JPS62194720A - Contour shear crystal resonator - Google Patents

Contour shear crystal resonator

Info

Publication number
JPS62194720A
JPS62194720A JP3679386A JP3679386A JPS62194720A JP S62194720 A JPS62194720 A JP S62194720A JP 3679386 A JP3679386 A JP 3679386A JP 3679386 A JP3679386 A JP 3679386A JP S62194720 A JPS62194720 A JP S62194720A
Authority
JP
Japan
Prior art keywords
crystal resonator
crystal
contour
electrode
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3679386A
Other languages
Japanese (ja)
Other versions
JPH0622311B2 (en
Inventor
Hirofumi Kawashima
宏文 川島
Masaru Matsuyama
松山 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP61036793A priority Critical patent/JPH0622311B2/en
Publication of JPS62194720A publication Critical patent/JPS62194720A/en
Publication of JPH0622311B2 publication Critical patent/JPH0622311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To realize a crystal resonator excellent in the linearity in the frequency temperature characteristic by selecting optimizingly a cut angle theta of a contour shear crystal resonator. CONSTITUTION:An exciting electrode 2 is arranged at upper and lower faces of a diaphragm 5 of a crystal 1. The diaphragm 5 of the crystal 1 is connected with a support 3 via a connection part 4 and they are formed incorporatedly by chemical etching. The electrode 2 is formed only to one side of the left side support 3 and the electrode 2 is arranged to the right side support 3 only at the face opposed to the said left support. A board formed by rotating the Y plate by 46-53 deg. around the X axis is used as the diaphragm 5. Thus, the crystal resonator excellent in the shock resistance and the linearity in the frequency temperature characteristic with small size is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は温度を計測するために温度センサーとして使用
する温度センサー輪郭すべり水晶振動子に関する。特に
、周波数温度に対して直線性に優れている輪郭すべり水
晶振動子の切断角とその形状に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature sensor contour slip crystal oscillator used as a temperature sensor to measure temperature. In particular, it relates to the cutting angle and shape of a contour slip crystal resonator that has excellent linearity with respect to frequency and temperature.

〔発明の概要〕[Summary of the invention]

本発明は輪郭すべり水晶振動子を温度計測の温度センサ
ーとして使用する場合、温度計測を高精度、且つ、広温
度範囲にわたって行える振動子の最適切断角度、及び、
小型で、耐衝撃性に優れ、低消費電力の新形状の輪郭す
べり水晶振動子を提供することにある。
When a contour slip quartz crystal resonator is used as a temperature sensor for temperature measurement, the present invention provides an optimum cutting angle of the resonator that allows temperature measurement to be performed with high precision over a wide temperature range;
The object of the present invention is to provide a contour-slip crystal resonator with a new shape that is compact, has excellent impact resistance, and has low power consumption.

〔従来の技術〕[Conventional technology]

