JP4697190B2 - Manufacturing methods for crystal units and crystal units - Google Patents

Manufacturing methods for crystal units and crystal units Download PDF

Info

Publication number
JP4697190B2
JP4697190B2 JP2007153338A JP2007153338A JP4697190B2 JP 4697190 B2 JP4697190 B2 JP 4697190B2 JP 2007153338 A JP2007153338 A JP 2007153338A JP 2007153338 A JP2007153338 A JP 2007153338A JP 4697190 B2 JP4697190 B2 JP 4697190B2
Authority
JP
Japan
Prior art keywords
tuning fork
electrode
fork arm
groove
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007153338A
Other languages
Japanese (ja)
Other versions
JP4697190B6 (en
JP2007295605A (en
Inventor
宏文 川島
Original Assignee
有限会社ピエデック技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ピエデック技術研究所 filed Critical 有限会社ピエデック技術研究所
Priority to JP2007153338A priority Critical patent/JP4697190B6/en
Priority claimed from JP2007153338A external-priority patent/JP4697190B6/en
Publication of JP2007295605A publication Critical patent/JP2007295605A/en
Publication of JP4697190B2 publication Critical patent/JP4697190B2/en
Application granted granted Critical
Publication of JP4697190B6 publication Critical patent/JP4697190B6/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は屈曲モードで振動する音叉腕と音叉基部から成る音叉形状の水晶振動子とケースと蓋から構成される水晶ユニットとその製造方法と増幅回路と帰還回路から成る水晶発振器に関する。特に、小型化、高精度化、耐衝撃性、低廉化の要求の強い情報通信機器用の基準信号源として最適な水晶ユニットと水晶発振器で、新形状、新電極構成及び最適寸法を有する超小型の音叉形状の屈曲水晶振動子から構成される水晶ユニットと、基本波モード振動の周波数が出力信号である水晶発振器に関する。  The present invention relates to a crystal unit composed of a tuning fork-shaped quartz crystal resonator composed of a tuning fork arm and a tuning fork base, a case and a lid, a manufacturing method thereof, a crystal oscillator composed of an amplifier circuit and a feedback circuit. In particular, it is a crystal unit and crystal oscillator that are optimal as a reference signal source for information communication equipment that is strongly demanded for miniaturization, high accuracy, impact resistance, and low cost. Ultra-compact with new shape, new electrode configuration and optimum dimensions. The present invention relates to a crystal unit comprising a tuning fork-shaped bent crystal resonator and a crystal oscillator whose fundamental mode vibration frequency is an output signal.

従来の水晶ユニットはケースと蓋と音叉腕の上下面と側面に電極が配置された音叉型屈曲水晶振動子から構成され、又、水晶発振器は増幅器とコンデンサーと抵抗と音叉腕の上下面と側面に電極が配置された音叉型屈曲水晶振動子から成る水晶発振器がよく知られている。図9には、この従来例の水晶ユニットと水晶発振器に用いられている音叉形状の屈曲水晶振動子200の概観図を示す。図9において水晶振動子200は2本の音叉腕201,202と音叉基部230とを具えている。図10には図9の音叉腕の断面図を示す。図10に示すように、励振電極は音叉腕の上下面と側面に配置されている。音叉腕の断面形状は一般的には長方形をしている。一方の音叉腕の断面の上面には電極203が下面には電極204が配置されている。側面には電極205と206が設けられている。他方の音叉腕の上面には電極207が下面には電極208が、更に側面には電極209,210が配置され2電極端子H−H′構造を成している。今、H−H′間に直流電圧を印加すると電界は矢印方向に働く。その結果、一方の音叉腕が内側に曲がると他方の音叉腕も内側に曲がる。この理由は、x軸方向の電界成分Exが各音叉腕の内部で方向が反対になるためである。交番電圧を印加することにより振動を持続することができる。又、特開昭56−65517と特開2000−223992(P2000−223992A)では、音叉腕に溝を設け、且つ、電極構成について開示されている。
特開昭56−65517 2000−223992 国際公開第00/44092
The conventional crystal unit is composed of a tuning fork-type bending crystal unit with electrodes placed on the upper, lower, and side surfaces of the case, lid, and tuning fork arm. The crystal oscillator is composed of an amplifier, capacitor, resistor, upper and lower surfaces and side surface of the tuning fork arm. A crystal oscillator composed of a tuning-fork type bending crystal resonator in which an electrode is disposed on the crystal is well known. FIG. 9 shows an overview of a tuning-fork-shaped bent quartz crystal resonator 200 used in this conventional crystal unit and crystal oscillator. In FIG. 9, the crystal unit 200 includes two tuning fork arms 201 and 202 and a tuning fork base 230. FIG. 10 shows a cross-sectional view of the tuning fork arm of FIG. As shown in FIG. 10, the excitation electrodes are disposed on the upper and lower surfaces and side surfaces of the tuning fork arm. The cross-sectional shape of the tuning fork arm is generally rectangular. An electrode 203 is disposed on the upper surface of the cross-section of one tuning fork arm, and an electrode 204 is disposed on the lower surface. Electrodes 205 and 206 are provided on the side surfaces. An electrode 207 is arranged on the upper surface of the other tuning fork arm, an electrode 208 is arranged on the lower surface, and electrodes 209 and 210 are arranged on the side surfaces to form a two-electrode terminal HH ′ structure. Now, when a DC voltage is applied between H-H ', the electric field works in the direction of the arrow. As a result, when one tuning fork arm is bent inward, the other tuning fork arm is also bent inward. This is because the direction of the electric field component Ex in the x-axis direction is opposite in each tuning fork arm. By applying an alternating voltage, vibration can be sustained. JP-A-56-65517 and JP-A-2000-223992 (P2000-223992A) disclose a tuning fork arm with a groove and an electrode configuration.
JP-A-56-65517 2000-223992 International Publication No. 00/44092

