電気抵抗の調
整力;難しく、互換性に乏しかった。また微小な加速度
の検出精度が悪いという欠点もあった。さらに加速度の
情報をコンピュータなどに接続する場合、A−D変換器
が必要であった。
An example of a conventional acceleration sensor is one in which a weight is supported by a cantilever beam or the like, and the strain of the cantilever beam due to acceleration is converted into a change in electrical resistance using a resistance wire strain meter or the like and measured. This type of acceleration sensor measures electrical resistance, so it is difficult to adjust the electrical resistance when replacing a resistance wire strain gauge, and there is little compatibility. Another drawback was that the accuracy of detecting minute accelerations was poor. Furthermore, when connecting acceleration information to a computer or the like, an AD converter was required.

本発明は上記欠点を除去するものであり、互換性に優れ
、検出精度が高く、直接デジタル処理が可能な加速度セ
ンサを提供するものである。
The present invention eliminates the above-mentioned drawbacks and provides an acceleration sensor that has excellent compatibility, high detection accuracy, and is capable of direct digital processing.

以下本発明の一実施例を詳細に説明する。An embodiment of the present invention will be described in detail below.

第1〜2図において、1は基体である七ラミック基板で
あり、導電ペーストを焼成することにより入カバターン
2α、2bl出カバターン2c。
In FIGS. 1 and 2, reference numeral 1 denotes a lamic substrate as a base, and by firing a conductive paste, an incoming cover turn 2α, 2bl and an outgoing cover turn 2c are formed.

極性パターン2d、保持パターン2g、2/、21.2
hが設けである。3,4は圧電振動子であるATカット
の水晶振動子であり、厚みすべり振 。
Polar pattern 2d, retention pattern 2g, 2/, 21.2
h is provided. 3 and 4 are AT-cut crystal oscillators that are piezoelectric oscillators, and have a thickness sliding vibration.

動を行うものである。水晶振動子3.4は長手方向がX
軸と一致する短冊型をしており、両生面には駆動電極3
α、3α、4α、4αが形成しである。5,5,6.6
は保持バネであり、リン青銅、ステンレス鋼などから形
成されている。保持バネ5,5の一端は水晶振動子3の
駆動電極3α。
It is something that performs actions. The longitudinal direction of crystal oscillator 3.4 is X
It has a rectangular shape that coincides with the axis, and the drive electrode 3 is mounted on the ambiguous surface.
α, 3α, 4α, 4α are formed. 5, 5, 6.6
is a retaining spring, which is made of phosphor bronze, stainless steel, or the like. One end of the holding springs 5, 5 is a drive electrode 3α of the crystal resonator 3.

3αのそれぞれに導通状態に固着され、他端は基板1の
保持パターン2g、2fのそれぞれに導通状態に固着さ
れている。水晶振動子3はこのようにして保持バネ5,
5により片持保持されている。保持バネ6、乙の一端は
水晶振動子4の駆動電極4α、4αのそれぞれに導通状
態に固着され、他端は基板1の保持パターン21.2に
のそれぞれに導通状態に固着されている。水晶振動子4
はこのようにして保持バネ6.6により片持保持され、
その自由端は水晶振動子3の自由端と対向している。水
晶振動子6,4の対向する自由端には係合片7.7が接
着などにより固着しである。そして係合片7.7間には
質mmの重@8を支持する支持部材9が張設しである。
3α in a conductive state, and the other end is fixed in a conductive state to each of the holding patterns 2g and 2f of the substrate 1. In this way, the crystal resonator 3 is attached to the holding spring 5,
It is held cantilevered by 5. One end of the holding spring 6 is fixed to each of the drive electrodes 4α, 4α of the crystal resonator 4 in a conductive state, and the other end is fixed to each of the holding patterns 21.2 of the substrate 1 in a conductive state. crystal oscillator 4
is thus held cantilevered by the holding spring 6.6,
Its free end faces the free end of the crystal resonator 3. Engagement pieces 7.7 are fixed to opposing free ends of the crystal oscillators 6, 4 by adhesive or the like. A support member 9 is stretched between the engagement pieces 7 and 7 and supports a weight of 1 mm.

