WO2000044092A1 - Vibrator and electronic device with vibrator - Google Patents

Vibrator and electronic device with vibrator Download PDF

Info

Publication number
WO2000044092A1
WO2000044092A1 PCT/JP2000/000238 JP0000238W WO0044092A1 WO 2000044092 A1 WO2000044092 A1 WO 2000044092A1 JP 0000238 W JP0000238 W JP 0000238W WO 0044092 A1 WO0044092 A1 WO 0044092A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
electrode
vibrating rod
vibrating
axis
Prior art date
Application number
PCT/JP2000/000238
Other languages
French (fr)
Japanese (ja)
Inventor
Fumitaka Kitamura
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP2000595424A priority Critical patent/JP4852195B2/en
Publication of WO2000044092A1 publication Critical patent/WO2000044092A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks

Definitions

  • the present invention relates to a vibrator, for example, a vibrator such as a tuning-fork type quartz vibrator or a gyro sensor, and an electronic device mounted with the vibrator.
  • a vibrator for example, a vibrator such as a tuning-fork type quartz vibrator or a gyro sensor, and an electronic device mounted with the vibrator.
  • tuning-fork type crystal resonator which is a resonator, has been formed, for example, as shown in FIG.
  • the tuning-fork type quartz vibrating piece 10 has, for example, a resonance frequency of 32.768 kHz, which is a high-precision vibrator, and is widely used in watches and other clock-equipped devices. Commonly used.
  • the tuning-fork type quartz vibrating piece 10 has a base 11, and the vibrating rod 12 extends upward from the base 11 in the figure. There is a book.
  • each of the vibrating rods 12 and 12 is usually about 0.23 mm as shown in the figure, and the width of the base 11 is usually about 0.69 mm as shown in the figure. It has become.
  • the total length of the base 11 and the vibrating rod 12 is usually about 3.6 mm as shown in the figure.
  • FIG. 12 is a schematic cross section taken along line AA ′ of FIG. 11. Electrodes 13 a and 13 b were formed on four sides of 12. That is, the electrodes 13a are arranged on the upper and lower portions of the vibrating rod 12 in the figure, and the electrodes 13b are disposed on both sides 13b, 13b of the vibrating rod 12.
  • voltages having different polarities are alternately applied to the electrodes 13a and 13b. For example, at one moment, a positive voltage is applied to 13a and a negative voltage is applied to 13b. It is. When a voltage is applied to the vibrating rod 12, an electric field is generated inside the vibrating rod 12, as indicated by an arrow in FIG.
  • the tuning-fork type crystal vibrating piece 10 that vibrates in this manner is housed in a protector (not shown), and is used as a surface mount device (SMD) or the like as an oscillation source of an oscillation circuit such as a clock.
  • SMD surface mount device
  • a tuning fork type crystal resonator 10 having a length of about 5 mm in the longitudinal direction and a length of about 2 mm in the short direction is used.
  • the thickness of the above-mentioned tuning-fork type quartz vibrating piece 10 in the vertical direction in FIG. 12 is about 0.1 mm, and the above-mentioned SMD package is also used for this tuning-fork type quartz vibrating piece 10. It has a thickness corresponding to the thickness.
  • such a tuning-fork type crystal vibrating piece 10 has a low CI value (crystal impedance or equivalent) in order to maintain a stable oscillation frequency (for example, 32.768 kHz) and to suppress the vibration loss of the vibrating rod 12. It is necessary to maintain the series resistance (Rr).
  • an object of the present invention is to provide a small-sized vibrator in which the CI value is suppressed to a low value and which is easy to process. Disclosure of the invention
  • a vibrator having a vibrating rod made of at least one or more piezoelectric materials, wherein a groove is formed on one or both of a front surface and a back surface of the vibrating rod. This is achieved by a vibrator characterized in that a groove is formed and an electrode is formed in this groove.
  • a groove is formed on one or both of the front surface and the back surface of the vibrating rod, and an electrode is formed in the groove, so that processing is easy.
  • the vibrating rod is uniformly and strongly distributed in the depth direction, so that an increase in CI value can be suppressed.
  • the vibrator is a tuning-fork type quartz vibrator.
  • an electric field generated from the electrode disposed on the vibrating rod is widely distributed on the vibrating rod, and an increase in CI value can be suppressed.
  • a vibrator having a plurality of vibrating rods, wherein a groove is formed on a first surface and a second surface of the vibrating rod.
  • a first electrode is formed on at least a part of the groove, and a second electrode is formed on at least a part of a surface of the vibrating rod other than the surface on which the groove is formed. This is achieved by the oscillator.
  • the vibrating rod is formed.
  • An electric field generated between a second electrode formed on at least a part of a surface other than the surface on which the groove is formed and a first electrode of the groove is formed in the depth direction of the vibrating rod.
  • the distribution is strong and constant, and the rise of the CI value of the vibrating rod of the vibrator can be suppressed.
  • the first electrode is formed at least near a root of the vibrating rod. It is.
  • the first electrode is formed at least near the root of the vibrating rod, an electric field required to vibrate the vibrating rod can be obtained.
  • the first electrode is a vibrator formed only on a side surface of the groove.
  • a vibrator in which a through hole is formed in a part of the groove.
  • the relationship between the width of the vibrating rod and the thickness of the vibrating rod is 0.6 x ( The vibrator is set as follows: (the vibrating rod) ⁇ (width of the vibrating rod).
  • the relationship between the width of the vibrating rod and the thickness of the vibrating rod is set as 0.6 x (the vibrating rod) ⁇ (the width of the vibrating rod). Therefore, unlike the conventional configuration of (1.0 X thickness of vibrating rod, width of vibrating rod), the width of the vibrating rod can be made sufficiently smaller than the thickness of the vibrating rod. In addition, the size of the entire vibrator can be reduced.
  • the vibrator in the configuration set forth in claim 3, the vibrator is formed such that each of the vibrating fine rods has substantially the same structure.
  • each of the vibrating rods is formed to have substantially the same structure.
  • vibration leakage can be prevented and a highly accurate vibrator can be obtained.
  • a vibrator in which the second electrode is formed on a plurality of surfaces.
  • a third electrode for connecting the second electrode t is formed on the first surface. This is a vibrator.
  • a third electrode for connecting the second electrodes is formed on the second surface. This is a vibrator.
  • a third electrode for connecting the second electrodes to each other is provided on a surface of a tip end of the vibrating rod. This is a vibrator formed.
  • the frequency of the vibrator is set in a range of 1 KHz to 200 KHz by a vibrator. is there.
  • the vibration wherein the frequency of the vibrator is set in a range of 16 KHz to 120 KHz. I am a child.
  • the vibrator wherein the frequency of the vibrator is set in a range of 16 KHz to 33 KHz. It is.
  • the first electrode, the second electrode, or the second electrode in the configuration according to any one of claims 3 to 12, the first electrode, the second electrode, or the second electrode.
  • the vibrator has an insulating film formed on the surface of the third electrode.
  • an insulating film is formed on a surface of the first electrode, the second electrode, or the third electrode. Therefore, even if the entire vibrator is downsized, the first electrode is formed. The pole, the second electrode, or the third electrode can be prevented from being short-circuited by a foreign substance or the like.
  • the insulating film is a vibrator made of an oxide film or a nitride film.
  • the insulating film is made of an oxide film or a nitride film
  • the first electrode, the second electrode, or the third electrode may be exposed to foreign matter even if the entire vibrator is downsized. Can be prevented.
  • the object is, according to the invention of claim 18, a vibrator formed by a plurality of vibrating fine rods, wherein a through hole is formed in a part of the vibrating fine rod; This is achieved by a vibrator in which a first electrode is formed on at least a part of the vibrating bar, and a second electrode is formed at least on a surface of the vibrating fine bar facing the first electrode.
  • the relationship between the width of the vibrating rod and the thickness of the vibrating rod is 0.6 x (the The vibrator is configured such that the thickness of the vibrating rod is ⁇ (the width of the vibrating rod).
  • the relationship between the width of the vibrating rod and the thickness of the vibrating rod is set as 0.6 x (thickness of the vibrating rod) ⁇ (width of the vibrating rod).
  • the width of the vibrating rod is sufficient for the thickness of the vibrating rod. Since it can be made small, the whole vibrator can be downsized.
  • the vibrator is formed by each of the vibrating fine rods having substantially the same structure.
  • each of the vibrating rods is formed to have substantially the same structure, vibration leakage can be prevented, and a highly accurate vibrator can be obtained.
  • the object has a rectangular coordinate system in which an electric axis is an X axis, a mechanical axis is a Y axis, and an optical axis is a Z axis, and the X axis and the Y axis are A vibrator in which a base is formed and a plurality of vibrating rods are arranged from the base along the Y-axis, wherein a first surface and a second surface of the plurality of vibrating rods are provided.
  • a vibrator having a groove formed on the surface of the groove, a first electrode formed on at least a part of the groove, and a second electrode formed on a surface other than the surface on which the groove is formed; To Is achieved.
  • a groove is formed on the first surface and the second surface of the plurality of vibrating rods, and a first electrode is formed on at least a part of the groove. Since the second electrode is formed on a surface other than the surface on which the portion is formed, a gap between the second electrode provided on the vibrating rod of the high-precision vibrator and the first electrode of the groove is provided.
  • the electric field generated by the vibration is uniformly and strongly distributed in the depth direction of the vibrating rod, and it is possible to suppress an increase in the CI value of the vibrating rod of the vibrator with high precision.
  • a cross section of the vibrating rod in a plane formed by the X axis and the Z axis is substantially H-shaped. This is a vibrator formed on the substrate.
  • the vibrating rod has a substantially H-shaped cross section in a plane formed by the X axis and the Z axis. Therefore, the first electrode and the second electrode of the groove portion are formed. The electric field generated therebetween can be uniformly and strongly distributed in the depth direction by the vibrating rod.
  • the first surface and the second surface are formed by the X axis and the Y axis.
  • a vibrator that is a surface.
  • the first electrode and the second electrode are formed by stacking a plurality of layers formed of different materials.
  • This is a vibrator, which is a laminated film formed.
  • the first electrode and the second electrode are a laminated film in which a plurality of layers formed of different materials are laminated, adhesion between these laminated layers is improved. Can be increased.
  • the vibrator comprising an oxide film formed on a surface of the first electrode and the second electrode. so is there.
  • the configuration since an oxide film is formed on the surfaces of the first electrode and the second electrode, even if the entire vibrator is downsized, the first electrode and the second electrode In other words, it is possible to prevent the third electrode from being short-circuited by a foreign substance or the like.
  • the first electrode and the second electrode are formed of chromium, gold, aluminum, nickel, or titanium.
  • FIG. 1 is a perspective view of a vibrator according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view of a vibrating rod of the vibrator of FIG.
  • FIG. 3 is a perspective view of a tuning-fork type crystal resonator without electrodes according to the second embodiment.
  • FIG. 4 is a tuning fork-type crystal resonator in which electrodes are attached to the tuning-fork type crystal resonator of FIG.
  • FIG. 3 is a perspective view of a crystal resonator.
  • FIG. 5 is a diagram showing dimensions and the like of the tuning-fork type quartz resonator of FIG.
  • FIG. 6 (a) is a cross-sectional view showing the arrangement of the vibrating rods and electrodes of the tuning-fork type quartz resonator of FIG.
  • FIG. 6 (b) is a cross-sectional view different from FIG. 6 (a) and showing an example of an arrangement state of another electrode.
  • FIG. 6 (c) is a cross-sectional view showing an example of an arrangement state of another electrode, which is different from FIGS. 6 (a) and (b).
  • FIG. 7 is a schematic sectional view showing the arrangement of a vibrating rod having a through hole and electrodes.
  • FIG. 8 is a diagram showing a relationship between a groove in a tuning-fork type quartz resonator and atmospheric CI.
  • FIG. 9 is a perspective view showing another example of groove formation.
  • FIG. 10 is a sectional view showing an example in which the number of grooves formed in the vibrating rod is increased.
  • FIG. 11 is a diagram showing dimensions and the like of a conventional vibrator.
  • FIG. 12 is a cross-sectional view of a vibrating rod of a conventional vibrator.
  • FIG. 13 is a cross-sectional view showing a state in which the width of the vibrating rod of the conventional vibrator is reduced.
  • FIG. 1 is a diagram showing a vibrator according to a first embodiment of the present invention.
  • FIG. 1 shows the appearance of a tuning-fork type vibrator 100 made of a 32 KHz crystal used for a watch as an example.
  • the vibrator 100 is generally composed of two vibrating fine rods 120 and a fixed part 130 as a base.
  • the fixing portion 130 is provided for fixing to a package and forming a pad portion for taking out an electrode to the outside.
  • the two vibrating rods 120 vibrate in a direction in which they approach or move away from each other.
  • a groove 120a is formed on one or both of the front and back surfaces of the vibrating rod 120.
  • processing using photolithography using an etching liquid capable of dissolving the material of the vibrator 100 is used.
  • a crystal resonator can be processed with a hydrofluoric acid-based etching solution.
  • the groove 120a is formed to a part of the fixed portion 130, but this is not limited depending on the characteristics of the vibrator 100 and the processing process.
  • the length of the groove 120a is set, the CI value is reduced by providing the groove 120a over the entire length of the vibrating rod 120 as long as possible.
  • the length of the groove 120a is adjusted according to the specifications of the vibrator.
  • it is necessary to adjust the frequency by attaching a weight material to the tip of the vibrating rod 120, or to adjust the frequency, etc. There is no need to provide 0a.
  • FIG. 2 is a cross-sectional view of vibrating rod 120 in vibrator 100 according to the present embodiment.
  • the electric field 160 is distributed over the entire vibrating rod 120 in the depth direction. That is, since the electrode 140a is formed into the groove 120a, the electric field 160 is easily distributed in the depth direction. In this case, the depth of the groove 120a is better.
  • the equivalent series resistance (CI value) was measured at atmospheric pressure. However, it was 1 gigaohm.
  • the tuning-fork type vibration according to the present embodiment in which the edge of the vibrating rod 120 is left at 15 micrometer and the depth 120 micrometer groove 120 is formed on both surfaces of the vibrating rod 120 For element 100, the equivalent series resistance (CI value) in the atmosphere was 600 kOhm, indicating that it had the same characteristics as a normal tuning fork resonator.
  • the groove 120a may be connected on the front surface and the back surface. That is, a structure in which a slit is inserted in the vibrating rod 120 may be used.
  • the present embodiment it is possible to supply a vibrator having good characteristics without reducing the thickness of vibrator 1 • 0. Furthermore, since the thickness is not different from the conventional one, it is easy to handle and has an effect that the yield does not decrease. And, a small and inexpensive vibrator 1 • 0 can be supplied.
  • FIG. 3 is a schematic perspective view showing a tuning-fork type quartz crystal resonator 200 according to the second embodiment without electrodes.
  • the tuning-fork type crystal resonator 200 is formed by cutting out, for example, a single crystal of quartz and applying it to a tuning-fork type. At this time, the crystal is cut from a single crystal of crystal such that the X axis shown in FIG. 3 is the electric axis, the Y axis is the mechanical axis, and the Z axis is the optical axis.
  • the electric shaft in the X-axis direction in FIG. 3
  • a tuning fork type crystal resonator 200 suitable for a watch and a general device with a watch requiring high accuracy is obtained.
  • the XY plane consisting of the X and Y axes is rotated about every time
  • the tuning-fork type crystal resonator 200 is formed as a so-called crystal Z plate inclined by 5 to 5 degrees.
  • This tuning-fork type crystal resonator 200 is similar to the tuning-fork type resonator 100 according to the first embodiment described above, and has a fixed portion 230 as a base and a fixed portion 230 from the fixed portion 230.
  • grooves 220a are formed on the first and second surfaces of the two vibrating rods 220, respectively, as shown in FIG.
  • the thus formed tuning-fork type quartz crystal resonator 200 shown in FIG. 3 has an electrode 240 a as a first electrode and an electrode 240 a as a second electrode. 40b, and the electrode 240c as the third electrode will be arranged. That is, when arranging the electrodes from the fixed portion 230 to the vibrating rod 22 °, the electrodes are placed on the side surfaces of the vibrating rod 220 and the first and second surfaces, respectively, with electrodes 240b, 240 a is provided.
  • the electrode 240 a is also provided inside the groove 220 a of the vibrating rod 220 such an electrode 240 a, 240 b is provided with the electrode 240 a, It is provided for generating an electric field between 240 b and vibrating the vibrating fine rod 220 as a piezoelectric body. Further, the electrode 240c is provided for connecting the second electrodes formed on the two side surfaces of the vibrating rod 220, that is, the electrodes 240b.
  • Each of the electrodes 240a, 240b, and 240c is formed of a plurality of layers, for example, two layers, and is formed of Cr as a base and Au as an upper layer. In this case, Ni or Ti may be used instead of Cr.
  • the electrodes 240a, 240b, and 240c may be composed of one layer, and in this case, for example, the A1 layer is used.
  • an electrode whose surface is anodically oxidized with an A1 electrode, or an electrode in which a Cr electrode is used and an SiO 2 layer or the like is formed as a protective film on this Cr layer can also be used.
  • the electrode 240a is provided inside the groove 220a as shown in FIG. 4, but is not limited to this, and is divided into a plurality of portions of the groove 220a. It may be arranged, or may be formed only on the side surface or bottom surface of the groove 220a. Further, the electrode 24 Ob is disposed on the side surface of the vibrating rod 220 as shown in FIG. 4, but is not limited to this, and as shown in FIG. May be formed on a plurality of surfaces of the vibrating rod 220.
  • the tuning-fork type crystal resonator 200 formed as described above has a smaller size than a conventional 32.768-kHz tuning-fork type crystal resonator, for example, despite its resonance frequency of 32.768 kHz. Has become. For example, it is configured as shown in FIG.
  • the length of the tuning-fork type crystal unit 200 shown in FIG. 5 in the Y-axis direction is, for example, about 2.2 mm, and the width of the tuning-fork type crystal unit 200 in the X-axis direction is about 0. It is about 56mm.
  • This dimension is significantly smaller than the dimensions of the conventional tuning-fork type quartz vibrating piece 10 shown in FIG. 10, which are 3.6 mm (Y-axis direction) and 0.69 mm (X-axis direction).
  • the length of the vibrating rod 220 shown in FIG. 5 in the X-axis direction is, for example, about 1.6 mm
  • the width of each vibrating rod 220 in the X-axis direction is, for example, about 0.1 mm. It has become.
  • the size of the vibrating rod 220 is significantly smaller than the dimensions of the vibrating rod 12 shown in FIG. 10, which are 2.4 mm (Y-axis direction) and 0.23 mm (X-axis direction). I have.
  • the thickness of the tuning-fork type crystal unit in the Z-axis direction of the tuning-fork type crystal unit 200 is, for example, about 0.1 mm, which is equivalent to the thickness of the conventional tuning-fork type crystal unit 200. It is almost the same.
  • the groove 220a is formed in the vibrating rod 220 of the tuning-fork type crystal resonator 200 according to the present embodiment, as described above. For example, it is formed to have a length of about 1.3 mm in the axial direction. As shown in FIG. 5, the width of the groove 220a in the X-axis direction is, for example, about 0.07 mm, and the depth in the Z-axis direction is, for example, about 0.02 mm.
  • the thickness of the electrodes 240a, 240b, 240c arranged in such a small tuning-fork type quartz resonator 200 is, for example, 100 A for the lower layer Cr and 1000 A for the upper layer Au.
  • FIG. 6 (a) shows the result.
  • the grooves 220a are provided in the vertical direction in the figure on the vibrating rod 220, respectively, so that the cross-sectional shape thereof is substantially H-shaped.
  • the electrodes 240a are provided in the grooves 220a at these two places.
  • Electrodes 240b are provided on both sides of the vibrating rod 220, respectively.
  • the electrodes 240a and 240b are connected to a power source (not shown), and the electrodes 240a and 240b alternately have voltages having different polarities. Is applied. Then, for example, when a positive voltage is applied to the electrode 240a and a negative voltage is applied to the electrode 240b, an electric field is generated as shown by an arrow in FIG. 2 of the first embodiment. Will be.
  • the generation of this electric field causes the vibrating rod 220 to vibrate, and is used as a component of the oscillation source of, for example, a mobile phone or an IC card in which the tuning-fork type crystal resonator 220 is used.
  • the arrangement of the electrodes 240a and 240b with respect to the vibrating rod 220 as described above is not limited to the embodiment shown in FIG. 6 (a), but also to the arrangement shown in FIG. 6 (b). Or as shown in Fig. 6 (c).
  • groove 220 a is provided in vibrating rod 220, but this is not restrictive, and groove 220 a may be a through hole.
  • the vibrating fine rod 220 ′ having a through hole has a configuration in which, for example, electrodes 240a and 240b are arranged to face each other as shown in FIG.
  • FIG. 7 is a schematic view showing a cross section of a vibrating rod 220 ′ having a through hole.
  • the electrode 240a may be arranged in all of the through holes. Alternatively, the electrode 240a may be arranged in a plurality of places of the through hole. .
  • the resonance frequency becomes higher, and the stable resonance frequency becomes higher.
  • the electrode 23 b cannot be made large as shown in FIG. 12, so that the electric field generated between the electrode 23 a and the electrode 23 b is strong and constant in the depth direction of the vibrating rod 22. It was not distributed, and the intensity of the electric field was reduced. As a result, the vibration of the vibrating rod 22 was weakened and the vibration loss was increased.
  • the C I value of an ordinary tuning-fork type crystal resonator is preferably from 301 to 60 1 ⁇ 0 in a vacuum, and is about 400 ⁇ when the C I value in the atmosphere is shown as a reference value.
  • the CI value of the tuning fork type crystal resonator 200 according to the present embodiment in the case where the groove 220 is not provided in the vibrating rod 220 of the tuning fork crystal resonator 200 is 100 in air as shown in FIG. 0 ⁇ , which is much higher than the above-mentioned reference value of 400 ⁇ .
  • the depth of the groove 220a was set to 0.02 mm (20 jm), so that the CI value was 42.5 ⁇ , Since the value is close to the preferred value of 400 ⁇ ⁇ , the CI value stays within the appropriate range, making it suitable for use in oscillators for mobile phones and IC cards.
  • forming the groove 220a in the vibrating rod 220 in this way is much more excellent in terms of additivity than when the thickness of the vibrating rod 220 is reduced. Thus, the yield of the manufactured tuning-fork type crystal resonator 200 is improved.
  • the depth of the groove 220a is set to 0.02 mm in consideration of the ease of processing and the like, but as is clear from the table of FIG. As the depth of “a” is deeper, the CI value is lower, and at least at a depth of 0.035 mm, the value is 3333 ⁇ . In this case, the C I value at least in vacuum was 40 ⁇ .
  • the vibrating rod 2 220 is provided with the grooves 220 a and 220 a of two places, and the electrodes 240 a are arranged respectively.
  • the electrode 240 a can be arranged larger, so that an electric field is applied to the vibrating rod 2 as shown in FIG. 2 of the first embodiment. It is distributed uniformly and strongly in the depth direction of 20 and vibration loss can be kept low. This reduction in vibration loss Is also evident from the CI values shown in FIG.
  • the groove 220 a is provided only in the vibrating rod 220 as shown in FIG. 6 (a). However, as shown in FIG. A groove 320a may be formed over the fixing portion 330. In this case, since the stress due to vibration can be confined in the groove 320a, when the vibrator is fixed, the fluctuation of the frequency can be suppressed.
  • the 32.768 kHz tuning-fork type crystal resonator 200 with a CI value within the appropriate range 200, 300 is packaged in a small package, for example, 3.2 mm (Y-axis direction), 1 6 mm (X-axis direction) 0.9 mm (Z-axis direction) makes it possible to use it for small mobile phones and IC cards.
  • the description has been given by taking as an example a tuning fork type crystal resonator 200 of 32.738 kHz, but a tuning fork type crystal resonator of 15 kHz to 150 kHz is described. Clearly, it is applicable.
  • the tuning-fork type resonator 100 and the tuning-fork type crystal resonator 200 according to each of the above-described embodiments can be used not only for small mobile phones and IC cards but also for other electronic devices such as gyros and mobile information. It is clear that the present invention can be used for terminals, televisions, video equipments, so-called boomboxes, personal computer built-in clocks, and clocks.
  • the present invention is suitable for use as a vibrator, for example, a vibrator such as a tuning-fork type crystal vibrator or a gyro sensor, and an electronic apparatus equipped with the vibrator.
  • a vibrator such as a tuning-fork type crystal vibrator or a gyro sensor
  • an electronic apparatus equipped with the vibrator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A vibrator includes thin vibrating rods having grooves (120a) in their upper and/or lower surfaces, in which electrodes (140a) are formed. This vibrator can be easily machined in a reduced size, and it has a low CI value.