音叉型屈曲水晶振動子では、電界成分Exが大きいほど損失等価直列抵抗Rが小さくなり、品質係数Q値が大きくなる。しかしながら、従来から使用されている音叉型屈曲水晶振動子は、図10で示したように、各音叉腕の上下面と側面の4面に電極を配置している。そのために電界が直線的に働かず、かかる音叉型屈曲水晶振動子を小型化させると、電界成分Exが小さくなってしまい、損失等価直列抵抗Rが大きくなり、品質係数Q値が小さくなるなどの課題が残されていた。同時に、時間基準として高精度な、即ち、高い周波数安定性を有し、高調波モード振動を抑えた屈曲水晶振動子を得ることが課題として残されていた。又、前記課題を解決する方法として、例えば、特開昭56−65517では音叉腕に溝を設け、且つ、溝の構成と電極構成について開示している。The tuning-fork type flexural quartz crystal resonator, the more the electric field component Ex is greater losses equivalent series resistance R 1 becomes smaller, the quality factor Q value increases. However, in the tuning fork-type bent quartz crystal resonator that has been conventionally used, as shown in FIG. 10, electrodes are arranged on the upper and lower surfaces and side surfaces of each tuning fork arm. Therefore, the electric field does not work linearly, and if the tuning fork type bent quartz resonator is reduced in size, the electric field component Ex becomes smaller, the loss equivalent series resistance R 1 becomes larger, the quality factor Q value becomes smaller, etc. The problem was left. At the same time, there remains a problem to obtain a bent crystal resonator that has high accuracy as a time reference, that is, has high frequency stability and suppresses harmonic mode vibration. As a method for solving the above-mentioned problem, for example, Japanese Patent Laid-Open No. 56-65517 discloses a groove on a tuning fork arm, and discloses a groove structure and an electrode structure.

しかしながら、溝の構成、寸法と振動モード並びに基本波モード振動での等価直列抵抗Rと高調波モード振動での等価直列抵抗Rとの関係及び周波数安定性に関係するフィガーオブメリットMについては全く開示されていない。と同時に、前記溝を設けた振動子を従来の回路に接続し、水晶発振回路を構成すると、基本波振動モードの出力信号が衝撃や振動などの影響で出力信号が高調波モード振動の周波数に変化、検出される等の問題が発生していた。このようなことから、衝撃や振動を受けても、それらの影響を受けない高調波モード振動を抑えた基本波モードで振動する音叉形状の屈曲水晶振動子を具えた水晶ユニットと水晶発振器が所望されていた。更に、水晶発振器の消費電流を低減するために、負荷容量Cを小さくすると高調波モードの振動がし易くなり、基本波モード振動の出力周波数が得られない等の課題が残されていた。それ故、基本波モードで振動する超小型で、等価直列抵抗Rの小さい、品質係数Q値が高くなるような新形状で、電気機械変換効率の良い溝の構成と電極構成を有する音叉形状の屈曲水晶振動子を具え、出力信号が基本波モード振動の周波数で、高い周波数安定性(高い時間精度)を有し、消費電流の少ない水晶発振器が所望されていた。However, with regard to the structure of the groove, dimensions and vibration modes, the relation between the equivalent series resistance R 1 in the fundamental mode vibration and the equivalent series resistance R n in the harmonic mode vibration, and the FIG. It is not disclosed at all. At the same time, when the vibrator with the groove is connected to a conventional circuit to form a crystal oscillation circuit, the output signal of the fundamental vibration mode becomes the frequency of the harmonic mode vibration due to the impact or vibration. Problems such as changes and detection occurred. For this reason, a crystal unit and a crystal oscillator having a tuning-fork-shaped bent quartz crystal that vibrates in the fundamental wave mode that suppresses harmonic mode vibration that is not affected by shock or vibration are desirable. It had been. Furthermore, in order to reduce the current consumption of the crystal oscillator, and to reduce the load capacitance C L liable to vibration harmonic mode, problems such as not to obtain the output frequency of the fundamental mode oscillation has been left. Therefore, a tuning fork shape that has an ultra-small size that vibrates in the fundamental mode, a small equivalent series resistance R 1, a high quality factor Q value, a groove configuration and an electrode configuration with good electromechanical conversion efficiency. Therefore, there has been a demand for a crystal oscillator that has a bent crystal resonator, an output signal having a fundamental mode vibration frequency, high frequency stability (high time accuracy), and low current consumption.