温度計測はあらゆる物理計測の基礎となすものであり、
種々様々な方法が提案、実用化されてきた。一般的には
構造、計測が簡単で最も多用されている熱電対方式があ
る。
Temperature measurement is the basis of all physical measurements,
Various methods have been proposed and put into practical use. In general, there is a thermocouple method, which is simple in structure and easy to measure, and is the most commonly used method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、最近は装置の小型化、低消費電力化、軽
量化と一緒に、温度計測の広い温度範囲で、且つ、高精
度化が要求されてきている。前記した熱電対方式は電圧
温度特性で1℃当たりの電圧が小さく、即ち、感度が悪
いために温度計測の精度に限界があった。更に、低温側
から高温側まで広い温度範囲にわたって1つの熱電対で
高精度に温度計測することは大変に難しかった。このよ
うに、従来の熱電対方式では最近の要望に充分に応えら
れないのが実情である。又、厚みすべり振動モードを使
用した温度センサーが提案されているが、周波数が高い
ために消費電力が多く、又、振動子サイズが大きく衝撃
に弱(、支持方法が難しい等の欠点があった。そこで、
本発明は前記の欠点を改善する温度計測用の新センサー
を提案するものであり、特に、周波数が2MHz前後と
比較的低い輪郭すべり水晶振動子を提供するものである
。換言するならば、小型で、耐衝撃性、信較性に優れ、
高精度胴側ができ、且つ、低消費電力の温度計測用輪郭
すべり水晶振動子を提供するものである。
However, recently, there has been a demand for devices to be smaller, consume less power, and be lighter in weight, as well as to be able to measure temperature over a wider temperature range and with higher precision. The thermocouple method described above has a voltage-temperature characteristic where the voltage per 1° C. is small, that is, the sensitivity is poor, so there is a limit to the accuracy of temperature measurement. Furthermore, it is extremely difficult to accurately measure temperature with one thermocouple over a wide temperature range from the low temperature side to the high temperature side. As described above, the reality is that the conventional thermocouple system cannot fully meet recent demands. In addition, temperature sensors using thickness-shear vibration mode have been proposed, but they have drawbacks such as high frequency, high power consumption, and large vibrator size, making them susceptible to shock (and difficult to support methods). .Therefore,
The present invention proposes a new sensor for temperature measurement that improves the above-mentioned drawbacks, and in particular provides a contour slip crystal resonator with a relatively low frequency of around 2 MHz. In other words, it is small, has excellent shock resistance, and reliability.
The present invention provides a contour slip quartz crystal resonator for temperature measurement that has a high-accuracy body side and consumes low power.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の輪郭すべり水晶振動子形状の一実施例
を示す。水晶1の振動部5の上下面には励振電極2が配
置され、この電極により振動子を励振する。又、水晶l
の振動部5は支持部3と接続部4を介して接続、化学的
エツチングによって一体成形されている。第1図は両端
支持部が基部6で一ケ所で接続されている場合である。
FIG. 1 shows an embodiment of the profile slip crystal oscillator shape of the present invention. Excitation electrodes 2 are arranged on the upper and lower surfaces of the vibrating section 5 of the crystal 1, and the vibrator is excited by these electrodes. Also, crystal l
The vibrating part 5 is connected to the support part 3 through the connecting part 4 and is integrally formed by chemical etching. FIG. 1 shows a case in which both end support parts are connected at one point at the base 6.

そして基部6で電極取り出し用のリード線(図示されて
いない、)に接続される。このとき支持部3には電界が
働かないように電極は構成されている。
The base 6 is connected to a lead wire (not shown) for taking out the electrode. At this time, the electrodes are configured so that no electric field acts on the support portion 3.

更に詳述すると、励振電極2の一方は片側の支持部へ延
びて配置され、他方の電極2はもう一方の支持部へ延び
ている。そして、支持部3では電界が働かないように、
電極は構成されている。又第2図は本発明の輪郭すべり
水晶振動子形状の他の実施例を示す。振動子は第1図の
振動子と同様に振動部と支持部とからなり、振動部5に
配置された電極2は第1図と全く同様に配置さている。
More specifically, one of the excitation electrodes 2 is arranged to extend to one support part, and the other electrode 2 extends to the other support part. Then, so that the electric field does not work in the support part 3,
The electrodes are configured. FIG. 2 also shows another embodiment of the profile slip quartz crystal resonator shape of the present invention. The vibrator is composed of a vibrating part and a support part like the vibrator shown in FIG. 1, and the electrodes 2 arranged on the vibrating part 5 are arranged in exactly the same way as in FIG.

更に、この電極2の一方は片側の支持部へ延びて配置さ
れ、他方の電極2はもう一方の支持部へ延びている。そ
して、支持部3では電界が働かないように電極は第1図
と同様に構成されている。
Furthermore, one of the electrodes 2 is arranged to extend to one support, and the other electrode 2 extends to the other support. The electrodes are constructed in the same manner as shown in FIG. 1 so that no electric field is applied to the support portion 3.

しかし、第2図の実施例は支持部3の形状が若干具なり
、支持部3にはマウント部7を設け、この両端部でセラ
ミック等の台座にマウントされる。
However, in the embodiment shown in FIG. 2, the shape of the support part 3 is slightly different, and the support part 3 is provided with a mount part 7, which is mounted at both ends on a pedestal made of ceramic or the like.