Description

明 細 振動子及び振動子を搭載した電子機器 技術分野  Description Oscillator and electronic equipment with oscillator
本発明は、 振動子、 例えば音叉型水晶振動子やジャイロセンサー等のような振動 子及び振動子を搭載する電子機器の構造に関する。 背景技術  The present invention relates to a vibrator, for example, a vibrator such as a tuning-fork type quartz vibrator or a gyro sensor, and an electronic device mounted with the vibrator. Background art
従来、 振動子である所謂、 音叉型水晶振動子は、 例えば第 1 1図に示すように形 成されていた。  Conventionally, a so-called tuning-fork type crystal resonator, which is a resonator, has been formed, for example, as shown in FIG.
第 1 1図において、 音叉型水晶振動片 1 0は、 例えば共振周波数が 3 2 . 7 6 8 k Hであり、 これは高精度の振動子であるため、 時計やその他の時計付き機器に広 く用いられている。  In FIG. 11, the tuning-fork type quartz vibrating piece 10 has, for example, a resonance frequency of 32.768 kHz, which is a high-precision vibrator, and is widely used in watches and other clock-equipped devices. Commonly used.
具体的には、 第 1 1図に示すように、 音叉型水晶振動片 1 0は、 基部 1 1を有し ており、 この基部 1 1から図において上方に向かって振動細棒 1 2が 2本設けられ ている。  More specifically, as shown in FIG. 11, the tuning-fork type quartz vibrating piece 10 has a base 11, and the vibrating rod 12 extends upward from the base 11 in the figure. There is a book.
この振動細棒 1 2、 1 2の各々の幅は、 図示のように通常約 0 . 2 3 mm程度で あり、 前記基部 1 1の幅は、 図示のように通常約 0 . 6 9 mm程度となっている。 そして、 この基部 1 1と振動細棒 1 2とを合わせた長さは、 図示のように通常約 3 . 6 mm程度となっている。  The width of each of the vibrating rods 12 and 12 is usually about 0.23 mm as shown in the figure, and the width of the base 11 is usually about 0.69 mm as shown in the figure. It has become. The total length of the base 11 and the vibrating rod 12 is usually about 3.6 mm as shown in the figure.
また、 この振動細棒 1 2、 1 2は、 振動するため、 第 1 2図 (第 1 2図は、 第 1 1図の A— A ' 概略断面である。) に示すように振動細棒 1 2の 4辺に電極 1 3 a及 び電極 1 3 bが形成されていた。 すなわち、 電極 1 3 aは、 図において振動細棒 1 2の上部と下部に配置され、 電極 1 3 bは、 振動細棒 1 2の両側部 1 3 b、 1 3 b に配置されている。  In addition, since the vibrating rods 12 and 12 vibrate, as shown in FIG. 12 (FIG. 12 is a schematic cross section taken along line AA ′ of FIG. 11). Electrodes 13 a and 13 b were formed on four sides of 12. That is, the electrodes 13a are arranged on the upper and lower portions of the vibrating rod 12 in the figure, and the electrodes 13b are disposed on both sides 13b, 13b of the vibrating rod 12.
ここで、 電極 1 3 aと電極 1 3 bに互いに交互に極性の異なった電圧が印加され る。 例えばある瞬間に、 1 3 aにプラスの電圧、 1 3 bにマイナスの電圧が印加さ れる。 このように電圧が振動細棒 12に印加されることにより、 振動細棒 12の 内部には、 第 12図の矢印に示すように電界が発生する。 Here, voltages having different polarities are alternately applied to the electrodes 13a and 13b. For example, at one moment, a positive voltage is applied to 13a and a negative voltage is applied to 13b. It is. When a voltage is applied to the vibrating rod 12, an electric field is generated inside the vibrating rod 12, as indicated by an arrow in FIG.
この電界によって、 振動細棒 12の水晶が伸び縮みし、 振動細棒 12が振動する ようになっている。  Due to this electric field, the crystal of the vibrating rod 12 expands and contracts, and the vibrating rod 12 vibrates.
このように振動をする音叉型水晶振動片 10は、 図示しない保護器内に収容され 、 サ一フヱイスマウン トデバイス (SMD) 等として、 時計等の発振回路の発振源 として用いられる。 この場合の SMDのパッケージとしては、 例えば音叉型水晶振 動子 10の長手方向に、 約 5mm程度、 短手方向に約 2 mm程度のものが用いられ ている。  The tuning-fork type crystal vibrating piece 10 that vibrates in this manner is housed in a protector (not shown), and is used as a surface mount device (SMD) or the like as an oscillation source of an oscillation circuit such as a clock. As the SMD package in this case, for example, a tuning fork type crystal resonator 10 having a length of about 5 mm in the longitudinal direction and a length of about 2 mm in the short direction is used.
また、 上述の音叉型水晶振動片 10の第 12図における上下方向である厚みは、 約 0. 1 mm程度のものが用いられており、 上述の SMDのパッケージもこの音叉 型水晶振動片 10の厚みに対応した厚みを有するようになつている。  The thickness of the above-mentioned tuning-fork type quartz vibrating piece 10 in the vertical direction in FIG. 12 is about 0.1 mm, and the above-mentioned SMD package is also used for this tuning-fork type quartz vibrating piece 10. It has a thickness corresponding to the thickness.
ところで、 このような音叉型水晶振動片 10は、 安定した発振周波数 (例えば 3 2. 768 kH) を維持することと、 振動細棒 12の振動損失を抑えるため、 低い CI値 (クリスタルインピーダンス又は等価直列抵抗 Rr) を保持することが必要 となっている。  By the way, such a tuning-fork type crystal vibrating piece 10 has a low CI value (crystal impedance or equivalent) in order to maintain a stable oscillation frequency (for example, 32.768 kHz) and to suppress the vibration loss of the vibrating rod 12. It is necessary to maintain the series resistance (Rr).
一方、 近年の時計や電子機器は、 小型化の傾向にあり、 音叉型水晶振動片 10も 小型化が要請されている。 この音叉型水晶振動片 10全体を小型化するには、 振動 細棒 12の第 1 1図における上下方向である 2. 4 mmを更に短くする必要がある 。 このように、 振動細棒 12を短くすると共振周波数が高くなり、 所望の周波数よ り高い周波数と成ってしまう。  On the other hand, watches and electronic devices in recent years have tended to be downsized, and the tuning fork type quartz vibrating piece 10 has also been required to be downsized. In order to reduce the size of the entire tuning-fork type quartz vibrating piece 10, it is necessary to further shorten the vertical dimension 2.4 mm of the vibrating rod 12 in FIG. 11. As described above, when the vibrating rod 12 is shortened, the resonance frequency increases, and the frequency becomes higher than a desired frequency.
このため、 振動細棒 12の幅 (図 1 1においては、 0. 23 mm) を細くして共 振周波数が上昇するのを防ぐ必要があつた。  For this reason, it was necessary to reduce the width of the vibrating rod 12 (0.23 mm in Fig. 11) to prevent the resonance frequency from rising.
しかし、 このように振動細棒 12の幅を狭くすると、 振動細棒 12の振動損失で ある I値が上昇してしまうという問題があった。  However, when the width of the vibrating rod 12 is reduced in this way, there is a problem that the I value, which is the vibration loss of the vibrating rod 12, increases.
すなわち、 第 13図に示すように、 振動細棒 22の幅 (図において横方向) を狭 くすると、 電極 23 aの幅が大きくとれないため電界の加わる面積が減少する。 す なわち第 12図と比較して電界はその中央付近ほど弱まる。 (図では電界の強度を矢 印の数で示した。 すなわち矢印の数が多いほど電界強度は大きくなることを示して いる。) That is, as shown in FIG. 13, when the width of the vibrating rod 22 (in the horizontal direction in the figure) is reduced, the width of the electrode 23a cannot be increased, and the area to which an electric field is applied decreases. In other words, the electric field weakens near its center as compared to Fig. 12. (In the figure, the electric field strength Indicated by the number of marks. In other words, it indicates that the electric field intensity increases as the number of arrows increases. )
従って、 電極 2 3 aと電極 2 3 bとの間に生じた電界 (図において矢印) は、 図 示のように振動細棒 2 2全体に分布しなくなり、 第 1 2図の振動細棒 1 2と同じ振 動は生ぜず、 小さくなつてしまう。  Therefore, the electric field (arrow in the figure) generated between the electrode 23a and the electrode 23b is not distributed over the entire vibrating rod 22 as shown in FIG. The same vibration as in (2) does not occur, but becomes smaller.
一方、 この振動損失である C I値の上昇を防ぐには、 第 1 2図に示す音叉型水晶 振動片 1 0上下方向である厚み、 例えば約 0 . 1 mm程度を、 更に薄くする必要が あるが、 この場合、 加工が著しく困難になり、 製品の歩留りが悪化するという問題 もめった。  On the other hand, in order to prevent the CI value, which is the vibration loss, from rising, it is necessary to further reduce the thickness of the tuning-fork type quartz vibrating piece 10 shown in FIG. 12 in the vertical direction, for example, about 0.1 mm. However, in this case, processing became extremely difficult, and the yield of the product deteriorated.
本発明は、 以上の点に鑑み、 C I値を低く抑え、 且つ加工が容易な小型の振動子 を提供することを目的とする。 発明の開示  In view of the above, an object of the present invention is to provide a small-sized vibrator in which the CI value is suppressed to a low value and which is easy to process. Disclosure of the invention
前記目的は、 請求の範囲第 1項の発明によれば、 少なくとも 1 本以上の圧電材料 からなる振動細棒を有する振動子において、 該振動細棒の表面及び裏面のいずれか 又はその両方に溝が形成されており、 かつ、 この溝の中に電極が形成されているこ とを特徴とする振動子により、 達成される。  According to the first aspect of the present invention, there is provided a vibrator having a vibrating rod made of at least one or more piezoelectric materials, wherein a groove is formed on one or both of a front surface and a back surface of the vibrating rod. This is achieved by a vibrator characterized in that a groove is formed and an electrode is formed in this groove.
前記構成によれば、 該振動細棒の表面及び裏面のいずれか又はその両方に溝が形 成されており、 かつ、 この溝の中に電極が形成されているので、 加工が容易である と共に、 前記振動細棒の深さ方向に一定で強く分布し、 C I値の上昇を抑えること ができる。  According to the configuration, a groove is formed on one or both of the front surface and the back surface of the vibrating rod, and an electrode is formed in the groove, so that processing is easy. However, the vibrating rod is uniformly and strongly distributed in the depth direction, so that an increase in CI value can be suppressed.
また、 好ましくは、 請求の範囲第 2項の発明によれば、 請求の範囲第 1項の構成 において、 前記振動子が音叉型の水晶振動子である。  Preferably, according to the second aspect of the present invention, in the configuration of the first aspect, the vibrator is a tuning-fork type quartz vibrator.
前記構成によれば、 前記音叉型の水晶振動子において、 前記振動細棒に配置され た前記電極から生じる電界が、 前記振動細棒に広く分布し、 C I値の上昇を抑える ことができる。  According to the configuration, in the tuning-fork type quartz resonator, an electric field generated from the electrode disposed on the vibrating rod is widely distributed on the vibrating rod, and an increase in CI value can be suppressed.
前記目的は、 請求範囲第 3項の発明によれば、 複数の振動細棒が形成されてなる 振動子において、 前記振動細棒の第 1の表面及び第 2の表面に溝部が形成されてな り、 前記溝部の少なくとも一部に第 1の電極が形成されてなり、 前記振動細棒のう ち前記溝部が形成された表面以外の面の少なくとも一部に第 2の電極が形成されて なる振動子により、 達成される。 According to the third aspect of the present invention, there is provided a vibrator having a plurality of vibrating rods, wherein a groove is formed on a first surface and a second surface of the vibrating rod. A first electrode is formed on at least a part of the groove, and a second electrode is formed on at least a part of a surface of the vibrating rod other than the surface on which the groove is formed. This is achieved by the oscillator.
前記構成によれば、 前記振動細棒の第 1の表面及び第 2の表面に溝部が形成され てなり、 前記溝部の少なくとも一部に第 1の電極が形成されているので、 前記振動 細棒のうち前記溝部が形成された表面以外の面の少なくとも一部に形成されている 第 2の電極と前記溝部の第 1の電極との間で生じる電界が、 前記振動細棒の深さ方 向に一定で強く分布し、 振動子の振動細棒の C I値の上昇を抑えることができる。 また、 好ましくは請求の範囲第 4項の発明によれば、 請求の範囲第 3項の構成に おいて、 前記第 1の電極は、 少なくとも前記振動細棒の根元付近に形成されてなる 振動子である。  According to the above configuration, since the groove is formed on the first surface and the second surface of the vibrating rod, and the first electrode is formed on at least a part of the groove, the vibrating rod is formed. An electric field generated between a second electrode formed on at least a part of a surface other than the surface on which the groove is formed and a first electrode of the groove is formed in the depth direction of the vibrating rod. And the distribution is strong and constant, and the rise of the CI value of the vibrating rod of the vibrator can be suppressed. Preferably, according to the invention of claim 4, in the configuration of claim 3, the first electrode is formed at least near a root of the vibrating rod. It is.
前記構成によれば、 前記第 1の電極は、 少なくとも前記振動細棒の根元付近に形 成されてなるので、 前記振動細棒を振動させるに必要な電界を得ることができる。 また、 好ましくは請求の範囲第 5項の発明によれば、 請求の範囲第 3項の構成に おいて、 前記第 1の電極は前記溝部の側面のみに形成されてなる振動子である。 また、 好ましくは請求の範囲第 6項の発明によれば、 請求の範囲第 3項の構成に おいて、 前記溝部の一部に貫通穴が形成されている振動子である。  According to the configuration, since the first electrode is formed at least near the root of the vibrating rod, an electric field required to vibrate the vibrating rod can be obtained. Preferably, according to the invention of claim 5, in the configuration of claim 3, the first electrode is a vibrator formed only on a side surface of the groove. Further, preferably according to the invention of claim 6, in the configuration of claim 3, there is provided a vibrator in which a through hole is formed in a part of the groove.
また、 請求の範囲第 7項に記載の発明によれば、 請求の範囲第 3項の構成におい て、 前記振動細棒の幅と前記振動細棒の厚さの関係が、 0 . 6 x (前記振動細棒) ≤ (前記振動細棒の幅) のように設定されてなる振動子である。  According to the invention set forth in claim 7, in the configuration according to claim 3, the relationship between the width of the vibrating rod and the thickness of the vibrating rod is 0.6 x ( The vibrator is set as follows: (the vibrating rod) ≤ (width of the vibrating rod).
前記構成によれば、 前記振動細棒の幅と前記振動細棒の厚さの関係が、 0 . 6 x (前記振動細棒) ≤ (前記振動細棒の幅) のように設定されてなるので、 従来の構 成である ( 1 . 0 X振動細棒の厚みく振動細棒の幅) の関係と異なり, 前記振動細 棒の幅を前記振動細棒の厚みに対して十分小さく取れるため、 振動子全体の小型化 が可能となる。  According to the above configuration, the relationship between the width of the vibrating rod and the thickness of the vibrating rod is set as 0.6 x (the vibrating rod) ≤ (the width of the vibrating rod). Therefore, unlike the conventional configuration of (1.0 X thickness of vibrating rod, width of vibrating rod), the width of the vibrating rod can be made sufficiently smaller than the thickness of the vibrating rod. In addition, the size of the entire vibrator can be reduced.