即ち、本発明の水晶ユニットの製造方法の第1の態様は、水晶振動子と、その水晶振動子を収納するケースと、そのケースをカバーする蓋とを備えて構成される水晶ユニットの製造方法で、前記水晶振動子は、音叉基部とその音叉基部に接続された第1音叉腕と第2音叉腕とを備えて構成され、第1音叉腕と第2音叉腕の各々は、上面とそれに対抗する下面と側面とを有し、第1音叉腕と第2音叉腕の各々の上下面に溝が形成され、逆相の屈曲モードで振動する音叉型屈曲水晶振動子で、その音叉型屈曲水晶振動子を備えて構成される水晶ユニットの製造方法であって、前記音叉型屈曲水晶振動子の基本波モード振動のフイガーオブメリットM が、前記音叉型屈曲水晶振動子の2次高調波モード振動のフイガーオブメリットM より大きくなるように、音叉形状と溝と電極の寸法を決定する工程を備えていて、第1音叉腕と第2音叉腕の各々の上下面に形成された溝は、第1音叉腕と第2音叉腕が形成された後に形成され、その溝を形成した後に第1音叉腕の上下面のに配置された第1電極と第2音叉腕の上下面のに配置された第1電極との極性が異なるように第1電極が配置され、かつ、前記溝の第1電極と対抗して配置された音叉腕の側面の第2電極とは極性が異なる2電極端子を構成し、前記2電極端子の内、1電極端子は第1音叉腕の上下面の溝に配置された第1電極と第2音叉腕の側面に配置された第2電極から構成され、かつ、上下面の溝に配置された第1電極と側面に配置された第2電極とが接続され、他の1電極端子は第1音叉腕の側面に配置された第2電極と第2音叉腕の上下面の溝に配置された第1電極から構成され、かつ、側面に配置された第2電極と上下面の溝に配置された第1電極とが接続され、その後に、音叉型屈曲水晶振動子を収納するケース内に収納した後に、音叉型屈曲水晶振動子の周波数が調整され、音叉型屈曲水晶振動子の周波数を調整した後に、ケースと蓋が接合され、かつ、前記音叉型屈曲水晶振動子はその音叉型屈曲水晶振動子の基本波モード振動並列容量に依存しない機械的直列共振周波数と並列容量に依存する直列共振周波数の周波数差が、2次高調波モード振動の並列容量に依存しない機械的直列共振周波数と並列容量に依存する直列共振周波数の周波数差より小さく、かつ、前記基本波モード振動のフイガーオブメリットMが、前記2次高調波モード振動のフイガーオブメリットMより大きい水晶ユニットの製造方法である。That is, the first aspect of the method for manufacturing a crystal unit according to the present invention is a method for manufacturing a crystal unit comprising a crystal resonator, a case for storing the crystal resonator, and a lid for covering the case. The crystal resonator includes a tuning fork base, a first tuning fork arm and a second tuning fork arm connected to the tuning fork base, and each of the first tuning fork arm and the second tuning fork arm includes an upper surface and a second tuning fork arm. A tuning fork-type bending crystal resonator having a lower surface and a side surface that are opposed to each other, and grooves are formed on the upper and lower surfaces of each of the first tuning fork arm and the second tuning fork arm, and vibrates in a reverse phase bending mode. a method for manufacturing a quartz unit configured to include a crystal oscillator, the tuning-fork bent off Iga of merit M 1 of the fundamental wave mode oscillation of quartz oscillator, the second harmonic of the tuning-fork flexural crystal oscillator larger than the full Iga of merit M 2 of the wave mode vibration So that, comprise the step of determining the size of the tuning fork and the groove and the electrode, and the first fork arm groove formed on the upper and lower surfaces of each of the second tuning fork arms, the first fork arm and the second tuning fork arm is formed after being formed, after forming the trench, a first electrode disposed in the groove of the upper and lower surfaces of the first electrode and the second tuning fork arms which are arranged in the groove of the upper and lower surfaces of the first tuning fork arms is disposed a first electrode as different polarities of and constitutes a second electrode terminal polarity different from the second electrode side of the first electrode and the counter to arranged tuning fork arms of said groove, said 2 Among the electrode terminals, one electrode terminal is composed of a first electrode disposed in the groove on the upper and lower surfaces of the first tuning fork arm and a second electrode disposed on the side surface of the second tuning fork arm, and in the grooves on the upper and lower surfaces. The first electrode arranged and the second electrode arranged on the side surface are connected, and the other one electrode terminal is the second arranged on the side surface of the first tuning fork arm. The electrode and the first electrode disposed in the groove on the upper and lower surfaces of the second tuning fork arm, and the second electrode disposed on the side surface and the first electrode disposed on the upper and lower surface grooves are connected, and thereafter In addition, after storing the tuning fork type bending crystal resonator in the case, the frequency of the tuning fork type bending crystal resonator is adjusted, and after adjusting the frequency of the tuning fork type bending crystal resonator, the case and the lid are joined, In addition, the tuning fork-type bent quartz crystal has a second-order harmonic difference between a mechanical series resonance frequency that does not depend on the parallel capacitance of the fundamental mode vibration of the tuning-fork type bent quartz crystal and a series resonance frequency that depends on the parallel capacitance. smaller than the frequency difference between the series resonance frequency which depends on the parallel capacitance and mechanical series resonance frequency that is independent of the parallel capacitance of the wave mode vibration, and, the full Iga of merit M 1 of the fundamental wave mode oscillation, the second harmonic mode A method for producing a full Iga of merit M 2 is larger than the crystal unit of the vibration.