又、第1図、第2図のx、y′、Z′軸は座標回転後の
水晶の電気軸、機械軸、光軸を示す。
Furthermore, the x, y', and Z' axes in FIGS. 1 and 2 indicate the electrical, mechanical, and optical axes of the crystal after coordinate rotation.

このように、振動部と支持部を一体に形成することによ
って、耐衝撃性を改善し、小型化を図ると同時に、振動
子の振動部の幅と長さを約1.56mmとすると周波数
が約2MHzとなり、低いので低消費電力化が可能とな
った。第1図、第2図では励振電極形状を円形に選んだ
が、振動部会面に電極を配置しても円形aと同様に優れ
た電気的特性が得られることは言うまでもない。
In this way, by integrally forming the vibrating part and the support part, the impact resistance is improved and the size is reduced, and at the same time, when the width and length of the vibrating part of the vibrator are approximately 1.56 mm, the frequency increases. The frequency is about 2 MHz, which is low, making it possible to reduce power consumption. In FIGS. 1 and 2, the shape of the excitation electrode is circular, but it goes without saying that even if the electrode is placed on the surface of the vibrating section, excellent electrical characteristics can be obtained as in the case of circular a.

次に周波数温度特性について説明する。理論的解析は矩
形板で行った。第5図は本発明振動子の座標系と切断方
法を示す。即ち、水晶板8は幅W、長さeは各々Z軸、
X軸方向に、そして板厚はY軸と垂直となるようにとる
Next, frequency temperature characteristics will be explained. Theoretical analysis was performed on a rectangular plate. FIG. 5 shows the coordinate system and cutting method of the vibrator of the present invention. That is, the width W and length e of the crystal plate 8 are the Z axis,
The plate thickness is taken in the X-axis direction and perpendicular to the Y-axis.

すると、矩形板の周波数方程式は近似的に以下の式で与
えられる。
Then, the frequency equation of the rectangular plate is approximately given by the following equation.

ここで、ρと水晶の密度、SzSは座標回転後の弾性コ
ンプライアンス、m、nは振動次数によって決まる定数
で基本波のときにはm=n−1であ゛る0式(11の周
波数fは温度の関数であるから、任意の温度、ここでは
25℃にてTayior展開をして1次温度係敗αと2
次温度係数βをカット角θの関数として求めることがで
きる。第3図はその計算結果と実験値を示す、横軸にカ
ット角θと縦軸にα、βを示す、又、実線は計算値で、
0、x印は実験値である。本計算によるとβ=0となる
カット角θは計算値で約47.9 ’ 、実験値で約4
7.5 @であり、このときのαはそれぞれ55.0p
pm/’Cと、40.59pm/℃であった。それ故、
計算と実験で直線性に優れた温度センサーを開発するこ
とができた。
Here, ρ is the density of the crystal, SzS is the elastic compliance after coordinate rotation, m and n are constants determined by the vibration order, and in the case of the fundamental wave, m = n-1. Since it is a function of
The next temperature coefficient β can be determined as a function of the cut angle θ. Figure 3 shows the calculation results and experimental values.The horizontal axis shows the cut angle θ and the vertical axis shows α and β.The solid line is the calculated value.
0 and x marks are experimental values. According to this calculation, the cut angle θ for β = 0 is approximately 47.9' in the calculated value and approximately 4 in the experimental value.
7.5 @, and α at this time is 55.0p each.
pm/'C and 40.59 pm/'C. Therefore,
Through calculations and experiments, we were able to develop a temperature sensor with excellent linearity.