支持部材9は本実施例では中央部に重錘8を固着してあ
り、両側部はコイルバネ部9α、9αとなっている。水
晶振動子5.4は保持バネ5,5,6..5.係合片7
.7を含めてテ10[ンコーティングされており、湿気
などの影響により共振周波数が変動しないようにしであ
る。10は集積回路素子であり、水晶振動子3.4をそ
れぞれ発振させる二つの発振回路10α、10bおよび
これらの発振回路の出力周波数の差と極性を示すミキサ
10Cを含んでいる。発振回路10α、10hおよびミ
キサ10Cは第3図のように接続されている。@4図は
ATカット水晶振動子Qに外力Fを加えたときの共振周
波数の変化率Δf/fを示している。直i!j 11は
水晶振動子QにX軸方向に押力Fを加えた場合の変化率
を示しており、約0.1〜0.2 P P M / g
の値を示す。また直線12は水晶振動子Qに2′軸方向
に押力Fを加えた場合の変化率を示しており、約−0,
06P P M / (iの値を示す。水晶振動子Qに
反対に張力を与えた場合は上記値の符号が反対の変化率
となる。
In this embodiment, the support member 9 has a weight 8 fixed to its center, and coil spring portions 9α, 9α on both sides. The crystal oscillator 5.4 has holding springs 5, 5, 6. .. 5. Engagement piece 7
.. 7 and 10 are coated to prevent the resonant frequency from changing due to the influence of moisture. Reference numeral 10 denotes an integrated circuit element, which includes two oscillation circuits 10α and 10b that respectively oscillate a crystal resonator 3.4, and a mixer 10C that indicates the difference in output frequency and polarity of these oscillation circuits. Oscillation circuits 10α, 10h and mixer 10C are connected as shown in FIG. Figure @4 shows the rate of change Δf/f of the resonant frequency when an external force F is applied to the AT-cut crystal resonator Q. Straight! j 11 indicates the rate of change when pressing force F is applied to the crystal oscillator Q in the X-axis direction, approximately 0.1 to 0.2 P P M / g
indicates the value of In addition, a straight line 12 indicates the rate of change when a pushing force F is applied to the crystal resonator Q in the 2'-axis direction, which is approximately -0,
06P P M / (indicates the value of i. If opposite tension is applied to the crystal oscillator Q, the sign of the above value will be the opposite rate of change.

つぎに本発明の加速度センサによる加速度の測定につい
て述べる。水晶振動子3,4は同一種類のATカット水
晶振動子であり、温度特性、エージング特性なども略等
しいものである。そして水晶発振回路10α、10hの
出力周波数は、加速度が0のときすなわち水晶振動子3
,4に加わる張力がFoで略等しいとき10になるよう
に設定されている。いま第1〜2図示の加速度センサが
矢印A方向に加速度αにて移動する場合、左側の水晶振
動子3に加わっていた張力はF o−mα となり、右
側の水晶振動子4に加わっていた張力はFo−1−mα
となる。水晶振動子6,4は長手方向がX軸方向であり
、X軸方向の張力が変化するため水晶発振回路10α、
10hの出力周波数f3+f4 は第4図示の直線11
に沿って変化する。
Next, measurement of acceleration using the acceleration sensor of the present invention will be described. The crystal oscillators 3 and 4 are the same type of AT-cut crystal oscillators, and have substantially the same temperature characteristics, aging characteristics, and the like. The output frequency of the crystal oscillator circuits 10α and 10h is the same when the acceleration is 0, that is, when the crystal oscillator 3
, 4 is set to be 10 when the tension applied to Fo is approximately equal. Now, when the acceleration sensors shown in the first and second figures move in the direction of arrow A with acceleration α, the tension applied to the left crystal oscillator 3 becomes F o-mα, which is applied to the right crystal oscillator 4. The tension is Fo-1-mα
becomes. The longitudinal direction of the crystal oscillators 6 and 4 is the X-axis direction, and since the tension in the X-axis direction changes, the crystal oscillation circuit 10α,
The output frequency f3+f4 for 10h is the straight line 11 shown in the fourth diagram.
changes along.