また、 請求の範囲第 8項に記載の発明によれば、 請求の範囲第 3項の構成におい て、 前記各振動細棒がそれぞれほぼ同じ構造に形成されてなる振動子である。  Further, according to the invention set forth in claim 8, in the configuration set forth in claim 3, the vibrator is formed such that each of the vibrating fine rods has substantially the same structure.
前記構成によれば、 前記各振動細棒がそれぞれほぼ同じ構造に形成されているの で、 振動漏れを防止し、 精度の高い振動子を得ることができる。 According to the configuration, each of the vibrating rods is formed to have substantially the same structure. Thus, vibration leakage can be prevented and a highly accurate vibrator can be obtained.
また、 請求の範囲第 9項に記載の発明によれば、 請求の範囲第 3項の構成におい て、 前記第 2の電極が複数の面に形成されてなる振動子である。  According to a ninth aspect of the present invention, in the configuration according to the third aspect, there is provided a vibrator in which the second electrode is formed on a plurality of surfaces.
また、 請求の範囲第 1 0項の発明によれば、 請求の範囲第 3項の構成において、 前記第 2の電極同 tを接続するための第 3の電極が前記第 1の表面に形成されてな る振動子である。  According to the tenth aspect of the present invention, in the configuration of the third aspect, a third electrode for connecting the second electrode t is formed on the first surface. This is a vibrator.
また、 請求の範囲第 1 1項の発明によれば、 請求の範囲第 3項の構成において、 前記第 2の電極同士を接続するための第 3の電極が前記第 2の表面に形成されてな る振動子である。  According to the invention of claim 11, in the configuration of claim 3, a third electrode for connecting the second electrodes is formed on the second surface. This is a vibrator.
また、 請求の範囲第 1 2項の発明によれば、 請求の範囲第 3項の構成において、 前記第 2の電極同士を接続するための第 3の電極が前記振動細棒の先端の面に形成 されてなる振動子である。  According to the invention of claim 12, in the configuration of claim 3, a third electrode for connecting the second electrodes to each other is provided on a surface of a tip end of the vibrating rod. This is a vibrator formed.
また、 請求の範囲第 1 3項の発明によれば、 請求の範囲第 3項の構成において、 前記振動子の周波数が 1 K H z乃至 2 0 0 K H zの範囲で設定されてなる振動子で ある。  According to the invention of claim 13, in the configuration of claim 3, the frequency of the vibrator is set in a range of 1 KHz to 200 KHz by a vibrator. is there.
また、 請求の範囲第 1 4項の発明によれば、 請求の範囲第 1 3項の構成において 、 前記振動子の周波数が 1 6 K H z乃至 1 2 0 K H zの範囲で設定されてなる振動 子である。  Further, according to the invention of claim 14, in the configuration of claim 13, the vibration wherein the frequency of the vibrator is set in a range of 16 KHz to 120 KHz. I am a child.
また、 請求の範囲第 1 5項の発明によれば、 請求の範囲第 1 4項の構成において 、 前記振動子の周波数が 1 6 K H z乃至 3 3 K H zの範囲で設定してなる振動子で ある。  According to the invention of claim 15, in the configuration of claim 14, the vibrator wherein the frequency of the vibrator is set in a range of 16 KHz to 33 KHz. It is.
また、 請求の範囲第 1 6項の発明によれば、 請求の範囲第 3項乃至請求の範囲第 1 2項のいずれかの構成において、 前記第 1の電極、 前記第 2の電極若しくは前記 第 3の電極の表面には、 絶縁膜が形成されてなる振動子である。  According to the invention of claim 16, in the configuration according to any one of claims 3 to 12, the first electrode, the second electrode, or the second electrode. The vibrator has an insulating film formed on the surface of the third electrode.
前記構成によれば、 前記第 1の電極、 前記第 2の電極若しくは前記第 3の電極の 表面には、 絶縁膜が形成されているので、 振動子全体を小型化しても前記第 1の電 極、 前記第 2の電極若しくは前記第 3の電極が異物等によりショートするのを防ぐ ことができる。 また、 請求の範囲第 1 7項の発明によれば、 請求の範囲第 1 6項の構成によれば 、 前記絶縁膜は酸化膜若しくは窒化膜からなる振動子である。 According to the configuration, an insulating film is formed on a surface of the first electrode, the second electrode, or the third electrode. Therefore, even if the entire vibrator is downsized, the first electrode is formed. The pole, the second electrode, or the third electrode can be prevented from being short-circuited by a foreign substance or the like. According to the invention of claim 17, according to the configuration of claim 16, the insulating film is a vibrator made of an oxide film or a nitride film.
前記構成によれば、 前記絶縁膜は酸化膜若しくは窒化膜からなるので、 振動子全 体を小型化しても前記第 1の電極、 前記第 2の電極若しくは前記第 3の電極が異物 等によりショー卜するのを防ぐことができる。  According to the above configuration, since the insulating film is made of an oxide film or a nitride film, the first electrode, the second electrode, or the third electrode may be exposed to foreign matter even if the entire vibrator is downsized. Can be prevented.
前記目的は、 請求の範囲第 1 8項の発明によれば、 複数の振動細棒より形成され てなる振動子において、 前記振動細棒の一部に貫通孔が形成されてなり、 前記貫通 孔の少なくとも一部に第 1の電極が形成されてなり、 前記振動細棒のうち前記第 1 の電極と対向する面に第 2の電極が少なくとも形成されてなる振動子により、 達成 される。  The object is, according to the invention of claim 18, a vibrator formed by a plurality of vibrating fine rods, wherein a through hole is formed in a part of the vibrating fine rod; This is achieved by a vibrator in which a first electrode is formed on at least a part of the vibrating bar, and a second electrode is formed at least on a surface of the vibrating fine bar facing the first electrode.
また、 請求の範囲第 1 9項の発明によれば、 請求の範囲第 1 8項の構成において 、 前記振動細棒の幅と前記振動細棒の厚さの関係が、 0 . 6 x (前記振動細棒の厚 さ) ≤ (前記振動細棒の幅) のように設定されてなる振動子である。  According to the invention of claim 19, in the configuration of claim 18, the relationship between the width of the vibrating rod and the thickness of the vibrating rod is 0.6 x (the The vibrator is configured such that the thickness of the vibrating rod is ≤ (the width of the vibrating rod).
前記構成によれば、 前記振動細棒の幅と前記振動細棒の厚さの関係が、 0 . 6 x (前記振動細棒の厚さ) ≤ (前記振動細棒の幅) のように設定されてなるので、 従 来の構成である ( 1 . 0 X振動細棒の厚みく振動細棒の幅) の関係と異なり, 前記 振動細棒の幅を前記振動細棒の厚みに対して十分小さく取れるため、 振動子全体の 小型化が可能となる。  According to the configuration, the relationship between the width of the vibrating rod and the thickness of the vibrating rod is set as 0.6 x (thickness of the vibrating rod) ≤ (width of the vibrating rod). In contrast to the conventional configuration (1.0 X thickness of the vibrating rod and width of the vibrating rod), the width of the vibrating rod is sufficient for the thickness of the vibrating rod. Since it can be made small, the whole vibrator can be downsized.
また、 請求の範囲第 2 0項の発明によれば、 請求の範囲第 1 8項の構成において 、 前記各振動細棒がそれぞれほぼ同じ構造に形成されてなる振動子である。  Further, according to the invention of claim 20, in the configuration of claim 18, the vibrator is formed by each of the vibrating fine rods having substantially the same structure.
前記構成によれば、 前記各振動細棒がそれぞれほぼ同じ構造に形成されているの で、 振動漏れを防止し、 精度の高い振動子を得ることができる。  According to the configuration, since each of the vibrating rods is formed to have substantially the same structure, vibration leakage can be prevented, and a highly accurate vibrator can be obtained.
前記目的は、 請求の範囲第 2 1項の発明によれば、 電気軸を X軸、 機械軸を Y軸 及び光軸を Z軸とした直交座標系を有し、 前記 X軸及び前記 Y軸により形成される 面に関して、 基部が形成されるとともに、 該基部から前記 Y軸に沿って複数の振動 細棒が配置される振動子において、 前記複数の振動細棒の第 1の表面及び第 2の表 面に溝部が形成されてなり、 前記溝部の少なくとも一部に第 1の電極が形成されて なり、 前記溝部が形成された表面以外の面に第 2の電極が形成されてなる振動子に より、 達成される。 According to the invention of claim 21, the object has a rectangular coordinate system in which an electric axis is an X axis, a mechanical axis is a Y axis, and an optical axis is a Z axis, and the X axis and the Y axis are A vibrator in which a base is formed and a plurality of vibrating rods are arranged from the base along the Y-axis, wherein a first surface and a second surface of the plurality of vibrating rods are provided. A vibrator having a groove formed on the surface of the groove, a first electrode formed on at least a part of the groove, and a second electrode formed on a surface other than the surface on which the groove is formed; To Is achieved.
前記構成によれば、 前記複数の振動細棒の第 1の表面及び第 2の表面に溝部が形 成されてなり、 前記溝部の少なくとも一部に第 1の電極が形成されてなり、 前記溝 部が形成された表面以外の面に第 2の電極が形成されているので、 高精度の振動子 の振動細棒に設けられた前記第 2の電極と前記溝部の第 1の電極との間で生じる電 界が、 前記振動細棒に深さ方向に一定で強く分布し、 高精度の振動子の振動細棒の C I値の上昇を抑えることができる。  According to the configuration, a groove is formed on the first surface and the second surface of the plurality of vibrating rods, and a first electrode is formed on at least a part of the groove. Since the second electrode is formed on a surface other than the surface on which the portion is formed, a gap between the second electrode provided on the vibrating rod of the high-precision vibrator and the first electrode of the groove is provided. The electric field generated by the vibration is uniformly and strongly distributed in the depth direction of the vibrating rod, and it is possible to suppress an increase in the CI value of the vibrating rod of the vibrator with high precision.
また、 請求の範囲第 2 2項の発明によれば、 請求の範囲第 2 1項の構成において 、 前記振動細棒を前記 X軸及び前記 Z軸により形成される面における断面が略 H形 状に形成されてなる振動子である。  According to the invention of claim 22, in the configuration of claim 21, a cross section of the vibrating rod in a plane formed by the X axis and the Z axis is substantially H-shaped. This is a vibrator formed on the substrate.
前記構成によれば、 前記振動細棒を前記 X軸及び前記 Z軸により形成される面に おける断面が略 H形状に形成されているので、 前記溝部の第 1の電極と前記第 2 の 電極間で生じる電界を、 前記振動細棒により深さ方向に一定で強く分布させること ができる。  According to the configuration, the vibrating rod has a substantially H-shaped cross section in a plane formed by the X axis and the Z axis. Therefore, the first electrode and the second electrode of the groove portion are formed. The electric field generated therebetween can be uniformly and strongly distributed in the depth direction by the vibrating rod.
また、 請求の範囲第 2 3項の発明によれば、 請求の範囲第 2 1項の構成において 、 前記第 1の表面及び前記第 2の表面は、 前記 X軸及び前記 Y軸により形成される 面である振動子である。  According to the invention of Claim 23, in the configuration of Claim 21, the first surface and the second surface are formed by the X axis and the Y axis. A vibrator that is a surface.
また、 請求の範囲第 2 4項の発明によれば、 請求の範囲第 2 1項の構成において 、 前記 Z軸を前記振動子の厚さとしたとき、 前記振動子の厚さと前記振動細棒の幅 がほぼ同じである振動子である。  According to the invention of Claim 24, in the configuration of Claim 21, when the Z axis is the thickness of the vibrator, the thickness of the vibrator and the thickness of the vibrating rod are reduced. The transducers have almost the same width.
また、 請求の範囲第 2 5項の発明によれば、 請求の範囲第 2 1項の構成において 、 前記第 1の電極及び前記第 2の電極は、 異なる材料により形成された層が複数層 積層されてなる積層膜である振動子である。  According to the invention of claim 25, in the configuration of claim 21, the first electrode and the second electrode are formed by stacking a plurality of layers formed of different materials. This is a vibrator, which is a laminated film formed.
前記構成によれば、 前記第 1の電極及び前記第 2の電極は、 異なる材料により形 成された層が複数層積層されてなる積層膜であるので、 これら積層された相互の層 で密着性を高めることができる。  According to the above configuration, since the first electrode and the second electrode are a laminated film in which a plurality of layers formed of different materials are laminated, adhesion between these laminated layers is improved. Can be increased.
また、 請求の範囲第 2 6項の発明によれば、 請求の範囲第 2 1項の構成において 、 前記第 1の電極及び前記第 2の電極の表面には酸化膜が形成されてなる振動子で ある。 According to the invention of Claim 26, in the configuration of Claim 21, the vibrator comprising an oxide film formed on a surface of the first electrode and the second electrode. so is there.
前記構成によれば、 前記第 1の電極及び前記第 2の電極の表面には酸化膜が形成 されているので、 振動子全体を小型化しても前記第 1の電極、 前記第 2の電極若し くは前記第 3の電極が異物等によりショートするのを防ぐことができる。  According to the configuration, since an oxide film is formed on the surfaces of the first electrode and the second electrode, even if the entire vibrator is downsized, the first electrode and the second electrode In other words, it is possible to prevent the third electrode from being short-circuited by a foreign substance or the like.
また、 請求の範囲第 2 7項の発明によれば、 請求の範囲第 2 5項の構成において 、 前記第 1の電極及び前記第 2の電極は、 クロム、 金、 アルミニウム、 ニッケル若 しくはチタンのいずれかにより形成されてなる振動子である。  According to the invention of claim 27, in the constitution of claim 25, the first electrode and the second electrode are formed of chromium, gold, aluminum, nickel, or titanium. A vibrator formed by any one of the above.
また、 請求の範囲第 2 8項の発明によれば、 請求の範囲第 1項乃至請求の範囲第 2 7項のいずれかに記載の構成の振動子を搭載した電子機器である。 図面の簡単な説明  Further, according to the invention of claim 28, there is provided an electronic device equipped with the vibrator according to any one of claims 1 to 27. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施の形態に係る振動子の斜視図である。 第 2図は 、 第 1図の振動子の振動細棒の断面図である。  FIG. 1 is a perspective view of a vibrator according to a first embodiment of the present invention. FIG. 2 is a sectional view of a vibrating rod of the vibrator of FIG.
第 3図は、 第 2の実施の形態に係る電極なしの音叉型水晶振動子の斜視図である 第 4図は、 第 3図の音叉型水晶振動子に電極を付けた状態を示す音叉型水晶振動 子の斜視図である。  FIG. 3 is a perspective view of a tuning-fork type crystal resonator without electrodes according to the second embodiment. FIG. 4 is a tuning fork-type crystal resonator in which electrodes are attached to the tuning-fork type crystal resonator of FIG. FIG. 3 is a perspective view of a crystal resonator.
第 5図は、 第 3図の音叉型水晶振動子の寸法等を示す図である。  FIG. 5 is a diagram showing dimensions and the like of the tuning-fork type quartz resonator of FIG.
第 6図 (a ) は、 第 4図の音叉型水晶振動子の振動細棒と電極の配置を示す断面 図である。  FIG. 6 (a) is a cross-sectional view showing the arrangement of the vibrating rods and electrodes of the tuning-fork type quartz resonator of FIG.