本発明の直線性を有する輪郭すべり水晶振動子はθ=4
7.5”で最良であるが、実際にはβがばらつく、β−
〇が好ましいが、本発明ではβのバラツキを含め、直線
性を十分に有する振動子を得るには力・ノド角が46″
′〜53″であれば十分である。第4図は本発明の輪郭
すべり水晶振動子の一実施例を示す。振動子の幅Wと長
さlはそれぞれ1.56mm、カット角θは50″のと
きの一例でこのときのαは約509I)I11/’Cで
あった。第3図から明らかなように1、広い温度範囲に
わたって直線性に優れた輪郭すべり水晶振動子を得るこ
とができた。
The contour slip crystal oscillator with linearity of the present invention has θ=4
7.5" is the best, but in reality β varies, β-
〇 is preferable, but in the present invention, in order to obtain a vibrator with sufficient linearity, including the variation in β, the force and throat angle should be 46″.
' to 53'' is sufficient. Fig. 4 shows an embodiment of the contour slip crystal resonator of the present invention. The width W and length l of the resonator are each 1.56 mm, and the cut angle θ is 50 mm. In this example, α was approximately 509I)I11/'C. As is clear from FIG. 3, it was possible to obtain a contour-slip crystal resonator with excellent linearity over a wide temperature range.

〔作用〕[Effect]