すなわち水晶振動子3に加わる張力が減少するため、水
晶発振回路10aの出力周波数は増加し/ s ” /
 o+Δfとなる。また水晶振動子4に加わる張力が増
加するため、水晶発振回路10bの出力周波数は減少し
/4=10−Δfとなる。上記のΔfは張力の変化性α
に比例するものであり1Δ/ ” k mα゛である。
In other words, since the tension applied to the crystal oscillator 3 decreases, the output frequency of the crystal oscillation circuit 10a increases /s''/
It becomes o+Δf. Furthermore, since the tension applied to the crystal resonator 4 increases, the output frequency of the crystal oscillation circuit 10b decreases to /4=10-Δf. The above Δf is the variation of tension α
It is proportional to 1Δ/''kmα゛.

そしてミキサ10Cの出力は、 f、−f4 =2Δf=2kfrLα となり、加速度
αは2倍の出力周波数変化よりめることができる。また
矢印A方向と反対方向に加速度が働く場合、ミキサ10
Cの出力は一2ktILαとなり、正負の判別は極性パ
ターン2dから出力するように設定しておく。このよう
にして加速度の大きさ、方向を二つの水晶発振器の出力
周波数の差よりめるのである。
The output of the mixer 10C is f, -f4 = 2Δf = 2kfrLα, and the acceleration α can be determined by the twice the output frequency change. Also, when acceleration acts in the direction opposite to the direction of arrow A, mixer 10
The output of C is -2ktILα, and the positive/negative determination is set to be output from the polarity pattern 2d. In this way, the magnitude and direction of acceleration are determined from the difference in the output frequencies of the two crystal oscillators.

なお支持部材に張力を与える例としてバネを用いたがこ
れに限られず、またバネは片側だけでもよい。
Note that although a spring is used as an example of applying tension to the support member, the present invention is not limited to this, and the spring may be used only on one side.

重錘は一方向のみ移動可能にガイドし、加速度センサを
直交するX’I’lll j y軸、z軸方向に設置し
各軸方向の加速度をめることもできる。
The weight can be guided so as to be movable in only one direction, and acceleration sensors can be installed in the orthogonal directions of the y and z axes to measure the acceleration in each axis direction.

また集積回路素子はモールド材にてモールドするように
してもよく、さらに二つの水晶振動子を含めて封止キャ
ップなどにて封入してもよい。
Further, the integrated circuit element may be molded using a molding material, and the integrated circuit element may also be sealed with a sealing cap or the like, including the two crystal oscillators.

以上述べたように本発明によれば、高精度で高感度な加
速度測定が可能であり、消費電力が極めて小さく、加速
度情報はA −D変換器なしで直接デジタル処理が可能
である。また経時変化が小さく、互換性にも優れている
などの効果を奏する。
As described above, according to the present invention, highly accurate and highly sensitive acceleration measurement is possible, power consumption is extremely low, and acceleration information can be directly digitally processed without an A-D converter. It also has the advantage of having little change over time and excellent compatibility.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は平面図、第2
図は正面図、第3図はブロック図、第4図はATカット
水晶振動子に外力を加えたときの共振周波数変化率を示
す特性図である。 6.4・・・・・・水晶振動子 8・・・・・・重 錘 9・・・・・・支持部材 9α・・・コイルバネ部 101Z、10h・・・・・・発振回路10C・・・ミ
キサ 以 上 出願人 株式会社 精工舎
The drawings show one embodiment of the present invention, with FIG. 1 being a plan view and FIG.
The figure is a front view, FIG. 3 is a block diagram, and FIG. 4 is a characteristic diagram showing the rate of change in resonance frequency when an external force is applied to the AT-cut crystal resonator. 6.4... Crystal resonator 8... Weight Weight 9... Support member 9α... Coil spring portion 101Z, 10h... Oscillation circuit 10C...・Mixer and above Applicant: Seikosha Co., Ltd.