本発明の水晶振動子の製造方法の第1の態様は、音叉基部とその音叉基部に接続された第1音叉腕と第2音叉腕とを備えて構成され、第1音叉腕と第2音叉腕の各々は、上面とそれに対抗する下面と側面とを有し、第1音叉腕と第2音叉腕の各々の上下面に溝が形成され、逆相の屈曲モードで振動する音叉型屈曲水晶振動子の製造方法で、前記音叉型屈曲水晶振動子の基本波モード振動のフイガーオブメリットMA first aspect of the method for manufacturing a crystal resonator according to the present invention includes a tuning fork base, a first tuning fork arm and a second tuning fork arm connected to the tuning fork base, and the first tuning fork arm and the second tuning fork. Each of the arms has an upper surface, a lower surface and a side surface that oppose each other, grooves are formed on the upper and lower surfaces of each of the first tuning fork arm and the second tuning fork arm, and the tuning fork type quartz crystal that vibrates in a reverse phase bending mode. In the method of manufacturing a vibrator, the finger of merit M of the fundamental wave mode vibration of the tuning fork-type bent quartz crystal 1 が、前記音叉型屈曲水晶振動子の2次高調波モード振動のフイガーオブメリットMFig. 2 shows the Fibger of Merit M of the second harmonic mode vibration of the tuning fork type quartz crystal resonator. 2 より大きくなるように、音叉形状と溝と電極の寸法を決定する工程と、第1音叉腕と第2音叉腕と音叉基部とを備えた音叉形状を形成する工程と、第1音叉腕と第2音叉腕の各々の上下面に溝を形成する工程と、を備え、前記音叉形状と前記溝を形成した後に、第1音叉腕の上下面の溝に配置された第1電極と第2音叉腕の上下面の溝に配置された第1電極との極性が異なるように第1電極が配置され、前記溝の第1電極と対抗して配置された音叉腕の側面の第2電極とは極性が異なる2電極端子を構成し、前記2電極端子の内、1電極端子は第1音叉腕の上下面の溝に配置された第1電極と第2音叉腕の側面に配置された第2電極から構成され、かつ、上下面の溝に配置された第1電極と側面に配置された第2電極とが接続され、他の1電極端子は第1音叉腕の側面に配置された第2電極と第2音叉腕の上下面の溝に配置された第1電極から構成され、かつ、側面に配置された第2電極と上下面の溝に配置された第1電極とが接続され、前記音叉型屈曲水晶振動子はその音叉型屈曲水晶振動子の基本波モード振動の並列容量に依存しない機械的直列共振周波数と並列容量に依存する直列共振周波数の周波数差が、2次高調波モード振動の並列容量に依存しない機械的直列共振周波数と並列容量に依存する直列共振周波数の周波数差より小さく、かつ、前記基本波モード振動のフイガーオブメリットMDetermining the tuning fork shape, groove and electrode dimensions to be larger, forming a tuning fork shape comprising a first tuning fork arm, a second tuning fork arm and a tuning fork base, a first tuning fork arm and a first tuning fork arm Forming a groove on the upper and lower surfaces of each of the two tuning fork arms, and after forming the tuning fork shape and the groove, a first electrode and a second tuning fork disposed in the grooves on the upper and lower surfaces of the first tuning fork arm. The first electrode is disposed so as to have a different polarity from the first electrode disposed in the groove on the upper and lower surfaces of the arm, and the second electrode on the side surface of the tuning fork arm disposed opposite to the first electrode of the groove Two electrode terminals having different polarities are formed, and among the two electrode terminals, one electrode terminal is a first electrode disposed in a groove on the upper and lower surfaces of the first tuning fork arm and a second electrode disposed on a side surface of the second tuning fork arm. The first electrode composed of the electrodes and disposed in the upper and lower grooves and the second electrode disposed on the side surface are connected to each other, The terminal is composed of a second electrode disposed on the side surface of the first tuning fork arm and a first electrode disposed in a groove on the upper and lower surfaces of the second tuning fork arm, and the second electrode disposed on the side surface and the upper and lower surfaces. The tuning fork-type bent quartz crystal is connected to a first electrode disposed in the groove, and the tuning fork-type bent quartz crystal depends on a mechanical series resonance frequency and a parallel capacitance that do not depend on the parallel capacitance of the fundamental mode vibration of the tuning-fork type bent quartz crystal The frequency difference between the series resonance frequency is smaller than the frequency difference between the mechanical series resonance frequency that does not depend on the parallel capacitance of the second harmonic mode vibration and the series resonance frequency that depends on the parallel capacitance, and the fundamental mode vibration FIG. Obmerit M 1 が、前記2次高調波モード振動のフイガーオブメリットMIs the Fibre of Merit M of the second harmonic mode vibration. 2 より大きい水晶振動子の製造方法である。A method of manufacturing a larger crystal unit.

本発明の水晶ユニットの製造方法の第2の態様は、第1の態様において、第1音叉腕と第2音叉腕の各々の上下面に形成された溝の長さは、音叉腕の長さに対して0.4から0.8の範囲内にある水晶ユニットの製造方法である。  According to a second aspect of the crystal unit manufacturing method of the present invention, in the first aspect, the length of the groove formed on the upper and lower surfaces of each of the first tuning fork arm and the second tuning fork arm is the length of the tuning fork arm. Is a method of manufacturing a crystal unit within a range of 0.4 to 0.8.

このように、本発明は屈曲モードで振動する音叉形状の水晶振動子を具えた水晶ユニットとその製造方法と水晶発振器で、しかも、音叉形状の溝と電極の構成を改善し、増幅回路と帰還回路との関係を示すことにより、高調波振動を抑え、基本波振動モードで振動する周波数を出力する水晶発振器を得る事ができる。  As described above, the present invention provides a crystal unit including a tuning fork-shaped crystal resonator that vibrates in a bending mode, a method for manufacturing the crystal unit, and a crystal oscillator. By showing the relationship with the circuit, it is possible to obtain a crystal oscillator that suppresses harmonic vibration and outputs a frequency that vibrates in the fundamental wave vibration mode.

加えて、音叉腕の中立線を挟んだ(含む)中央部に溝を設け、且つ、電極を配置し、溝の寸法の最適化を図る事により、等価直列抵抗Rが小さく、Q値が高く、電気機械変換効率の良い屈曲モードで振動する超小型の音叉形状の屈曲水晶振動子が得られる。と同時に、帰還回路の負荷容量を小さくできる。その結果、消費電流の少ない水晶発振器が得られる。In addition, by providing a groove at the center of (including) the tuning fork arm neutral line, and by arranging electrodes and optimizing the dimensions of the groove, the equivalent series resistance R 1 is reduced and the Q value is reduced. An ultra-small tuning-fork-shaped bent quartz resonator that vibrates in a bending mode that is high and has good electromechanical conversion efficiency can be obtained. At the same time, the load capacity of the feedback circuit can be reduced. As a result, a crystal oscillator with low current consumption can be obtained.