第 6図 (b ) は、 第 6図 (a ) とは異なる、 他の電極の配置状態の例を示す断面 図である。  FIG. 6 (b) is a cross-sectional view different from FIG. 6 (a) and showing an example of an arrangement state of another electrode.
第 6図 (c ) は、 第 6図 (a ) 及び (b ) とは異なる、 他の電極の配置状態の例 を示す断面図である。  FIG. 6 (c) is a cross-sectional view showing an example of an arrangement state of another electrode, which is different from FIGS. 6 (a) and (b).
第 7図は、 貫通孔を有する振動細棒と電極の配置を示す概略断面図である。  FIG. 7 is a schematic sectional view showing the arrangement of a vibrating rod having a through hole and electrodes.
第 8図は、 音叉型水晶振動子における溝と大気中 C Iとの関係を示す図である。 第 9図は、 他の溝形成の例を示す斜視図である。  FIG. 8 is a diagram showing a relationship between a groove in a tuning-fork type quartz resonator and atmospheric CI. FIG. 9 is a perspective view showing another example of groove formation.
第 1 0図は、 振動細棒に形成される溝の数を増加した例を示す断面図である。 第 1 1図は、 従来の振動子の寸法等を示す図である。 FIG. 10 is a sectional view showing an example in which the number of grooves formed in the vibrating rod is increased. FIG. 11 is a diagram showing dimensions and the like of a conventional vibrator.
第 1 2図は、 従来の振動子の振動細棒の断面図である。  FIG. 12 is a cross-sectional view of a vibrating rod of a conventional vibrator.
第 1 3図は、 従来の振動子の振動細棒の幅を狭くした状態を示す断面図である。 発明を実施するための最良の形態  FIG. 13 is a cross-sectional view showing a state in which the width of the vibrating rod of the conventional vibrator is reduced. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態を図面に基づいて説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(第 1の実施の形態)  (First Embodiment)
第 1図は本発明の第 1の実施の形態に係る振動子を示す図である。 図 1は、 例と して時計用に用いられる 3 2 K H zの水晶で構成された音叉型の振動子 1 0 0の外 観を示している。 この振動子 1 0 0は、 通常二本の振動細棒 1 2 0と基部である固 定部 1 3 0とから構成されている。  FIG. 1 is a diagram showing a vibrator according to a first embodiment of the present invention. FIG. 1 shows the appearance of a tuning-fork type vibrator 100 made of a 32 KHz crystal used for a watch as an example. The vibrator 100 is generally composed of two vibrating fine rods 120 and a fixed part 130 as a base.
固定部 1 3 0は、 パッケージとの固定や、 電極を外部に取り出すためのパッ ド部 分を形成するために設けられている。  The fixing portion 130 is provided for fixing to a package and forming a pad portion for taking out an electrode to the outside.
二本の振動細棒 1 2 0は、 これらが互いに近づいたり離れたりする方向に振動す る。 この振動細棒 1 2 0の表面と裏面のいずれかあるいは両方に溝 1 2 0 aを形成 する。 溝 1 2 0 aの形成方法は、 振動子 1 0 0の材料を溶解することが可能なエツ チング液を用いてフォトリソグラフィーを応用した加工等が用いられる。 水晶製の 振動子ならば、 弗酸系のェッチング液で加工が可能である。  The two vibrating rods 120 vibrate in a direction in which they approach or move away from each other. A groove 120a is formed on one or both of the front and back surfaces of the vibrating rod 120. As a method for forming the groove 120a, processing using photolithography using an etching liquid capable of dissolving the material of the vibrator 100 is used. A crystal resonator can be processed with a hydrofluoric acid-based etching solution.
第 1図では溝 1 2 0 aは固定部 1 3 0の一部分まで形成されているが、 振動子 1 0 0の特性と加工プロセスによってはこの限りではない。 また溝 1 2 0 aの長さで あるが、 できるだけ長く振動細棒 1 2 0の長さすべてにわたって溝 1 2 0 aを設け た方が C I値は減少する。 しかし、 電極間容量は増加するため振動子の仕様に合わ せて溝 1 2 0 aの長さは調節される。 また、 電極の引き回し等の関係や、 振動細棒 1 2 0の先端に重りとなる材料を付着させ、 周波数調整を行う必要がある場合には 振動細棒 1 2 0上のすべてにわたって溝 1 2 0 aを設ける必要はない。  In FIG. 1, the groove 120a is formed to a part of the fixed portion 130, but this is not limited depending on the characteristics of the vibrator 100 and the processing process. Although the length of the groove 120a is set, the CI value is reduced by providing the groove 120a over the entire length of the vibrating rod 120 as long as possible. However, since the interelectrode capacitance increases, the length of the groove 120a is adjusted according to the specifications of the vibrator. In addition, if it is necessary to adjust the frequency by attaching a weight material to the tip of the vibrating rod 120, or to adjust the frequency, etc. There is no need to provide 0a.
ここで溝 1 2 0 aを設けることによって何故、 特性が向上するかを説明する。 第 2図は、 本実施の形態に係る振動子 1 0 0における振動細棒 1 2 0の断面図で ある。 本実施の形態に係る振動細棒 1 2 0では電界 1 6 0は振動細棒 1 2 0の深さ方向 全体にわたって分布する。 すなわち、 電極 1 4 0 aが溝 1 2 0 aの中まで形成され ているため電界 1 6 0は深さ方向まで分布しやすくなる。 この場合の溝 1 2 0 aの 深さは深い方が良い。 Here, the reason why the characteristics are improved by providing the groove 120a will be described. FIG. 2 is a cross-sectional view of vibrating rod 120 in vibrator 100 according to the present embodiment. In the vibrating rod 120 according to the present embodiment, the electric field 160 is distributed over the entire vibrating rod 120 in the depth direction. That is, since the electrode 140a is formed into the groove 120a, the electric field 160 is easily distributed in the depth direction. In this case, the depth of the groove 120a is better.
振動細棒が 1 0 0マイクロメートルの音叉型振動子で、 基板 (固定部及び振動細 棒) の厚みが 1 0 0マイクロメートルの場合、 等価直列抵抗 (C I値) は大気圧中 で測定したところ 1ギガオームであった。 振動細棒 1 2 0の縁を 1 5マイクロメ一 トル残し深さ 2 0マイクロメ一トルの溝 1 2 0 aを振動細棒 1 2 0の両面に形成し た本実施の形態に係る音叉型振動子 1 0 0では、 大気中の等価直列抵抗 (C I値) は 6 0 0キロオームとなり通常の音叉型振動子と変わらない特性を有する事がわか つた。  When the vibrating rod is a 100-micrometer tuning-fork vibrator and the thickness of the substrate (fixed part and vibrating rod) is 100 micrometers, the equivalent series resistance (CI value) was measured at atmospheric pressure. However, it was 1 gigaohm. The tuning-fork type vibration according to the present embodiment in which the edge of the vibrating rod 120 is left at 15 micrometer and the depth 120 micrometer groove 120 is formed on both surfaces of the vibrating rod 120 For element 100, the equivalent series resistance (CI value) in the atmosphere was 600 kOhm, indicating that it had the same characteristics as a normal tuning fork resonator.
電極 1 4 0 aを深さ方向すべてにわたって形成できるならば、 溝 1 2 0 aは表面 、 裏面で繋がってしまっても良い。 すなわち、 振動細棒 1 2 0にスリツ ドを入れた ような構造であっても良い。  If the electrode 140a can be formed in the entire depth direction, the groove 120a may be connected on the front surface and the back surface. That is, a structure in which a slit is inserted in the vibrating rod 120 may be used.
以上述べたように、 本実施の形態によれば、 振動子 1◦ 0の厚さを薄くすること なく特性の良い振動子を供給することが可能となる。 さらに厚さが従来のものと変 わらないため取り扱いが容易で、 歩留まりが落ちないという効果を有する。 そして 、 小型で安価な振動子 1◦ 0を供給することができる。  As described above, according to the present embodiment, it is possible to supply a vibrator having good characteristics without reducing the thickness of vibrator 1 • 0. Furthermore, since the thickness is not different from the conventional one, it is easy to handle and has an effect that the yield does not decrease. And, a small and inexpensive vibrator 1 • 0 can be supplied.
(第 2の実施の形態)  (Second embodiment)
第 3図は、 第 2の実施の形態に係る電極が設けられていない音叉型水晶振動子 2 0 0を示す概略斜視図である。  FIG. 3 is a schematic perspective view showing a tuning-fork type quartz crystal resonator 200 according to the second embodiment without electrodes.
この音叉型水晶振動子 2 0 0は、 例えば水晶の単結晶から切り出され音叉型に加 ェされて形成されている。 このとき、 第 3図に示す X軸が電気軸、 Y軸が機械軸及 び Z軸が光軸となるように水晶の単結晶から切り出されることになる。 このように 電気軸が第 3図の X軸方向に配置されることにより、 高精度が要求される時計及び 時計付き機器全般に好適な音叉型水晶振動子 2 0 0となる。  The tuning-fork type crystal resonator 200 is formed by cutting out, for example, a single crystal of quartz and applying it to a tuning-fork type. At this time, the crystal is cut from a single crystal of crystal such that the X axis shown in FIG. 3 is the electric axis, the Y axis is the mechanical axis, and the Z axis is the optical axis. By arranging the electric shaft in the X-axis direction in FIG. 3, a tuning fork type crystal resonator 200 suitable for a watch and a general device with a watch requiring high accuracy is obtained.
また、 水晶の単結晶から切り出す際、 上述の X軸、 Y軸及び Z軸からなる直交座 標系において、 X軸回りに、 X軸と Y軸とからなる X Y平面を反時計方向に約 1度 乃至 5度傾けた、 所謂水晶 Z板として、 音叉型水晶振動子 2 0 0が形成されること になる。 When cutting from a single crystal of quartz, in the orthogonal coordinate system consisting of the X, Y, and Z axes described above, the XY plane consisting of the X and Y axes is rotated about Every time The tuning-fork type crystal resonator 200 is formed as a so-called crystal Z plate inclined by 5 to 5 degrees.
この音叉型水晶振動子 2 0 0は、 上述の第 1の実施の形態に係る音叉型の振動子 1 0 0と同様に、 基部である固定部 2 3 0と、 この固定部 2 3 0から図において Y 軸方向に突出するように形成された例えば 2本の振動細棒 2 2 0とを有している。 また、 この 2本の振動細棒 2 2 0の第 1及び第 2の表面には、 第 3図に示すように 溝 2 2 0 aがそれぞれ形成されている。  This tuning-fork type crystal resonator 200 is similar to the tuning-fork type resonator 100 according to the first embodiment described above, and has a fixed portion 230 as a base and a fixed portion 230 from the fixed portion 230. In the figure, for example, there are two vibrating fine rods 220 formed so as to protrude in the Y-axis direction. Further, grooves 220a are formed on the first and second surfaces of the two vibrating rods 220, respectively, as shown in FIG.
このように形成されている第 3図に示す音叉型水晶振動子 2 0 0には、 第 4図に 示すように第 1の電極である電極 2 4 0 a, 第 2の電極である電極 2 4 0 b, 第 3 の電極である電極 2 4 0 cが配置されることになる。 すなわち、 電極を固定部 2 3 0から振動細棒 2 2◦にかけて配置するに際し、 電極は振動細棒 2 2 0の側面及び 前記第 1及び第 2の表面には、 それぞれ電極 2 4 0 b、 2 4 0 aが設けられている 。 また、 電極 2 4 0 aは、 振動細棒 2 2 0の溝 2 2 0 aの内部にも設けられている このような電極 2 4 0 a、 2 4 0 bは、 電極 2 4 0 a、 2 4 0 b間に電界を発生 させ、 圧電体である振動細棒 2 2 0を振動させるために設けられている。 さらに、 電極 2 4 0 cは、 振動細棒 2 2 0の二つの側面に形成された第 2の電極、 すなわち 電極 2 4 0 b同士を接続するために設けられたものである。  As shown in FIG. 4, the thus formed tuning-fork type quartz crystal resonator 200 shown in FIG. 3 has an electrode 240 a as a first electrode and an electrode 240 a as a second electrode. 40b, and the electrode 240c as the third electrode will be arranged. That is, when arranging the electrodes from the fixed portion 230 to the vibrating rod 22 °, the electrodes are placed on the side surfaces of the vibrating rod 220 and the first and second surfaces, respectively, with electrodes 240b, 240 a is provided. Further, the electrode 240 a is also provided inside the groove 220 a of the vibrating rod 220 such an electrode 240 a, 240 b is provided with the electrode 240 a, It is provided for generating an electric field between 240 b and vibrating the vibrating fine rod 220 as a piezoelectric body. Further, the electrode 240c is provided for connecting the second electrodes formed on the two side surfaces of the vibrating rod 220, that is, the electrodes 240b.
これらの電極 2 4 0 a、 2 4 0 b , 2 4 0 cは、 具体的には、 複数層、 例えば 2 層から成り、 下地として C r、 上層が A uから形成されている。 この場合、 C rの 代わりに N iや T i等を使用してもよい。  Each of the electrodes 240a, 240b, and 240c is formed of a plurality of layers, for example, two layers, and is formed of Cr as a base and Au as an upper layer. In this case, Ni or Ti may be used instead of Cr.
また、 電極 2 4 0 a, 2 4 0 b , 2 4 0 cとして、 1層からなる場合もあり、 こ のとき例えば A 1層が用いられる。 この他にも、 A 1電極で表面を陽極酸化した電 極や C r電極 1層で、 この C r層の上に保護膜として S i O 2 等を形成する電極も 用いることができる。  Also, the electrodes 240a, 240b, and 240c may be composed of one layer, and in this case, for example, the A1 layer is used. In addition, an electrode whose surface is anodically oxidized with an A1 electrode, or an electrode in which a Cr electrode is used and an SiO 2 layer or the like is formed as a protective film on this Cr layer can also be used.
本実施の形態では、 電極 2 4 0 aは、 第 4図に示すように、 溝 2 2 0 aの内部に 設けられているが、 これに限らず溝 2 2 0 aの複数箇所に分けて配置してもよく、 また、 溝 2 2 0 aの側面又は底面にのみ形成されてもよい。 また、 電極 24 O bは、 第 4図に示すように振動細棒 220の側面に配置されて いるが、 これに限らず、 後述する第 6図 (a) のように、 この電極 24 O bが振動 細棒 220の複数の面に形成されても良い。 In the present embodiment, the electrode 240a is provided inside the groove 220a as shown in FIG. 4, but is not limited to this, and is divided into a plurality of portions of the groove 220a. It may be arranged, or may be formed only on the side surface or bottom surface of the groove 220a. Further, the electrode 24 Ob is disposed on the side surface of the vibrating rod 220 as shown in FIG. 4, but is not limited to this, and as shown in FIG. May be formed on a plurality of surfaces of the vibrating rod 220.
以上のように形成されている音叉型水晶振動子 200は、 例えば共振周波数が 3 2. 768 kHであるにもかかわらず、 従来の 32. 768 k Hの音叉型水晶振動 子と比べ、 小型となっている。 例えば第 5図に示すように構成されている。  The tuning-fork type crystal resonator 200 formed as described above has a smaller size than a conventional 32.768-kHz tuning-fork type crystal resonator, for example, despite its resonance frequency of 32.768 kHz. Has become. For example, it is configured as shown in FIG.
すなわち、 第 5図に示す音叉型水晶振動子 200の Y軸方向の長さは、 例えば約 2. 2mm程度となっており、 音叉型水晶振動子 200の X軸方向の幅は、 約 0. 56mm程度となっている。 この寸法は、 第 10図の従来の音叉型水晶振動片 10 の寸法である、 3. 6mm (Y軸方向)、 0. 69mm (X軸方向) と比べ著しく小 さくなつている。  That is, the length of the tuning-fork type crystal unit 200 shown in FIG. 5 in the Y-axis direction is, for example, about 2.2 mm, and the width of the tuning-fork type crystal unit 200 in the X-axis direction is about 0. It is about 56mm. This dimension is significantly smaller than the dimensions of the conventional tuning-fork type quartz vibrating piece 10 shown in FIG. 10, which are 3.6 mm (Y-axis direction) and 0.69 mm (X-axis direction).