このように、本発明は輪郭すべり水晶振動子のカット角
θを最適に選ぶことによって周波数温度特性において、
直線性に優れた温度センサーを得るものである。この結
果、広い温度範囲にわたって高精度の温度計測を可能に
する。同時に、新形状の輪郭すべり水晶振動子は小型化
、耐衝撃性に優れる特長を有するので小型機器等に最適
である。
In this way, the present invention improves the frequency-temperature characteristics by optimally selecting the cut angle θ of the contour-slip crystal resonator.
This provides a temperature sensor with excellent linearity. As a result, highly accurate temperature measurement is possible over a wide temperature range. At the same time, the new shape of the contour slip crystal resonator is compact and has excellent shock resistance, making it ideal for small devices.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。第1
図は本発明の輪郭すべり水晶振動子の形状の一実施例を
示す。振動子のX軸方向に2つの支持部を有し、振動部
の長さl (図示されてない)又、幅方向はZ′軸方向
と一致するように設けられている。水晶1の振動部5の
上下面に励振電極2が配置され、各電極は異なった支持
部の方向に延びている。この両電極間に交流電圧を印加
することによって容易に振動を引き起こすことができる
。又、水晶lの振動部5は支持部3と接続部4を介して
一体に形成されている。更に、両端支持部3は中央の基
部6で接続されている。一方、第2図は本発明の他の実
施例で振動部5の両端に支持部3が接続部4を介して接
続されている。更に支持部はマウント部7を設け、ここ
で台座に固定される。第4図は本発明の輪郭すべり水晶
振動子の幅と長さがそれぞれ1 、56+1Jl、θ=
50のときの周波数温度特性の一実施例である。
Embodiments of the present invention will be described below based on the drawings. 1st
The figure shows an example of the shape of the contour slip crystal resonator of the present invention. The vibrator has two supporting parts in the X-axis direction, and the length l (not shown) of the vibrating part and the width direction are provided so as to coincide with the Z'-axis direction. Excitation electrodes 2 are arranged on the upper and lower surfaces of the vibrating part 5 of the crystal 1, and each electrode extends in the direction of a different support part. Vibration can be easily caused by applying an alternating voltage between these two electrodes. Further, the vibrating portion 5 of the crystal 1 is integrally formed with the supporting portion 3 via the connecting portion 4. Furthermore, both end support parts 3 are connected at a central base part 6. On the other hand, FIG. 2 shows another embodiment of the present invention, in which supporting parts 3 are connected to both ends of a vibrating part 5 via connecting parts 4. Furthermore, the support part is provided with a mount part 7, and is fixed to the pedestal here. Figure 4 shows that the width and length of the contour slip crystal resonator of the present invention are 1, 56+1Jl, and θ=
This is an example of frequency temperature characteristics when the temperature is 50.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は輪郭すべり水晶振動子の新
しい形状を提案することにより、小型で耐衝撃性に優れ
、且つ、低周波数であるので消費電力が少ないという効
果を存する。又、振動子の切断角度を最適に選ぶことに
より、周波数温度特性間において広い温度範囲にわたり
直線性に優れた水晶温度センサーを得ることができるの
で、高精度の温度計測を広温度範囲にわたってできる効
果を有する。
As described above, the present invention proposes a new shape for the contour slip crystal resonator, and has the advantage that it is small and has excellent impact resistance, and also has low power consumption due to its low frequency. In addition, by optimally selecting the cutting angle of the resonator, it is possible to obtain a crystal temperature sensor with excellent linearity over a wide temperature range between the frequency and temperature characteristics, making it possible to perform highly accurate temperature measurement over a wide temperature range. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の輪郭すべり水晶振動子形状と電極配置
の一実施例を示す側面図と平面図、第2図は本発明の輪
郭すべり水晶振動子形状と電極配置の他の実施例を示す
側面図と平面図、第3図は本発明の輪郭すべり水晶振動
子の計算と実験による1次温度係数α、2次温度係数β
とカット角θとの関係を示す図、第4図は本発明の輪郭
すべり水晶振動子の周波数温度特性の一例を示す図、第
5図は本発明の振動子の座標系と切断方法を示す斜視図
である。 1・・・水晶    2・・・励振電極3・・・支持部
   4・・・接続部 5・・・振動部   6・・・基部 7・・・マウント部 以上 出願人 セイコー電子部品株式会社 集1図 第2図 カット角θ(/i) ih 3  図 第 5 図
FIG. 1 is a side view and a plan view showing one embodiment of the contour slipping crystal resonator shape and electrode arrangement of the present invention, and FIG. The side view and plan view shown in FIG.
FIG. 4 is a diagram showing an example of the frequency-temperature characteristics of the contour slip crystal resonator of the present invention, and FIG. 5 is a diagram showing the coordinate system and cutting method of the resonator of the present invention. FIG. 1...Crystal 2...Excitation electrode 3...Support part 4...Connection part 5...Vibration part 6...Base 7...Mount part and above Applicant Seiko Electronic Components Co., Ltd. Collection 1 Figure 2 Cut angle θ (/i) ih 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  輪郭すべり水晶振動子において、前記水晶振動子は振
動部と支持部からなり、振動部上下面には励振電極を配
置し、且つ、一方の支持部には片面にのみ、又、他の一
方の支持部には前記一方の支持部と反対面にのみ励振電
極と接続する電極を配置し、該振動子はY板をX軸を回
転軸として46°〜53°回転した板から形成され、当
該振動子は化学的エッチングによって形成されているこ
とを特徴とする輪郭すべり水晶振動子。
In the contour-slip crystal resonator, the crystal resonator consists of a vibrating part and a support part, and excitation electrodes are arranged on the upper and lower surfaces of the vibrating part, and one support part has an excitation electrode on one side only, and a support part on the other side. An electrode connected to the excitation electrode is arranged only on the opposite surface of the support part to the one support part, and the vibrator is formed of a plate rotated by 46° to 53° with the Y plate as the rotation axis, and A contour slip crystal oscillator characterized in that the oscillator is formed by chemical etching.
JP61036793A 1986-02-21 1986-02-21 Contour-slip crystal unit Expired - Lifetime JPH0622311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61036793A JPH0622311B2 (en) 1986-02-21 1986-02-21 Contour-slip crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61036793A JPH0622311B2 (en) 1986-02-21 1986-02-21 Contour-slip crystal unit

Publications (2)

Publication Number Publication Date
JPS62194720A true JPS62194720A (en) 1987-08-27
JPH0622311B2 JPH0622311B2 (en) 1994-03-23

Family

ID=12479664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61036793A Expired - Lifetime JPH0622311B2 (en) 1986-02-21 1986-02-21 Contour-slip crystal unit

Country Status (1)