以下、本発明の実施例を図面に基づき具体的に述べる。図1は本発明の水晶発振器を構成する水晶発振回路図の一実施例である。本実施例では、水晶発振回路1は増幅器(CMOSインバータ)2、帰還抵抗4、ドレイン抵抗7、コンデンサー5,6と音叉形状の屈曲水晶振動子3から構成されている。即ち、水晶発振回路1は、増幅器2と帰還抵抗4から成る増幅回路8とドレイン抵抗7、コンデンサー5,6と屈曲水晶振動子3から成る帰還回路9から構成されている。詳細には、本発明の水晶発振器は、増幅回路と帰還回路から構成されていて、増幅回路は少なくとも増幅器から構成され、帰還回路は少なくとも音叉形状の屈曲水晶振動子とコンデンサーから構成されている。又、本発明の水晶発振器と水晶ユニットに用いられる音叉形状の屈曲水晶振動子は図3から図6で詳述される。  Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is an example of a crystal oscillation circuit diagram constituting a crystal oscillator of the present invention. In this embodiment, the crystal oscillation circuit 1 includes an amplifier (CMOS inverter) 2, a feedback resistor 4, a drain resistor 7, capacitors 5 and 6, and a tuning fork-shaped bent crystal resonator 3. That is, the crystal oscillation circuit 1 includes an amplifier circuit 8 including an amplifier 2 and a feedback resistor 4, a drain resistor 7, capacitors 5 and 6, and a feedback circuit 9 including a bent crystal resonator 3. Specifically, the crystal oscillator of the present invention is composed of an amplifier circuit and a feedback circuit, the amplifier circuit is composed of at least an amplifier, and the feedback circuit is composed of at least a tuning-fork-shaped bent crystal resonator and a capacitor. Further, the tuning fork-shaped bent crystal resonator used in the crystal oscillator and the crystal unit of the present invention will be described in detail with reference to FIGS.

図2は図1の帰還回路図を示す。今、屈曲モードで振動する音叉形状の水晶振動子の角周波数をω、ドレイン抵抗7の抵抗をR、コンデンサー5、6の容量をC、C、水晶のクリスタルインピーダンスをRei,入力電圧をV,出力電圧をVとすると、帰還率βはβ=|V/|Vで定義される。但し、iは屈曲振動モードの振動次数を表し、例えば、i=1のとき、基本波モード振動、i=2のとき、2次高調波モード振動、i=3のとき、3次高調波モード振動である。即ち、i=nのとき、n次高調波モード振動であるが、以下単に、高調波モード振動と言う。更に、負荷容量CはC=C/(C+C)で与えられ、C=C=CgsとRd>>Reiとすると、帰還率βはβ=1/(1+kC )で与えられる。但し、kはω、R、Reiの関数で表される。又、Reiは近似的に等価直列抵抗Rに等しくなる。FIG. 2 shows the feedback circuit diagram of FIG. Now, the angular frequency of the tuning-fork-shaped quartz crystal vibrating in the bending mode is ω i , the resistance of the drain resistor 7 is R d , the capacitances of the capacitors 5 and 6 are C g and C d , and the crystal impedance of the crystal is R ei , When the input voltage is V 1 and the output voltage is V 2 , the feedback rate β i is defined by β i = | V 2 | i / | V 1 | i . However, i represents the vibration order of the bending vibration mode. For example, when i = 1, fundamental mode vibration, when i = 2, second harmonic mode vibration, when i = 3, third harmonic mode It is vibration. That is, when i = n, it is n-order harmonic mode vibration, but hereinafter simply referred to as harmonic mode vibration. Further, the load capacity C L is given by C L = C g C d / (C g + C d ), and when C g = C d = C gs and Rd >> R ei , the feedback rate β i is β i = 1 / (1 + kC L 2 ) However, k is expressed by a function of ω i , R d , and R ei . R ei is approximately equal to the equivalent series resistance R i .

このように、帰還率βと負荷容量Cとの関係から、負荷容量Cが小さくなると、基本波振動モードと高調波振動モードの共振周波数の帰還率はそれぞれ大きくなることが良く分かる。それ故、負荷容量Cが小さくなると、基本波モード振動よりも高調波モード振動の方が発振し易くなる。その理由は高調波モード振動の最大振動振幅が基本波モード振動の最大振動振幅より小さいために、発振持続条件である振幅条件と位相条件を同時に満足するためである。Thus, from the relationship between the feedback rate β i and the load capacitance C L , it is well understood that the feedback rates of the resonance frequencies of the fundamental vibration mode and the harmonic vibration mode increase as the load capacitance C L decreases. Therefore, when the load capacity CL is reduced, the harmonic mode vibration is more likely to oscillate than the fundamental mode vibration. The reason is that since the maximum vibration amplitude of the harmonic mode vibration is smaller than the maximum vibration amplitude of the fundamental mode vibration, the amplitude condition and the phase condition which are oscillation continuation conditions are satisfied simultaneously.

本発明の水晶発振器は、消費電流が少なく、しかも、出力周波数が高い周波数安定性(高い時間精度)を有する、基本波モード振動の周波数である水晶発振器を提供することを目的としている。それ故、消費電流を少なくするために、本実施例では、負荷容量Cは10pF以下を用いる。より消費電流を少なくするには、消費電流は負荷容量に比例するので、C=8pF以下が好ましい。ここで言う、容量C、Cは回路の浮遊容量を含まない数値であるが、実際には、回路構成により浮遊容量が存在する。それ故、本実施例では、この回路構成による浮遊容量を含んだ負荷容量Cは18pF以下を用いる。また、高調波モードの振動を抑え、発振器の出力信号が基本波モード振動の周波数を得るために、α/α>β/βとαβ>1を満足するように本実施例の水晶発振回路は構成される。但し、α、αは基本波モード振動と高調波モード振動の増幅回路の増幅率で、β、βは基本波モード振動と高調波モード振動の帰還回路の帰還率である。即ち、n=2、3のとき、それぞれ、2次、3次高調波モード振動である。An object of the crystal oscillator of the present invention is to provide a crystal oscillator having a frequency of fundamental mode vibration that has low current consumption and high frequency stability (high time accuracy). Therefore, in order to reduce current consumption, in the present embodiment, the load capacitance C L is used under 10pF. In order to further reduce the current consumption, since the current consumption is proportional to the load capacity, C L = 8 pF or less is preferable. The capacitances C g and C d referred to here are numerical values that do not include the stray capacitance of the circuit, but actually there are stray capacitances depending on the circuit configuration. Therefore, in this embodiment, the load capacitance C L containing the stray capacitance of this circuit configuration uses the following 18 pF. Further, in order to suppress the harmonic mode vibration and the output signal of the oscillator obtains the frequency of the fundamental mode vibration, the main signal is satisfied so that α 1 / α n > β n / β 1 and α 1 β 1 > 1 are satisfied. The crystal oscillation circuit of the embodiment is configured. However, α 1 and α n are amplification factors of the fundamental wave mode vibration and the harmonic mode vibration amplification circuit, and β 1 and β n are feedback rates of the feedback circuit of the fundamental wave mode vibration and the harmonic mode vibration. That is, when n = 2 and 3, they are the second and third harmonic mode vibrations, respectively.