また、 第 5図に示す振動細棒 220の X軸方向の長さは、 例えば約 1. 6 mm程 度であり、 各振動細棒 220の X軸方向の幅は、 例えば 0. 1mm程度となってい る。 このような振動細棒 220の大きさは、 第 10図に示す振動細棒 12の寸法で ある 2. 4mm (Y軸方向)、 0. 23 mm (X軸方向) と比べ、 著しく小さくなつ ている。  Further, the length of the vibrating rod 220 shown in FIG. 5 in the X-axis direction is, for example, about 1.6 mm, and the width of each vibrating rod 220 in the X-axis direction is, for example, about 0.1 mm. It has become. The size of the vibrating rod 220 is significantly smaller than the dimensions of the vibrating rod 12 shown in FIG. 10, which are 2.4 mm (Y-axis direction) and 0.23 mm (X-axis direction). I have.
一方、 この音叉型水晶振動子 200の Z軸方向である音叉型水晶振動子の厚みは 、 例えば約 0. 1 mm程度となっており、 これは、 従来の音叉型水晶振動子 200 の厚みと略同様となっている。 しかし、 本実施の形態に係る音叉型水晶振動子 20 0の振動細棒 220には、 上述のように溝 220 aが形成されており、 この溝 22 0 aは、 振動細棒 220上において Y軸方向に例えば約 1. 3 mm程度の長さに形 成されている。 この溝 220 aの X軸方向の幅は、 第 5図に示すように例えば約 0 . 07mm程度であり、 その Z軸方向の深さは、 例えば約 0. 02mm程度となつ ている。  On the other hand, the thickness of the tuning-fork type crystal unit in the Z-axis direction of the tuning-fork type crystal unit 200 is, for example, about 0.1 mm, which is equivalent to the thickness of the conventional tuning-fork type crystal unit 200. It is almost the same. However, the groove 220a is formed in the vibrating rod 220 of the tuning-fork type crystal resonator 200 according to the present embodiment, as described above. For example, it is formed to have a length of about 1.3 mm in the axial direction. As shown in FIG. 5, the width of the groove 220a in the X-axis direction is, for example, about 0.07 mm, and the depth in the Z-axis direction is, for example, about 0.02 mm.
さらに、 このような小型の音叉型水晶振動子 200に配置される電極 240 a, 240 b, 240 cの厚みは、 例えば下層 C rが 100 Aで上層 A uが 1000 A と成っている。  Further, the thickness of the electrodes 240a, 240b, 240c arranged in such a small tuning-fork type quartz resonator 200 is, for example, 100 A for the lower layer Cr and 1000 A for the upper layer Au.
次に、 以上のような小型の音叉型水晶振動子 200の振動細棒 220の断面を示 したのが第 6図 (a ) である。 第 6図 (a ) に示すように振動細棒 2 2 0には溝 2 2 0 aが図において上下方向にそれぞれ設けられているため、 その断面形状が略 H 形に形成されている。 そして、 この 2力所の溝 2 2 0 aには、 それぞれ電極 2 4 0 aが設けられている。 また、 振動細棒 2 2 0の両側面にも電極 2 4 0 bがそれぞれ 設けられている。 Next, a cross section of the vibrating rod 220 of the small tuning-fork type crystal resonator 200 described above is shown. Figure 6 (a) shows the result. As shown in FIG. 6 (a), the grooves 220a are provided in the vertical direction in the figure on the vibrating rod 220, respectively, so that the cross-sectional shape thereof is substantially H-shaped. The electrodes 240a are provided in the grooves 220a at these two places. Electrodes 240b are provided on both sides of the vibrating rod 220, respectively.
このような電極 2 4 0 a、 2 4 O bは、 図示しない電源に接続されているととも に、 これらの電極 2 4 0 aと電極 2 4 0 bには、 それぞれ極性の異なる電圧が交互 に印加されるようになっている。 そして、 例えば電極 2 4 0 aにプラスの電圧を印 加し、 電極 2 4 0 bにマイナスの電圧を印加した場合、 第 1の実施の形態の第 2図 の矢印のように電界が発生することになる。  The electrodes 240a and 240b are connected to a power source (not shown), and the electrodes 240a and 240b alternately have voltages having different polarities. Is applied. Then, for example, when a positive voltage is applied to the electrode 240a and a negative voltage is applied to the electrode 240b, an electric field is generated as shown by an arrow in FIG. 2 of the first embodiment. Will be.
この電界が生じることによって、 振動細棒 2 2 0は、 振動し、 この音叉型水晶振 動子 2 2 0が用いられる例えば携帯電話や I Cカードの発振源の部品として使用さ れることになる。  The generation of this electric field causes the vibrating rod 220 to vibrate, and is used as a component of the oscillation source of, for example, a mobile phone or an IC card in which the tuning-fork type crystal resonator 220 is used.
なお、 上述のような振動細棒 2 2 0に対する電極 2 4 0 a、 2 4 0 bの配置の態 様は、 第 6図 (a ) のような態様だけでなく、 第 6図 (b ) や第 6図 (c ) のよう に構成してもよい。  It should be noted that the arrangement of the electrodes 240a and 240b with respect to the vibrating rod 220 as described above is not limited to the embodiment shown in FIG. 6 (a), but also to the arrangement shown in FIG. 6 (b). Or as shown in Fig. 6 (c).
また、 本実施の形態では、 振動細棒 2 2 0に溝 2 2 0 aを設けたが、 これに限ら ず、 この溝 2 2 0 aを貫通孔としてもよい。 この場合、 貫通孔を有する振動細棒 2 2 0 ' は、 第 7図に示すように例えば電極 2 4 0 aと 2 4 0 bが対向して配置され る構成となる。 第 7図は貫通孔を有する振動細棒 2 2 0 ' の断面を示した概略図で ある。  Further, in the present embodiment, groove 220 a is provided in vibrating rod 220, but this is not restrictive, and groove 220 a may be a through hole. In this case, the vibrating fine rod 220 ′ having a through hole has a configuration in which, for example, electrodes 240a and 240b are arranged to face each other as shown in FIG. FIG. 7 is a schematic view showing a cross section of a vibrating rod 220 ′ having a through hole.
さらに、 この場合において、 電極 2 4 0 aをこの貫通孔のすべてに配置してよい が、 これと異なり、 電極 2 4 0 aを、 この貫通孔の複数箇所に分けて配置してもよ い。  Further, in this case, the electrode 240a may be arranged in all of the through holes. Alternatively, the electrode 240a may be arranged in a plurality of places of the through hole. .
ところで、 音叉型水晶振動子 2 0 0の小型化に伴って、 上述のように、 振動細棒 2 2 0の Y軸方向の長さを短くすると、 共振周波数が高くなり、 安定した共振周波 数を維持できないという問題があるため、 これを防ぐため、 振動細棒 2 2 0の X軸 方向の幅を狭くする必要がある。 しかし、 この振動細棒 2 2 0の X軸方向の幅を狭 くすると、 第 1 2図に示すように電極 2 3 bを大きくとれないため、 電極 2 3 aと 電極 2 3 bとの間に生じる電界が振動細棒 2 2に深さ方向に一定で強く分布せず、 電界の強度が小さくなり、 これによつて振動細棒 2 2の振動が弱くなり、 振動損失 が大きくなってしまっていた。 By the way, as described above, when the length of the vibrating rod 220 in the Y-axis direction is shortened with the downsizing of the tuning-fork type crystal resonator 200, the resonance frequency becomes higher, and the stable resonance frequency becomes higher. In order to prevent this, it is necessary to reduce the width of the vibrating rod 220 in the X-axis direction. However, the width of this vibrating rod 2 In this case, the electrode 23 b cannot be made large as shown in FIG. 12, so that the electric field generated between the electrode 23 a and the electrode 23 b is strong and constant in the depth direction of the vibrating rod 22. It was not distributed, and the intensity of the electric field was reduced. As a result, the vibration of the vibrating rod 22 was weakened and the vibration loss was increased.
この振動損失は、 C I値 (クリスタルインピーダンス又は等価直列抵抗 R r ) で 示される。 通常の音叉型水晶振動子の C I値は、 真空中で 3 0 1 乃至6 0 1< 0が 好ましく、 また、 大気中での C I値を参考値として示せば 4 0 0 Κ Ω程度となる。 本実施の形態に係る音叉型水晶振動子 2 0 0の振動細棒 2 2 0に溝 2 2 0 aを設 けない場合の C I値は、 第 8図に示すように大気中で、 1 0 0 0 Κ Ωとなり、 上述 の参考値である 4 0 0 Κ Ωを大きく上回っている。  This vibration loss is indicated by the C I value (crystal impedance or equivalent series resistance R r). The C I value of an ordinary tuning-fork type crystal resonator is preferably from 301 to 60 1 <0 in a vacuum, and is about 400 Ω when the C I value in the atmosphere is shown as a reference value. The CI value of the tuning fork type crystal resonator 200 according to the present embodiment in the case where the groove 220 is not provided in the vibrating rod 220 of the tuning fork crystal resonator 200 is 100 in air as shown in FIG. 0 ΚΩ, which is much higher than the above-mentioned reference value of 400 Ω.
このため、 単に小型化された音叉型水晶振動子では、 C I値が高くなり過ぎ、 携 帯電話や I Cカード等の発振器に使用するには不適切であった。  For this reason, simply miniaturized tuning-fork type quartz resonators had excessively high CI values, making them unsuitable for use in oscillators such as mobile phones and IC cards.
しかし、 本実施の形態では、 第 8図に示すように溝 2 2 0 aの深さを 0 . 0 2 m m ( 2 0 j m ) としたので、 C I値が 4 2 5 Κ Ωとなり、 上述の好適値 4 0 0 Κ Ω に近似した値となるため、 C I値は適正範囲に止まり、 携帯電話や I Cカード等の 発振器に使用するのに好適になった。 また、 このように溝 2 2 0 aを振動細棒 2 2 0に形成するのは、 振動細棒 2 2 0自体の厚さを薄くする場合に比べ、 格段に加 ェ性に優れているため、 製造される音叉型水晶振動子 2 0 0の歩留りが向上するこ とになる。  However, in the present embodiment, as shown in FIG. 8, the depth of the groove 220a was set to 0.02 mm (20 jm), so that the CI value was 42.5 ΩΩ, Since the value is close to the preferred value of 400 Κ Ω, the CI value stays within the appropriate range, making it suitable for use in oscillators for mobile phones and IC cards. In addition, forming the groove 220a in the vibrating rod 220 in this way is much more excellent in terms of additivity than when the thickness of the vibrating rod 220 is reduced. Thus, the yield of the manufactured tuning-fork type crystal resonator 200 is improved.
なお、 本実施の形態においては、 加工の容易さ等に鑑み、 溝 2 2 0 aの深さを 0 . 0 2 mmとしたが、 第 8図の表からも明らかなように溝 2 2 0 aの深さが深い程 、 C I値は下がり、 少なくとも 0 . 0 3 5 mmの深さの場合は、 3 3 3 Κ Ωとなつ た。 この場合、 少なくとも真空での C I値は 4 0 Κ Ωとなった。  In the present embodiment, the depth of the groove 220a is set to 0.02 mm in consideration of the ease of processing and the like, but as is clear from the table of FIG. As the depth of “a” is deeper, the CI value is lower, and at least at a depth of 0.035 mm, the value is 3333ΚΩ. In this case, the C I value at least in vacuum was 40 ΚΩ.
このように本実施の形態では、 振動細棒 2 2 0に 2力所の溝 2 2 0 a、 2 2 0 a を設け、 電極 2 4 0 aをそれぞれに配置したため、 第 1 3図に示す従来の振動細棒 2 2 0の電極 2 3 aと異なり、 電極 2 4 0 aを大きく配置することができるため、 第 1の実施の形態の第 2図に示すように電界が振動細棒 2 2 0の深さ方向に一定で 強く分布し、 振動損失を低く抑えることができることになる。 この振動損失の低下 は、 第 8図に示す C I値からも明らかである。 As described above, in this embodiment, the vibrating rod 2 220 is provided with the grooves 220 a and 220 a of two places, and the electrodes 240 a are arranged respectively. Unlike the electrode 23 a of the conventional vibrating rod 220, the electrode 240 a can be arranged larger, so that an electric field is applied to the vibrating rod 2 as shown in FIG. 2 of the first embodiment. It is distributed uniformly and strongly in the depth direction of 20 and vibration loss can be kept low. This reduction in vibration loss Is also evident from the CI values shown in FIG.
なお、 本実施の形態では第 6図 (a ) に示すように振動細棒 2 2 0にのみ溝 2 2 0 aを設けたが、 第 9図に示すように、 振動細棒 3 2 0と固定部 3 3 0にかけて溝 3 2 0 aを形成してもよい。 この場合、 溝 3 2 0 aの中に振動による応力を閉じ込 めることができるため振動子を固定した場合、 周波数の変動を押さえることができ る。  In this embodiment, the groove 220 a is provided only in the vibrating rod 220 as shown in FIG. 6 (a). However, as shown in FIG. A groove 320a may be formed over the fixing portion 330. In this case, since the stress due to vibration can be confined in the groove 320a, when the vibrator is fixed, the fluctuation of the frequency can be suppressed.
以上のように小型で C I値が適正範囲にある 3 2 . 7 6 8 k Hの音叉型水晶振動 子 2 0 0、 3 0 0を小さなパッケージ、 例えば 3 . 2 mm ( Y軸方向)、 1 . 6 mm ( X軸方向) 0 . 9 mm ( Z軸方向) に入れることで、 小型の携帯電話や I C力一 ド等に用いることができるようになる。  As described above, the 32.768 kHz tuning-fork type crystal resonator 200 with a CI value within the appropriate range 200, 300 is packaged in a small package, for example, 3.2 mm (Y-axis direction), 1 6 mm (X-axis direction) 0.9 mm (Z-axis direction) makes it possible to use it for small mobile phones and IC cards.
また、 本実施の形態では、 3 2 . 7 3 8 k Hの音叉型水晶振動子 2 0 0を例に説 明したが、 1 5 k H乃至 1 5 5 k Hの音叉型水晶振動子に適用し得ることは明らか である。  Further, in the present embodiment, the description has been given by taking as an example a tuning fork type crystal resonator 200 of 32.738 kHz, but a tuning fork type crystal resonator of 15 kHz to 150 kHz is described. Clearly, it is applicable.
さらに、 本実施の形態では、 第 6図に示すように、 振動細棒 2 2 0に溝 2 2 0 a を 2つ形成した場合について説明したが、 第 1 0図に示すように振動細棒 4 2 0の 上下に 2つずつ溝を設け、 それぞれに電極 4 4 0 aを配置してもよい。  Further, in the present embodiment, the case where two grooves 220a are formed in the vibrating rod 220 as shown in FIG. 6 has been described. However, as shown in FIG. Two grooves may be provided above and below 420, and electrodes 44a may be arranged in each of them.
なお、 上述の各実施の形態に係る音叉型の振動子 1 0 0及び音叉型水晶振動子 2 0 0は、 小型の携帯電話や I Cカードのみならず、 他の電子機器であるジャイロ、 携帯情報端末、 さらに、 テレビジョン、 ビデオ機器、 所謂ラジカセ、 パーソナルコ ンピュー夕等の時計内蔵機器及び時計にも用いられることは明らかである。  The tuning-fork type resonator 100 and the tuning-fork type crystal resonator 200 according to each of the above-described embodiments can be used not only for small mobile phones and IC cards but also for other electronic devices such as gyros and mobile information. It is clear that the present invention can be used for terminals, televisions, video equipments, so-called boomboxes, personal computer built-in clocks, and clocks.
以上説明したように本発明によれば、 C I値を低く抑え、 且つ加工が容易な小型 の振動子とすることができる。 産業上の利用可能性  As described above, according to the present invention, it is possible to provide a small-sized vibrator in which the CI value is suppressed to be low and the processing is easy. Industrial applicability
このように、 本発明は、 振動子、 例えば音叉型水晶振動子やジャイロセンサー等 のような振動子及び振動子を搭載する電子機器として用いるのに適している。  As described above, the present invention is suitable for use as a vibrator, for example, a vibrator such as a tuning-fork type crystal vibrator or a gyro sensor, and an electronic apparatus equipped with the vibrator.