Country Link
JP (1) JPH0622311B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275213A (en) * 1988-09-09 1990-03-14 Seiko Electronic Components Ltd Longitudinal crystal resonator
JPH0279509A (en) * 1988-09-14 1990-03-20 Seiko Electronic Components Ltd Longitudinal crystal resonator
JPH02132910A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH02132909A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Electrode structure of vertical crystal resonator
JPH02132911A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH02132913A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH02132912A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH02132914A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Electrode structure of vertical crystal resonator
JPH02135908A (en) * 1988-11-17 1990-05-24 Seiko Electronic Components Ltd Vertical crystal resonator
JPH03195111A (en) * 1989-12-22 1991-08-26 Seiko Electronic Components Ltd Longitudinal crystal resonator
JP2009265025A (en) * 2008-04-28 2009-11-12 Tokyo Denpa Co Ltd Piezoelectric temperature sensor and silicon wafer temperature measuring tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267590A (en) * 1975-12-02 1977-06-04 Seiko Instr & Electronics Ltd Electronic wrist watch
JPS5291674A (en) * 1976-01-29 1977-08-02 Seiko Instr & Electronics Ltd Support structure for profile sliding vibrator
JPS5393793A (en) * 1977-01-27 1978-08-17 Seiko Epson Corp Minature contour slide crystal vibrator
JPS5729085A (en) * 1980-07-29 1982-02-16 Ricoh Kk Indication controlling method for crt display unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267590A (en) * 1975-12-02 1977-06-04 Seiko Instr & Electronics Ltd Electronic wrist watch
JPS5291674A (en) * 1976-01-29 1977-08-02 Seiko Instr & Electronics Ltd Support structure for profile sliding vibrator
JPS5393793A (en) * 1977-01-27 1978-08-17 Seiko Epson Corp Minature contour slide crystal vibrator
JPS5729085A (en) * 1980-07-29 1982-02-16 Ricoh Kk Indication controlling method for crt display unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275213A (en) * 1988-09-09 1990-03-14 Seiko Electronic Components Ltd Longitudinal crystal resonator
JPH0279509A (en) * 1988-09-14 1990-03-20 Seiko Electronic Components Ltd Longitudinal crystal resonator
JPH02132910A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH02132909A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Electrode structure of vertical crystal resonator
JPH02132911A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH02132913A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH02132912A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH02132914A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Electrode structure of vertical crystal resonator
JPH02135908A (en) * 1988-11-17 1990-05-24 Seiko Electronic Components Ltd Vertical crystal resonator
JPH03195111A (en) * 1989-12-22 1991-08-26 Seiko Electronic Components Ltd Longitudinal crystal resonator
JP2009265025A (en) * 2008-04-28 2009-11-12 Tokyo Denpa Co Ltd Piezoelectric temperature sensor and silicon wafer temperature measuring tool

Also Published As

Publication number Publication date
JPH0622311B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US4039969A (en) Quartz thermometer
WO2000044092A1 (en) Vibrator and electronic device with vibrator
KR20080069565A (en) Structures for supporting vibrators and devices for measuring physical quantities
JPS62194720A (en) Contour shear crystal resonator
US7216540B2 (en) Six-legged type piezoelectric vibration gyroscope
CA1193882A (en) Temperature sensor
JPS62194718A (en) Contour shear crystal resonator
JPH0362208B2 (en)
JP3158176B2 (en) Transducer accelerometer
JP2001196891A (en) Vibrator
US4234812A (en) Thickness-width shear quartz crystal vibrator
JP2001208545A (en) Piezoelectric vibration gyroscope
JP2004245605A (en) Vibrator and signal generation element for measuring physical quantity
JPH07113644A (en) Vibrating gyro and driving method thereof
JP2005249746A (en) Vibrator, and apparatus for measuring physical quantity
JPH0233392Y2 (en)
JPH10153432A (en) Oscillation type gyroscope
JPS6033057A (en) Acceleration sensor
JPS6033056A (en) Acceleration sensor
JP3363457B2 (en) Torsional crystal oscillator
JP2000292175A (en) Angular velocity sensor and manufacture thereof
JPS62194719A (en) Contour shear crystal resonator
EP0516400A1 (en) Torsional quartz crystal resonator
JPH0256619B2 (en)
KR100238980B1 (en) Piezoelectric angular sensor