換言するならば、増幅回路の基本波モード振動の増幅率αと高調波モード振動の増幅率αとの比が帰還回路の高調波モード振動の帰還率βと基本波モード振動の帰還率βとの比より大きく、かつ、基本波モード振動の増幅率αと基本波モード振動の帰還率βの積が1より大きくなるように構成される。このような構成により、消費電流の少ない、出力信号が基本波モード振動の周波数である水晶発振器が実現できる。尚、前記周波数とは、屈曲水晶振動子の基準周波数、又はそれの分周された周波数である。更に、高い周波数安定性については後述される。又、出力信号はバッファを介して回路のドレイン側から出力される。In other words, the ratio of the amplification factor α 1 of the fundamental mode vibration of the amplifier circuit and the amplification factor α n of the harmonic mode vibration is the feedback of the feedback factor β n of the harmonic mode vibration of the feedback circuit and the fundamental mode vibration. greater than the ratio of the rate beta 1, and the product of the feedback factor beta 1 amplification factor alpha 1 and the fundamental mode vibration of the fundamental wave mode vibration is configured to be greater than 1. With such a configuration, it is possible to realize a crystal oscillator that consumes less current and whose output signal has a frequency of fundamental mode vibration. Note that the frequency is a reference frequency of the bent quartz crystal resonator or a frequency obtained by dividing the reference frequency. Further, high frequency stability will be described later. The output signal is output from the drain side of the circuit via the buffer.

又、本実施例の水晶発振回路を構成する増幅回路の増幅部は負性抵抗−RLでその特性を示すことができる。i=1のとき基本波モード振動の負性抵抗で、i=nのとき高調波モード振動の負性抵抗である。即ち、n=2,3の時、2次、3次高調波モード振動の負性抵抗である。本実施例の水晶発振器は、増幅回路の基本波モード振動の負性抵抗の絶対値|−RL|と基本波モード振動の等価直列抵抗Rとの比が増幅回路の高調波モード振動の負性抵抗の絶対値|−RL|と高調波モード振動の等価直列抵抗Rとの比より大きくなるように発振回路が構成されている。即ち、|−RL/R>|−RL|/Rを満足するように構成されている。このように水晶発振回路を構成することにより、高調波モード振動の発振起動が抑えられ、その結果、基本波モード振動の発振起動が得られるので基本波モード振動の周波数が出力信号として得られる。Further, the amplifying part of the amplifying circuit constituting the crystal oscillation circuit of the present embodiment can exhibit the characteristic by a negative resistance -RL i . When i = 1, it is a negative resistance of fundamental mode vibration, and when i = n, it is a negative resistance of harmonic mode vibration. That is, when n = 2, 3, it is the negative resistance of the second and third harmonic mode vibration. In the crystal oscillator of this embodiment, the ratio of the absolute value | −RL 1 | of the negative resistance of the fundamental mode vibration of the amplifier circuit to the equivalent series resistance R 1 of the fundamental mode vibration is the harmonic mode vibration of the amplifier circuit. The oscillation circuit is configured to be larger than the ratio of the absolute value | -RL n | of the negative resistance to the equivalent series resistance R n of the harmonic mode vibration. That is, it is configured to satisfy | −RL 1 / R 1 > | −RL n | / R n . By configuring the crystal oscillation circuit in this way, the oscillation activation of the harmonic mode vibration is suppressed, and as a result, the oscillation activation of the fundamental wave mode vibration is obtained, so that the frequency of the fundamental wave mode vibration is obtained as the output signal.

図3は本発明の第1実施例の水晶ユニット又は水晶発振器に用いられる屈曲モードで振動する音叉形状の屈曲水晶振動子10の外観図とその座標系を示すものである。座標系O、電気軸x、機械軸y、光軸zからなるO−xyzを構成している。本実施例の音叉形状の屈曲水晶振動子10は音叉腕20、音叉腕26と音叉基部40とから成り、音叉腕20と音叉腕26は音叉基部40に接続されている。また、音叉腕20と音叉腕26はそれぞれ上面と下面と側面とを有する。更に、音叉腕20の上面には中立線を挟んで、即ち、中立線を含むように溝21が設けられ、又、音叉腕26の上面にも音叉腕20と同様に溝27が設けられるとともに、さらに、音叉基部40に溝32と溝36とが設けられている。なお、角度θは、x軸廻りの回転角であり、通常0〜10°の範囲で選ばれる。又、音叉腕20、26の下面にも上面と同様に溝が設けられている。  FIG. 3 shows an external view of a tuning-fork-shaped bent quartz resonator 10 that vibrates in a bending mode used in the crystal unit or crystal oscillator of the first embodiment of the present invention and its coordinate system. An O-xyz including a coordinate system O, an electric axis x, a mechanical axis y, and an optical axis z is configured. The tuning fork-shaped bent quartz crystal resonator 10 according to this embodiment includes a tuning fork arm 20, a tuning fork arm 26 and a tuning fork base 40, and the tuning fork arm 20 and the tuning fork arm 26 are connected to the tuning fork base 40. The tuning fork arm 20 and the tuning fork arm 26 have an upper surface, a lower surface, and a side surface, respectively. Further, a groove 21 is provided on the upper surface of the tuning fork arm 20 with a neutral line interposed therebetween, that is, so as to include the neutral line, and a groove 27 is provided on the upper surface of the tuning fork arm 26 in the same manner as the tuning fork arm 20. Further, the tuning fork base 40 is provided with a groove 32 and a groove 36. The angle θ is a rotation angle around the x axis, and is usually selected in the range of 0 to 10 °. Further, grooves on the lower surfaces of the tuning fork arms 20 and 26 are provided in the same manner as the upper surface.