Claims

請 求 の 範 囲  The scope of the claims
I . 少なくとも 1 本以上の圧電材料からなる振動細棒を有する振動子において、 該 振動細棒の表面及び裏面のいずれか又はその両方に溝が形成されており、 かつ、 こ の溝の中に電極が形成されていることを特徴とする振動子。 I. A vibrator having at least one vibrating rod made of a piezoelectric material, wherein a groove is formed on one or both of a front surface and a back surface of the vibrating rod, and the groove is formed in the groove. A vibrator having electrodes formed thereon.
2 . 前記振動子が音叉型の水晶振動子であることを特徴とする請求の範囲第 1項に 記載の振動子。  2. The vibrator according to claim 1, wherein the vibrator is a tuning-fork type crystal vibrator.
3 . 複数の振動細棒が形成されてなる振動子において、 前記振動細棒の第 1の表面 及び第 2の表面に溝部が形成されてなり、 前記溝部の少なくとも一部に第 1の電極 が形成されてなり、 前記振動細棒のうち前記溝部が形成された表面以外の面の少な くとも一部に第 2の電極が形成されてなることを特徴とする振動子。  3. A vibrator having a plurality of vibrating rods, wherein a groove is formed on a first surface and a second surface of the vibrating rod, and a first electrode is provided on at least a part of the groove. A vibrator, wherein a second electrode is formed on at least a part of a surface of the vibrating rod other than the surface on which the groove is formed.
4 . 前記第 1の電極は、 少なくとも前記振動細棒の根元付近に形成されてなること を特徴とする請求の範囲第 3項に記載の振動子。 4. The vibrator according to claim 3, wherein the first electrode is formed at least near a root of the vibrating rod.
5 . 前記第 1の電極は前記溝部の側面のみに形成されてなることを特徴とする請求 の範囲第 3項に記載の振動子。 5. The vibrator according to claim 3, wherein the first electrode is formed only on a side surface of the groove.
6 . 前記溝部の一部に貫通穴が形成されていることを特徴とする請求の範囲第 3項 に記載の振動子。  6. The vibrator according to claim 3, wherein a through hole is formed in a part of the groove.
7 . 前記振動細棒の幅と前記振動細棒の厚さの関係が、 0 . 6 X (前記振動細棒の 厚さ) ≤ (前記振動細棒の幅) のように設定されてなることを特徴とする請求の範 囲第 3項に記載の振動子。  7. The relationship between the width of the vibrating rod and the thickness of the vibrating rod is set such that 0.6 X (thickness of the vibrating rod) ≤ (width of the vibrating rod). 4. The vibrator according to claim 3, wherein:
8 . 前記各振動細棒がそれぞれほぼ同じ構造に形成されてなることを特徴とする請 求の範囲第 3項に記載の振動子。  8. The vibrator according to claim 3, wherein the vibrating rods have substantially the same structure.
9 . 前記第 2の電極が複数の面に形成されてなることを特徴とする請求の範囲第 3 項に記載の振動子。  9. The vibrator according to claim 3, wherein the second electrode is formed on a plurality of surfaces.
1 0 . 前記第 2の電極同士を接続するための第 3の電極が前記第 1の表面に形成さ れてなることを特徴とする請求の範囲第 3項に記載の振動子。  10. The vibrator according to claim 3, wherein a third electrode for connecting the second electrodes is formed on the first surface.
I I . 前記第 2の電極同士を接続するための第 3の電極が前記第 2の表面に形成さ れてなることを特徴とする請求の範囲第 3項に記載の振動子。 II. A third electrode for connecting the second electrodes to each other is formed on the second surface. 4. The vibrator according to claim 3, wherein:
12. 前記第 2の電極同士を接続するための第 3の電極が前記振動細棒の先端の面 に形成されてなることを特徴とする請求の範囲第 3項に記載の振動子。  12. The vibrator according to claim 3, wherein a third electrode for connecting the second electrodes is formed on a surface of a tip of the vibrating rod.
13. 前記振動子の周波数が 1 KH z乃至 200 KH zの範囲で設定されてなるこ とを特徴とする請求の範囲第 3項に記載の振動子。  13. The vibrator according to claim 3, wherein a frequency of the vibrator is set in a range of 1 KHz to 200 KHz.
14. 好ましくは前記振動子の周波数が 1 6KH z乃至 1 20KH Zの範囲で設定 されてなることを特徴とする請求の範囲第 13項に記載の振動子。  14. The vibrator according to claim 13, wherein the frequency of the vibrator is preferably set in a range from 16 KHz to 120 KHz.
15. さらに好ましくは前記振動子の周波数が 1 6 KHz乃至 33 KH zの範囲で 設定してなることを特徴とする請求の範囲第 14項に記載の振動子。  15. The vibrator according to claim 14, wherein the frequency of the vibrator is preferably set in a range of 16 KHz to 33 KHz.
16. 前記第 1の電極、 前記第 2の電極若しくは前記第 3の電極の表面には、 絶縁 膜が形成されてなることを特徴とする請求の範囲第 3項乃至請求の範囲第 12項の いずれかに記載の振動子。  16. The method according to claim 3, wherein an insulating film is formed on a surface of the first electrode, the second electrode, or the third electrode. A vibrator according to any of the above.
17. 前記絶縁膜は酸化膜若しくは窒化膜からなることを特徴とする請求の範囲第 16項に記載の振動子。  17. The resonator according to claim 16, wherein said insulating film is made of an oxide film or a nitride film.
18. 複数の振動細棒より形成されてなる振動子において、 前記振動細棒の一部に 貫通孔が形成されてなり、 前記貫通孔の少なくとも一部に第 1の電極が形成されて なり、 前記振動細棒のうち前記第 1の電極と対向する面に第 2の電極が少なくとも 形成されてなることを特徴とする振動子。  18. A vibrator formed by a plurality of vibrating rods, wherein a through hole is formed in a part of the vibrating rod, and a first electrode is formed in at least a part of the through hole. A vibrator characterized in that at least a second electrode is formed on a surface of the vibrating rod facing the first electrode.
19. 前記振動細棒の幅と前記振動細棒の厚さの関係が、 0. 6 x (前記振動細棒 の厚さ) ≤ (前記振動細棒の幅) のように設定されてなることを特徴とする請求の 範囲第 18項に記載の振動子。  19. The relationship between the width of the vibrating rod and the thickness of the vibrating rod is set such that 0.6 x (thickness of the vibrating rod) ≤ (width of the vibrating rod). 19. The vibrator according to claim 18, wherein:
20. 前記各振動細棒がそれぞれほぼ同じ構造に形成されてなることを特徴とする 請求の範囲第 18項に記載の振動子。  20. The vibrator according to claim 18, wherein the vibrating rods are formed in substantially the same structure.
2 1. 電気軸を X軸、 機械軸を Y軸及び光軸を Z軸とした直交座標系を有し、 前記 X軸及び前記 Y軸により形成される面に関して、 基部が形成されるとともに、 該基 部から前記 Y軸に沿って複数の振動細棒が配置される振動子において、 前記複数の 振動細棒の第 1の表面及び第 2の表面に溝部が形成されてなり、 前記溝部の少なく とも一部に第 1の電極が形成されてなり、 前記溝部が形成された表面以外の面に第 2の電極が形成されてなることを特徴とする振動子。 2 1. It has an orthogonal coordinate system in which the electric axis is the X axis, the mechanical axis is the Y axis, and the optical axis is the Z axis, and a base is formed on the surface formed by the X axis and the Y axis, A vibrator in which a plurality of vibrating rods are arranged from the base along the Y axis, wherein a groove is formed on a first surface and a second surface of the plurality of vibrating rods; A first electrode is formed at least partially, and the first electrode is formed on a surface other than the surface on which the groove is formed. A vibrator characterized in that two electrodes are formed.
2 2 . 前記振動細棒を前記 X軸及び前記 Z軸により形成される面における断面が略 H形状に形成されてなることを特徴とする請求の範囲第 2 1項に記載の振動子。  22. The vibrator according to claim 21, wherein the vibrating rod has a substantially H-shaped cross section in a plane formed by the X axis and the Z axis.
2 3 . 前記第 1の表面及び前記第 2の表面は、 前記 X軸及び前記 Y軸により形成さ れる面であることを特徴とする請求の範囲第 2 1項に記載の振動子。 23. The vibrator according to claim 21, wherein the first surface and the second surface are surfaces formed by the X axis and the Y axis.
2 4 . 前記 Z軸を前記振動子の厚さとしたとき、 前記振動子の厚さと前記振動細棒 の幅がほぼ同じであることを特徴とする請求の範囲第 2 1項に記載の振動子。 24. The vibrator according to claim 21, wherein when the Z axis is the thickness of the vibrator, the thickness of the vibrator and the width of the vibrating rod are substantially the same. .
2 5 . 前記第 1の電極及び前記第 2の電極は、 異なる材料により形成された層が複 数層積層されてなる積層膜であることを特徴とする請求の範囲第 2 1項に記載の振 動子。 25. The method according to claim 21, wherein the first electrode and the second electrode are laminated films formed by laminating a plurality of layers formed of different materials. The pendulum.
2 6 · 前記第 1の電極及び前記第 2の電極の表面には酸化膜が形成されてなること を特徴とする請求の範囲第 2 1項に記載の振動子。  26. The vibrator according to claim 21, wherein an oxide film is formed on surfaces of the first electrode and the second electrode.
2 7 . 前記第 1の電極及び前記第 2の電極は、 クロム、 金、 アルミニウム、 ニッケ ル若しくはチタンのいずれかにより形成されてなることを特徴とする請求の範囲第 2 5項に記載の振動子。  27. The vibration according to claim 25, wherein the first electrode and the second electrode are formed of any one of chromium, gold, aluminum, nickel, and titanium. Child.
2 8 . 請求の範囲第 1項乃至請求の範囲第 2 7項のいずれかに記載の振動子を搭載 したことを特徴とする電子機器。  28. An electronic device comprising the vibrator according to any one of claims 1 to 27 mounted thereon.
PCT/JP2000/000238 1999-01-20 2000-01-19 Vibrator and electronic device with vibrator WO2000044092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000595424A JP4852195B2 (en) 1999-01-20 2000-01-19 Tuning fork crystal unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/11774 1999-01-20
JP1177499 1999-01-20