Claims (1)

【特許請求の範囲】 二つの圧電振動子と、 上記二つの圧電振動子の間に張設しである支持部材と、 この支持部材に装着された重錘と、 上記二つの圧電振動子のそれぞれを発振させる二つの発
JR回路と、 上記二つの発振回路の出力周波数の差をとる回路とを具
備し、 上記出力周波数の差をとる回路の出力により加速度を測
定することを特徴とする加速度センサ。
[Claims] Two piezoelectric vibrators, a support member stretched between the two piezoelectric vibrators, a weight attached to the support member, and each of the two piezoelectric vibrators. An acceleration sensor comprising two oscillator JR circuits that oscillate, and a circuit that takes the difference in the output frequencies of the two oscillation circuits, and that measures acceleration based on the output of the circuit that takes the difference in the output frequencies. .
JP14158783A 1983-08-02 1983-08-02 Acceleration sensor Granted JPS6033057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14158783A JPS6033057A (en) 1983-08-02 1983-08-02 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14158783A JPS6033057A (en) 1983-08-02 1983-08-02 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPS6033057A true JPS6033057A (en) 1985-02-20
JPH022105B2 JPH022105B2 (en) 1990-01-16

Family

ID=15295470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14158783A Granted JPS6033057A (en) 1983-08-02 1983-08-02 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPS6033057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284916A (en) * 1988-05-12 1989-11-16 Canon Inc Coordinate input device
JPH02248867A (en) * 1989-03-23 1990-10-04 Toyo Commun Equip Co Ltd Acceleration sensor
CN111046578A (en) * 2019-12-24 2020-04-21 北京航天控制仪器研究所 Method for establishing output model by quartz vibrating beam accelerometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284916A (en) * 1988-05-12 1989-11-16 Canon Inc Coordinate input device
JPH02248867A (en) * 1989-03-23 1990-10-04 Toyo Commun Equip Co Ltd Acceleration sensor
CN111046578A (en) * 2019-12-24 2020-04-21 北京航天控制仪器研究所 Method for establishing output model by quartz vibrating beam accelerometer
CN111046578B (en) * 2019-12-24 2023-07-14 北京航天控制仪器研究所 Method for building output model of quartz vibrating beam accelerometer

Also Published As

Publication number Publication date
JPH022105B2 (en) 1990-01-16

Similar Documents

Publication Publication Date Title
US4215570A (en) Miniature quartz resonator force transducer
US7954215B2 (en) Method for manufacturing acceleration sensing unit
US4507970A (en) Pressure sensitive element and a sensor comprising such an element
EP0128737A2 (en) Vibrating quartz diaphragm pressure sensor
JPH0769230B2 (en) Vibrating beam force transducer
JPH05288774A (en) Acceleration sensor
JPH0450968B2 (en)
US3505866A (en) Single tine digital force transducer
JPH0520693B2 (en)
US4531073A (en) Piezoelectric crystal resonator with reduced impedance and sensitivity to change in humidity
JP2003042768A (en) Motion sensor
US5265473A (en) Oscillator type accelerometer
JPS62194720A (en) Contour shear crystal resonator
JPS6033057A (en) Acceleration sensor
JPS6033056A (en) Acceleration sensor
JPH0334829B2 (en)
JPH0314513B2 (en)
JP2011232263A (en) Piezoelectric sensor, piezoelectric sensor element and piezoelectric vibration chip
JP2003194543A (en) Angular velocity sensor
SU1638637A1 (en) Differential piezoelectric measuring transducer
JP3129022B2 (en) Acceleration sensor
JPH0242190B2 (en)
US4703657A (en) Gas pressure sensor
JPH035876Y2 (en)
JPS58218625A (en) Force measuring device