図4は、図3の音叉形状の屈曲水晶振動子10の音叉基部40のD−D′断面図を示す。図4では図3の水晶振動子の音叉基部40の断面形状並びに電極配置について詳述する。音叉腕20と連結する音叉基部40には溝21,22が設けられている。同様に、音叉腕26と連結する音叉基部40には溝27,28が設けられている。更に、溝21と溝27との間には更に溝32と溝36とが設けられている。又、溝22と溝28との間にも溝33と溝37とが設けられている。そして、溝21と溝22には電極23,24が、溝32,33,36,37には電極34,35,38,39が、溝27と溝28には電極29,30が配置され、音叉基部40の両側面には電極25,31が配置されている。詳細には、溝の側面に電極が配置され、前記電極に対抗して極性の異なる電極が配置されている。  4 shows a DD ′ cross-sectional view of the tuning fork base 40 of the tuning fork-shaped bent quartz resonator 10 of FIG. 4, the cross-sectional shape and electrode arrangement of the tuning fork base 40 of the crystal resonator of FIG. 3 will be described in detail. The tuning fork base 40 connected to the tuning fork arm 20 is provided with grooves 21 and 22. Similarly, the tuning fork base 40 connected to the tuning fork arm 26 is provided with grooves 27 and 28. Further, a groove 32 and a groove 36 are further provided between the groove 21 and the groove 27. A groove 33 and a groove 37 are also provided between the groove 22 and the groove 28. The electrodes 21 and 24 are disposed in the grooves 21 and 22, the electrodes 34, 35, 38, and 39 are disposed in the grooves 32, 33, 36, and 37, and the electrodes 29 and 30 are disposed in the grooves 27 and 28, respectively. Electrodes 25 and 31 are disposed on both side surfaces of the tuning fork base 40. Specifically, electrodes are disposed on the side surfaces of the grooves, and electrodes having different polarities are disposed to oppose the electrodes.

また、音叉形状の屈曲水晶振動子10は厚みtを有し、溝は厚みtを有している。ここで言う厚みtは溝の一番深いところの厚みを言う。その理由は水晶は異方性の材料のために、化学的エッチング法では各結晶軸の方向によりエッチングスピードが異なる。それ故、化学的エッチング法では溝の深さにバラツキが生じ、図4に示した一様な形状に加工するのが極めて難しいためである。本実施例では、溝の厚みtと音叉腕又は音叉腕と音叉基部の厚みtとの比(t/t)が0.79より小さくなるように、好ましくは、0.01〜0.79となるように溝が音叉腕又は音叉腕と音叉基部に形成されている。特に、音叉基部の歪みを大きくするために、音叉基部の溝の厚みと音叉基部の厚みの比を0.01〜0.025にする事が好ましい。このように形成することにより、音叉腕又は音叉腕と音叉基部の溝側面電極とそれに対抗する側面の電極との間の電界Exが大きくなる。すなわち、電気機械変換効率の良い屈曲振動子が得られる。即ち、容量比の小さい音叉形状の屈曲水晶振動子が得られる。更に、本実施例では、音叉基部の溝と溝との間にさらに溝32,33,36,37が設けられているので、その電界強度はより一層大きくなり、より電気機械変換効率が良くなる。又、本実施例では、音叉基部40の上面に溝32,36が、下面に溝33,37が設けられているが、片面にのみ設けても良い。Further, the bent quartz resonator 10 of the tuning fork has a thickness t, groove has a thickness t 1. The thickness t 1 here refers to the thickness of the deepest part of the groove. The reason for this is that quartz is an anisotropic material, and the etching speed varies depending on the direction of each crystal axis in the chemical etching method. Therefore, the chemical etching method causes variations in the depth of the groove, and it is extremely difficult to process the uniform shape shown in FIG. In the present embodiment, the ratio (t 1 / t) between the groove thickness t 1 and the tuning fork arm or the tuning fork arm and the tuning fork base thickness t is preferably less than 0.79. A groove is formed in the tuning fork arm or the tuning fork arm and the tuning fork base so as to be 79. In particular, in order to increase the distortion of the tuning fork base, it is preferable to set the ratio of the groove thickness of the tuning fork base and the thickness of the tuning fork base to 0.01 to 0.025. By forming in this way, the electric field Ex between the tuning fork arm or the tuning fork arm and the groove side surface electrode of the tuning fork base and the side electrode facing it increases. That is, a flexural vibrator with good electromechanical conversion efficiency can be obtained. That is, a tuning fork-shaped bent quartz crystal resonator with a small capacity ratio can be obtained. Furthermore, in this embodiment, since the grooves 32, 33, 36, and 37 are further provided between the grooves of the tuning fork base, the electric field strength is further increased and the electromechanical conversion efficiency is further improved. . Further, in this embodiment, the grooves 32 and 36 are provided on the upper surface of the tuning fork base 40 and the grooves 33 and 37 are provided on the lower surface, but they may be provided only on one side.