Publications (1)

Publication Number Publication Date
WO2000044092A1 true WO2000044092A1 (en) 2000-07-27

Family

ID=11787322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000238 WO2000044092A1 (en) 1999-01-20 2000-01-19 Vibrator and electronic device with vibrator

Country Status (2)

Country Link
JP (3) JP4852195B2 (en)
WO (1) WO2000044092A1 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1202453A2 (en) * 2000-10-31 2002-05-02 Piedek Technical Laboratory Flexural mode quartz crystal resonator
EP1223674A2 (en) 2000-12-25 2002-07-17 Seiko Epson Corporation Vibrating piece, vibrator, oscillator, and electronic equipment
JP2002340559A (en) * 2001-05-11 2002-11-27 Piedekku Gijutsu Kenkyusho:Kk Crystal angular speed sensor
JP2003060482A (en) * 2001-08-10 2003-02-28 River Eletec Kk Tuning fork crystal oscillating piece
JP2003273700A (en) * 2002-01-11 2003-09-26 Piedekku Gijutsu Kenkyusho:Kk Crystal oscillator, and method of manufacturing crystal oscillator
JP2004260718A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Tuning fork type vibration pieces, manufacturing method of tuning fork type vibration pieces, and piezoelectric device
US6806797B2 (en) 2002-03-25 2004-10-19 Seiko Epson Corporation Tuning-fork piezoelectric resonator element, production method therefor, and piezoelectric device
JP2004328701A (en) * 2003-04-28 2004-11-18 Piedekku Gijutsu Kenkyusho:Kk Manufacturing method of crystal oscillator
JP2005016976A (en) * 2003-06-23 2005-01-20 Seiko Epson Corp Manufacturing method of vibrating reed, oscillator, gyroscope sensor, and electronic equipment
JP2005168066A (en) * 2002-01-11 2005-06-23 Piedekku Gijutsu Kenkyusho:Kk Electronic equipment
JP2006060727A (en) * 2004-08-24 2006-03-02 River Eletec Kk Tuning-fork crystal oscillator and method for manufacturing same
JP2006270335A (en) * 2005-03-23 2006-10-05 River Eletec Kk Tuning fork type flexural vibrator
JP2006340392A (en) * 2006-08-03 2006-12-14 Seiko Epson Corp Vibrating piece, vibrator, oscillator, and cell phone unit
JP2006345519A (en) * 2005-06-09 2006-12-21 Eta Sa Manufacture Horlogere Suisse Small-sized piezoelectric resonator
JP2006345517A (en) * 2005-06-09 2006-12-21 Eta Sa Manufacture Horlogere Suisse Small-sized piezoelectric resonator
JP2007053819A (en) * 2001-10-31 2007-03-01 Piedekku Gijutsu Kenkyusho:Kk Manufacturing method of quartz unit
JP2007060729A (en) * 2001-10-31 2007-03-08 Piedekku Gijutsu Kenkyusho:Kk Quartz resonator
JP2007158386A (en) * 2005-11-30 2007-06-21 Seiko Instruments Inc Piezoelectric vibration reed and manufacturing method thereof, piezoelectric vibrator, oscillator, electronic equipment, and radio controlled watch
JP2007209039A (en) * 2001-10-31 2007-08-16 Piedekku Gijutsu Kenkyusho:Kk Method for manufacturing quartz crystal unit
JP2007295555A (en) * 2006-03-31 2007-11-08 Nippon Dempa Kogyo Co Ltd Quartz vibrator, its manufacturing method and quartz vibrator package
JP2007295605A (en) * 2002-01-11 2007-11-08 Piedekku Gijutsu Kenkyusho:Kk Manufacturing method of quartz unit
JP2008029030A (en) * 2000-12-25 2008-02-07 Seiko Epson Corp Vibrator, oscillator, and electronic apparatus
EP1895658A2 (en) 2006-08-31 2008-03-05 Kyocera Kinseki Corporation Tuning fork crystal oscillation plate and method of manufacturing the same
JP2008125100A (en) * 2001-10-31 2008-05-29 Piedekku Gijutsu Kenkyusho:Kk Method of manufacturing quartz crystal resonator, quartz crystal unit, quartz crystal oscillator, and mobile device
JP2008228334A (en) * 2002-01-11 2008-09-25 Piedekku Gijutsu Kenkyusho:Kk Manufacturing method for crystal vibrator and crystal unit
JP2009100480A (en) * 2008-10-14 2009-05-07 Piedekku Gijutsu Kenkyusho:Kk Quartz crystal unit and method of manufacturing quartz crystal oscillator
JP2009189039A (en) * 2001-10-31 2009-08-20 Piedekku Gijutsu Kenkyusho:Kk Method for manufacturing quartz crystal unit
JP2010050941A (en) * 2008-08-21 2010-03-04 Kyocera Kinseki Hertz Corp Tuning fork type bent crystal oscillating element, crystal resonator, and crystal quartz oscillator
JP2010183634A (en) * 2010-03-30 2010-08-19 Piedekku Gijutsu Kenkyusho:Kk Methods of manufacturing crystal vibrator, crystal unit and crystal oscillator
JP2010193444A (en) * 2010-01-29 2010-09-02 Epson Toyocom Corp Bending vibration piece and method of manufacturing bending vibration piece
EP1536560B1 (en) * 2003-11-10 2010-12-22 Nihon Dempa Kogyo Co., Ltd. Tuning fork-type crystal vibrator
US7932664B2 (en) 2009-04-30 2011-04-26 Epson Toyocom Corporation Flexural vibration piece
US7944132B2 (en) 2009-10-01 2011-05-17 Seiko Epson Corporation Tuning-fork resonator with grooves on principal surfaces
US8013498B2 (en) 2008-01-30 2011-09-06 Seiko Instruments Inc. Electronic device having a piezoelectric vibrating reed with a discontinuous electrode film
JP2011199331A (en) * 2010-03-17 2011-10-06 Seiko Epson Corp Vibration piece, vibrator, and oscillator
CN102215031A (en) * 2010-04-08 2011-10-12 精工爱普生株式会社 Resonator element and resonator
JP2012019441A (en) * 2010-07-09 2012-01-26 Seiko Epson Corp Vibration piece, vibrator, and oscillator
JP2012019440A (en) * 2010-07-09 2012-01-26 Seiko Epson Corp Bending vibration piece, vibrator, oscillator, and electronic device
US8164393B2 (en) 2009-10-08 2012-04-24 Seiko Epson Corporation Vibrating reed, vibrator, oscillator, and electronic device
US8294337B2 (en) 2009-09-08 2012-10-23 Seiko Epson Corporation Flexural vibration piece, flexural vibrator, and electronic device
JP2012217140A (en) * 2011-03-29 2012-11-08 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device
USRE44423E1 (en) * 2001-10-31 2013-08-13 Piedek Technical Laboratory Method of manufacturing a quartz crystal unit
US8525606B2 (en) 2011-02-02 2013-09-03 Seiko Epson Corporation Vibrator element, vibrator, oscillator, and electronic device
US8581669B2 (en) 2011-02-02 2013-11-12 Seiko Epson Corporation Vibrator element, vibrator, oscillator, and electronic apparatus
US8692632B2 (en) 2010-03-17 2014-04-08 Seiko Epson Corporation Resonator element, resonator, oscillator, and electronic device
US8766515B2 (en) 2008-10-24 2014-07-01 Seiko Epson Corporation Flexural vibrating reed, flexural vibrator, and piezoelectric device
JP2015015770A (en) * 2014-10-09 2015-01-22 セイコーエプソン株式会社 Bending vibration piece, vibrator, oscillator, and electronic device
US9461615B2 (en) 2013-07-19 2016-10-04 Seiko Epson Corporation Vibrator element, vibrator, oscillator, electronic apparatus, and moving object
US9819328B2 (en) 2013-01-29 2017-11-14 Murata Manufacturing Co., Ltd. Tuning-fork type quartz vibrator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633319B2 (en) 2010-03-17 2014-12-03 セイコーエプソン株式会社 Vibrating piece, sensor element, sensor and electronic device
CN106052666B (en) 2015-04-03 2021-07-02 精工爱普生株式会社 Electronic device, method for manufacturing electronic device, electronic apparatus, and moving object
JP7030331B2 (en) * 2018-03-28 2022-03-07 リバーエレテック株式会社 AE sensor element and AE sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252597A (en) * 1975-10-27 1977-04-27 Citizen Watch Co Ltd Bend type piezoelectric vibrator
JPS5261985A (en) * 1975-11-18 1977-05-21 Citizen Watch Co Ltd Piezoelectric flection oscillator
JPS5371593A (en) * 1976-12-08 1978-06-26 Seiko Instr & Electronics Ltd Piezo-vibrator and its manufacture
JPS55138916A (en) * 1979-04-18 1980-10-30 Seiko Instr & Electronics Ltd Composite crystal resonator
JPS5665517A (en) * 1979-10-15 1981-06-03 Ebauches Sa Piezoelectric vibrator
JPH0232229U (en) * 1988-08-23 1990-02-28
JPH06112760A (en) * 1992-09-25 1994-04-22 Seiko Electronic Components Ltd Tortion crystal vibrator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135283A (en) * 1976-05-07 1977-11-12 Seiko Epson Corp Tuning fork type crystal resonator
JPS60149241A (en) * 1984-01-13 1985-08-06 Matsushita Electric Works Ltd Data transmission equipment
JP3322153B2 (en) * 1997-03-07 2002-09-09 セイコーエプソン株式会社 Tuning fork type crystal vibrating piece

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252597A (en) * 1975-10-27 1977-04-27 Citizen Watch Co Ltd Bend type piezoelectric vibrator
JPS5261985A (en) * 1975-11-18 1977-05-21 Citizen Watch Co Ltd Piezoelectric flection oscillator
JPS5371593A (en) * 1976-12-08 1978-06-26 Seiko Instr & Electronics Ltd Piezo-vibrator and its manufacture
JPS55138916A (en) * 1979-04-18 1980-10-30 Seiko Instr & Electronics Ltd Composite crystal resonator
JPS5665517A (en) * 1979-10-15 1981-06-03 Ebauches Sa Piezoelectric vibrator
JPH0232229U (en) * 1988-08-23 1990-02-28
JPH06112760A (en) * 1992-09-25 1994-04-22 Seiko Electronic Components Ltd Tortion crystal vibrator

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911765B2 (en) * 2000-10-31 2005-06-28 Piedek Technical Laboratory Quartz crystal tuning fork resonator
EP1202453A2 (en) * 2000-10-31 2002-05-02 Piedek Technical Laboratory Flexural mode quartz crystal resonator
USRE41671E1 (en) * 2000-10-31 2010-09-14 Piedek Technical Laboratory Quartz crystal tuning fork resonator
EP1202453A3 (en) * 2000-10-31 2006-06-07 Piedek Technical Laboratory Flexural mode quartz crystal resonator
KR100743794B1 (en) * 2000-12-25 2007-07-30 세이코 엡슨 가부시키가이샤 Vibrating reed, vibrator, oscillator, and eletronic apparatus
EP1223674A3 (en) * 2000-12-25 2003-04-02 Seiko Epson Corporation Vibrating piece, vibrator, oscillator, and electronic equipment
JP2010063144A (en) * 2000-12-25 2010-03-18 Seiko Epson Corp Vibrator, oscillator and electronic apparatus
KR100747949B1 (en) * 2000-12-25 2007-08-08 세이코 엡슨 가부시키가이샤 Vibrating reed, vibrator, oscillator, and eletronic apparatus
CN1652460B (en) * 2000-12-25 2010-06-09 精工爱普生株式会社 Vibrator and oscillator
JP2010035221A (en) * 2000-12-25 2010-02-12 Seiko Epson Corp Vibrator, oscillator and electronic apparatus
EP1223674A2 (en) 2000-12-25 2002-07-17 Seiko Epson Corporation Vibrating piece, vibrator, oscillator, and electronic equipment
KR100747950B1 (en) * 2000-12-25 2007-08-08 세이코 엡슨 가부시키가이샤 Vibrating reed, vibrator, oscillator, and eletronic apparatus
JP2008029030A (en) * 2000-12-25 2008-02-07 Seiko Epson Corp Vibrator, oscillator, and electronic apparatus
EP1788702A3 (en) * 2000-12-25 2008-01-16 Seiko Epson Corporation Vibrating piece, vibrator, oscillator, and electronic equipment
KR100747951B1 (en) * 2000-12-25 2007-08-08 세이코 엡슨 가부시키가이샤 Vibrating reed, vibrator, oscillator, and eletronic apparatus
JP2013165529A (en) * 2000-12-25 2013-08-22 Seiko Epson Corp Vibration piece, vibrator, oscillator and electronic apparatus
EP1788702A2 (en) * 2000-12-25 2007-05-23 Seiko Epson Corporation Vibrating piece, vibrator, oscillator, and electronic equipment
JP2002340559A (en) * 2001-05-11 2002-11-27 Piedekku Gijutsu Kenkyusho:Kk Crystal angular speed sensor
JP2003060482A (en) * 2001-08-10 2003-02-28 River Eletec Kk Tuning fork crystal oscillating piece
USRE44423E1 (en) * 2001-10-31 2013-08-13 Piedek Technical Laboratory Method of manufacturing a quartz crystal unit
JP2007053819A (en) * 2001-10-31 2007-03-01 Piedekku Gijutsu Kenkyusho:Kk Manufacturing method of quartz unit
JP2007209039A (en) * 2001-10-31 2007-08-16 Piedekku Gijutsu Kenkyusho:Kk Method for manufacturing quartz crystal unit
JP2009189039A (en) * 2001-10-31 2009-08-20 Piedekku Gijutsu Kenkyusho:Kk Method for manufacturing quartz crystal unit
JP2007060729A (en) * 2001-10-31 2007-03-08 Piedekku Gijutsu Kenkyusho:Kk Quartz resonator
JP2008125100A (en) * 2001-10-31 2008-05-29 Piedekku Gijutsu Kenkyusho:Kk Method of manufacturing quartz crystal resonator, quartz crystal unit, quartz crystal oscillator, and mobile device
JP2013258740A (en) * 2002-01-11 2013-12-26 Piedekku Gijutsu Kenkyusho:Kk Method for manufacturing crystal resonator, crystal unit and crystal oscillator
JP4074935B2 (en) * 2002-01-11 2008-04-16 有限会社ピエデック技術研究所 Quartz crystal oscillator and crystal oscillator manufacturing method
JP2011024225A (en) * 2002-01-11 2011-02-03 Piedekku Gijutsu Kenkyusho:Kk Method for manufacturing crystal vibrator, crystal unit, and crystal oscillator; crystal vibrator; crystal unit; and information communication device
JP2007295605A (en) * 2002-01-11 2007-11-08 Piedekku Gijutsu Kenkyusho:Kk Manufacturing method of quartz unit
JP4697190B2 (en) * 2002-01-11 2011-06-08 有限会社ピエデック技術研究所 Manufacturing methods for crystal units and crystal units
JP2003273700A (en) * 2002-01-11 2003-09-26 Piedekku Gijutsu Kenkyusho:Kk Crystal oscillator, and method of manufacturing crystal oscillator
JP2014090488A (en) * 2002-01-11 2014-05-15 Piedekku Gijutsu Kenkyusho:Kk Methods of manufacturing crystal vibrator, crystal unit and crystal oscillator
JP4650754B2 (en) * 2002-01-11 2011-03-16 有限会社ピエデック技術研究所 Crystal unit manufacturing method and crystal oscillator manufacturing method
JP4453017B2 (en) * 2002-01-11 2010-04-21 有限会社ピエデック技術研究所 Manufacturing method of crystal unit
JP2013243753A (en) * 2002-01-11 2013-12-05 Piedekku Gijutsu Kenkyusho:Kk Method for manufacturing crystal vibrator, crystal unit and crystal oscillator
JP4650753B2 (en) * 2002-01-11 2011-03-16 有限会社ピエデック技術研究所 Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JP2008228334A (en) * 2002-01-11 2008-09-25 Piedekku Gijutsu Kenkyusho:Kk Manufacturing method for crystal vibrator and crystal unit
JP2008259216A (en) * 2002-01-11 2008-10-23 Piedekku Gijutsu Kenkyusho:Kk Method of manufacturing crystal oscillator, and method of manufacturing portable device with the crystal oscillator packaged therein
JP2013225937A (en) * 2002-01-11 2013-10-31 Piedekku Gijutsu Kenkyusho:Kk Quartz vibrator, quartz unit, quartz oscillator and manufacturing method thereof
JP2005168066A (en) * 2002-01-11 2005-06-23 Piedekku Gijutsu Kenkyusho:Kk Electronic equipment
JP2010141908A (en) * 2002-01-11 2010-06-24 Piedekku Gijutsu Kenkyusho:Kk Crystal oscillator, crystal unit, crystal-controlled oscillator, and electronic apparatus
JP2010288306A (en) * 2002-01-11 2010-12-24 Piedekku Gijutsu Kenkyusho:Kk Methods of manufacturing crystal vibrator element, crystal unit, and crystal oscillator
US6806797B2 (en) 2002-03-25 2004-10-19 Seiko Epson Corporation Tuning-fork piezoelectric resonator element, production method therefor, and piezoelectric device
CN100352074C (en) * 2002-03-25 2007-11-28 精工爱普生株式会社 Tuning fork type piezoelectic oscillatory sheet, its mfg. method and piezoelectric device
JP2004260718A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Tuning fork type vibration pieces, manufacturing method of tuning fork type vibration pieces, and piezoelectric device
JP4517332B2 (en) * 2003-04-28 2010-08-04 有限会社ピエデック技術研究所 Quartz crystal unit, crystal unit and crystal oscillator manufacturing method
JP2004328701A (en) * 2003-04-28 2004-11-18 Piedekku Gijutsu Kenkyusho:Kk Manufacturing method of crystal oscillator
JP4492048B2 (en) * 2003-06-23 2010-06-30 セイコーエプソン株式会社 Vibrating piece manufacturing method, vibrator, gyro sensor, and electronic device
JP2005016976A (en) * 2003-06-23 2005-01-20 Seiko Epson Corp Manufacturing method of vibrating reed, oscillator, gyroscope sensor, and electronic equipment
EP1536560B1 (en) * 2003-11-10 2010-12-22 Nihon Dempa Kogyo Co., Ltd. Tuning fork-type crystal vibrator
JP4593203B2 (en) * 2004-08-24 2010-12-08 リバーエレテック株式会社 Tuning fork crystal unit and method for manufacturing the same
JP2006060727A (en) * 2004-08-24 2006-03-02 River Eletec Kk Tuning-fork crystal oscillator and method for manufacturing same
JP2006270335A (en) * 2005-03-23 2006-10-05 River Eletec Kk Tuning fork type flexural vibrator
JP4638263B2 (en) * 2005-03-23 2011-02-23 リバーエレテック株式会社 Tuning fork type bending vibrator
JP2006345519A (en) * 2005-06-09 2006-12-21 Eta Sa Manufacture Horlogere Suisse Small-sized piezoelectric resonator
JP2006345517A (en) * 2005-06-09 2006-12-21 Eta Sa Manufacture Horlogere Suisse Small-sized piezoelectric resonator
JP2007158386A (en) * 2005-11-30 2007-06-21 Seiko Instruments Inc Piezoelectric vibration reed and manufacturing method thereof, piezoelectric vibrator, oscillator, electronic equipment, and radio controlled watch
US7553609B2 (en) 2005-11-30 2009-06-30 Seiko Instruments Inc. Manufacturing method of piezoelectric vibrating piece, piezoelectric vibrating piece, piezoelectric vibrator, oscillator, electronic equipment and radio-controlled timepiece
TWI401880B (en) * 2005-11-30 2013-07-11 Seiko Instr Inc Manufacturing method of piezoelectric vibrating piece, piezoelectric vibrating piece, piezoelectric vibrator, oscillator, electronic equipment and radio-controlled timepiece
JP4694953B2 (en) * 2005-11-30 2011-06-08 セイコーインスツル株式会社 Piezoelectric vibrating piece manufacturing method, piezoelectric vibrating piece, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
JP2007295555A (en) * 2006-03-31 2007-11-08 Nippon Dempa Kogyo Co Ltd Quartz vibrator, its manufacturing method and quartz vibrator package
JP4645551B2 (en) * 2006-08-03 2011-03-09 セイコーエプソン株式会社 Vibrating piece, vibrator, oscillator and mobile phone device
JP2006340392A (en) * 2006-08-03 2006-12-14 Seiko Epson Corp Vibrating piece, vibrator, oscillator, and cell phone unit
US7535159B2 (en) 2006-08-31 2009-05-19 Kyocera Kinseki Corporation Tuning fork crystal oscillation plate and method of manufacturing the same
JP2008060952A (en) * 2006-08-31 2008-03-13 Kyocera Kinseki Corp Tuning fork crystal oscillation board and method of manufacturing the same
EP1895658A2 (en) 2006-08-31 2008-03-05 Kyocera Kinseki Corporation Tuning fork crystal oscillation plate and method of manufacturing the same
US8013498B2 (en) 2008-01-30 2011-09-06 Seiko Instruments Inc. Electronic device having a piezoelectric vibrating reed with a discontinuous electrode film
JP2010050941A (en) * 2008-08-21 2010-03-04 Kyocera Kinseki Hertz Corp Tuning fork type bent crystal oscillating element, crystal resonator, and crystal quartz oscillator
JP2009100480A (en) * 2008-10-14 2009-05-07 Piedekku Gijutsu Kenkyusho:Kk Quartz crystal unit and method of manufacturing quartz crystal oscillator
US8766515B2 (en) 2008-10-24 2014-07-01 Seiko Epson Corporation Flexural vibrating reed, flexural vibrator, and piezoelectric device
US7932664B2 (en) 2009-04-30 2011-04-26 Epson Toyocom Corporation Flexural vibration piece
US8294337B2 (en) 2009-09-08 2012-10-23 Seiko Epson Corporation Flexural vibration piece, flexural vibrator, and electronic device
US8102103B2 (en) 2009-10-01 2012-01-24 Seiko Epson Corporation Tuning-fork resonator with grooves on principal surfaces
US8288926B2 (en) 2009-10-01 2012-10-16 Seiko Epson Corporation Tuning-fork resonator having juxtaposed grooves
US7944132B2 (en) 2009-10-01 2011-05-17 Seiko Epson Corporation Tuning-fork resonator with grooves on principal surfaces
US8164393B2 (en) 2009-10-08 2012-04-24 Seiko Epson Corporation Vibrating reed, vibrator, oscillator, and electronic device
JP2010193444A (en) * 2010-01-29 2010-09-02 Epson Toyocom Corp Bending vibration piece and method of manufacturing bending vibration piece
US8692632B2 (en) 2010-03-17 2014-04-08 Seiko Epson Corporation Resonator element, resonator, oscillator, and electronic device
JP2011199331A (en) * 2010-03-17 2011-10-06 Seiko Epson Corp Vibration piece, vibrator, and oscillator
JP2010183634A (en) * 2010-03-30 2010-08-19 Piedekku Gijutsu Kenkyusho:Kk Methods of manufacturing crystal vibrator, crystal unit and crystal oscillator
CN102215031A (en) * 2010-04-08 2011-10-12 精工爱普生株式会社 Resonator element and resonator
US8816572B2 (en) 2010-04-08 2014-08-26 Seiko Epson Corporation Resonator element and resonator having a tapered arm next to the base
US9252741B2 (en) 2010-04-08 2016-02-02 Seiko Epson Corporation Resonator element and resonator having a tapered arm next to the base
US9257961B2 (en) 2010-04-08 2016-02-09 Seiko Epson Corporation Resonator element and resonator having a tapered arm next to the base
JP2011223230A (en) * 2010-04-08 2011-11-04 Seiko Epson Corp Vibration piece and vibrator
JP2012019441A (en) * 2010-07-09 2012-01-26 Seiko Epson Corp Vibration piece, vibrator, and oscillator
US8760235B2 (en) 2010-07-09 2014-06-24 Seiko Epson Corporation Resonator element, resonator, and oscillator
US9166554B2 (en) 2010-07-09 2015-10-20 Seiko Epson Corporation Flexural resonator element, resonator, oscillator, and electronic device
JP2012019440A (en) * 2010-07-09 2012-01-26 Seiko Epson Corp Bending vibration piece, vibrator, oscillator, and electronic device
US9325278B2 (en) 2010-07-09 2016-04-26 Seiko Epson Corporation Resonator element, resonator, and oscillator
TWI551043B (en) * 2010-07-09 2016-09-21 精工愛普生股份有限公司 Vibrator element, vibrator, oscillator, and electronic device
US8581669B2 (en) 2011-02-02 2013-11-12 Seiko Epson Corporation Vibrator element, vibrator, oscillator, and electronic apparatus
US8525606B2 (en) 2011-02-02 2013-09-03 Seiko Epson Corporation Vibrator element, vibrator, oscillator, and electronic device
JP2012217140A (en) * 2011-03-29 2012-11-08 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device
US9819328B2 (en) 2013-01-29 2017-11-14 Murata Manufacturing Co., Ltd. Tuning-fork type quartz vibrator
US9461615B2 (en) 2013-07-19 2016-10-04 Seiko Epson Corporation Vibrator element, vibrator, oscillator, electronic apparatus, and moving object
JP2015015770A (en) * 2014-10-09 2015-01-22 セイコーエプソン株式会社 Bending vibration piece, vibrator, oscillator, and electronic device

Also Published As

Publication number Publication date
JP4852195B2 (en) 2012-01-11
JP2009165164A (en) 2009-07-23
JP5013015B2 (en) 2012-08-29
JP2012039667A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2000044092A1 (en) Vibrator and electronic device with vibrator
US7723904B2 (en) Resonator, unit having resonator, oscillator having unit and electronic apparatus having oscillator
US7779530B2 (en) Method for manufacturing a quartz crystal unit
US8127426B2 (en) Electronic apparatus having quartz crystal oscillating circuits
JP3812724B2 (en) Vibrating piece, vibrator, oscillator and electronic device
JP2004200917A (en) Piezoelectric vibrating piece, piezoelectric device employing the same, cellular telephone device employing the piezoelectric device, and electronic equipment employing the piezoelectric device
KR20120098491A (en) Piezoelectric vibration element, piezoelectric device provided with same and electric apparatus
US9431957B2 (en) Unit, oscillator and electronic apparatus
JP2006157872A (en) Piezoelectric vibrator, manufacturing method thereof, oscillator, electronic apparatus, and radio clock
US20090102327A1 (en) Quartz crystal unit, quartz crystal oscillator having quartz crystal unit and electronic apparatus having quartz crystal oscillator
KR20110076824A (en) Vibrating reed, vibrator, oscillator, electronic device and method of adjusting frequency
US11005420B2 (en) Quartz crystal unit, quartz crystal oscillator and electronic apparatus
US8102102B2 (en) Thin film tuning-fork type inflection resonator and electric signal processing element
US8614537B2 (en) Quartz crystal unit, quartz crystal oscillator and electronic apparatus
US20140001921A1 (en) Resonator element, piezoelectric device, and electronic device
JP3858575B2 (en) Vibrating piece, vibrator, oscillator and mobile phone device
JP2012124693A (en) Electronic apparatus
JP5508046B2 (en) Piezoelectric vibration element
JP3975927B2 (en) Piezoelectric vibrating piece, piezoelectric device using the piezoelectric vibrating piece, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
JP2004120802A (en) Vibration chip, vibrator, oscillator, and electronic device
JP4645551B2 (en) Vibrating piece, vibrator, oscillator and mobile phone device
JP2004349856A (en) Piezoelectric oscillating piece, piezoelectric device using the same, cellular telephone and electronic equipment using piezoelectric device
JP2004336207A (en) Piezoelectric vibrator, piezoelectric device utilizing piezoelectric vibrator, mobile phone utilizing piezoelectric device, and electronic apparatus utilizing piezoelectric device
JP2005333683A (en) Method for manufacturing vibration piece, vibration piece, vibrator having vibration piece, oscillator and mobile phone
JP2018085620A (en) Vibration device, manufacturing method of vibration device, oscillator, electronic apparatus, and moving body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 09646648

Country of ref document: US