更に、電極25,29,30,34,35は一方の同極に、電極23,24,31,37,38,39は他方の同極になるように配置されていて、2電極端子構造E−E′を構成する。即ち、z軸方向に対抗する溝電極は同極に、且つ、x軸方向に対抗する電極は異極になるように構成されている。今、2電極端子E−E′に直流電圧を印加(E端子に正極、E′端子に負極)すると電界Exは図4に示した矢印のように働く。電界Exは水晶振動子の側面と溝内の側面とに配置された電極により電極に垂直に、即ち、直線的に引き出されるので、電界Exが大きくなり、その結果、発生する歪の量も大きくなる。従って、音叉形状の屈曲水晶振動子を小型化させた場合でも、等価直列抵抗Rの小さい、品質係数Q値の高い屈曲モードで振動する音叉形状の水晶振動子が得られる。Further, the electrodes 25, 29, 30, 34, and 35 are arranged to have one same polarity, and the electrodes 23, 24, 31, 37, 38, and 39 are arranged to have the other same polarity. -E '. That is, the groove electrode that opposes the z-axis direction has the same polarity, and the electrode that opposes the x-axis direction has a different polarity. Now, when a DC voltage is applied to the two-electrode terminal EE ′ (the positive electrode is applied to the E terminal and the negative electrode is applied to the E ′ terminal), the electric field Ex works as indicated by the arrows shown in FIG. Since the electric field Ex is drawn perpendicularly to the electrodes by the electrodes arranged on the side surface of the crystal unit and the side surface in the groove, that is, linearly, the electric field Ex is increased, and as a result, the amount of distortion generated is large. Become. Therefore, even when the tuning fork-shaped bent quartz crystal is reduced in size, a tuning-fork-shaped quartz crystal that vibrates in a bending mode having a small equivalent series resistance R 1 and a high quality factor Q value can be obtained.

図5は図3の音叉形状の屈曲水晶振動子10の上面図を示すものである。図5では溝21,27の配置及び寸法について特に詳述する。音叉腕20の中立線41を挟むようにして溝21が設けられている。他方の音叉腕26も中立線42を挟むようにして溝27が設けられている。更に、本実施例の音叉形状の屈曲水晶振動子10では、音叉基部40の、溝21と溝27との間に挟まれた部分にも溝32と溝36とが設けられている。それら溝21,27及び溝32,36を設けたことで、音叉形状の屈曲水晶振動子10には、先に述べたように、電界Exが図4に示した矢印のように働き、電界Exは水晶振動子の側面と溝内の側面とに配置された電極により電極に垂直に、即ち、直線的に引き出され、特に音叉基部の電界Exが大きくなり、その結果、発生する歪の量も大きくなる。このように、本実施例の音叉形状の屈曲水晶振動子10の形状と電極構成とは、音叉型屈曲水晶振動子を小型化した場合でも電気的諸特性に優れた、即ち、等価直列抵抗Rの小さい、品質係数Q値の高い水晶振動子が実現できる。FIG. 5 shows a top view of the tuning-fork-shaped bent quartz crystal resonator 10 of FIG. In FIG. 5, the arrangement and dimensions of the grooves 21 and 27 will be described in detail. A groove 21 is provided so as to sandwich the neutral line 41 of the tuning fork arm 20. The other tuning fork arm 26 is also provided with a groove 27 so as to sandwich the neutral line 42. Further, in the tuning fork-shaped bent quartz crystal resonator 10 of this embodiment, the groove 32 and the groove 36 are also provided in the portion of the tuning fork base 40 sandwiched between the groove 21 and the groove 27. By providing the grooves 21 and 27 and the grooves 32 and 36, the electric field Ex acts on the tuning fork-shaped bent quartz resonator 10 as indicated by the arrow shown in FIG. Is drawn perpendicularly to the electrodes by the electrodes arranged on the side surface of the crystal unit and the side surface in the groove, that is, linearly, and in particular, the electric field Ex of the tuning fork base is increased, and as a result, the amount of distortion generated is also increased. growing. As described above, the shape and electrode configuration of the tuning-fork-shaped bent quartz crystal resonator 10 of this embodiment are excellent in electrical characteristics even when the tuning-fork-shaped bent quartz resonator is downsized, that is, equivalent series resistance R A crystal resonator with a small quality factor Q of 1 can be realized.

更に、部分幅W、Wと溝幅Wとすると、音叉腕20,26の腕幅WはW=W+W

Figure 0004697190
うに構成される。又、溝幅WはW≧W,Wを満足する条件で構成される。更に具体的に述べると、本実施例では、溝幅Wと音叉腕幅Wとの比(W/W)が0.35より大きく、1より小さくなるように、好ましくは、0.35〜0.95で、溝の厚みtと音叉腕の厚みt又は音叉腕と音叉基部の厚みtとの比(t/t)が0.79より小さくなるように、好ましくは、0.01〜0.79となるように溝が音叉腕に形成されている。このように形成することにより、音叉腕の中立線41と42を基点とする慣性モーメントが大きくなる。即ち、電気機械変換効率が良くなるので、等価直列抵抗Rの小さい、Q値の高い、しかも、容量比の小さい音叉形状の屈曲水晶振動子を得る事ができる。Further, assuming that the partial widths W 1 and W 3 and the groove width W 2 , the arm width W of the tuning fork arms 20 and 26 is W = W 1 + W 2.
Figure 0004697190
Configured. Further, the groove width W 2 is configured under the condition that satisfies W 2 ≧ W 1 and W 3 . More specifically, in this embodiment, the ratio (W 2 / W) of the groove width W 2 to the tuning fork arm width W is larger than 0.35 and smaller than 1, preferably 0.35. The ratio (t 1 / t) between the groove thickness t 1 and the tuning fork arm thickness t or the tuning fork arm and tuning fork base thickness t (t 1 / t) is preferably less than 0.79. Grooves are formed in the tuning fork arm so as to be 01 to 0.79. By forming in this way, the moment of inertia with the tuning fork arm neutral lines 41 and 42 as base points is increased. That is, since the electro-mechanical conversion efficiency is improved, a small equivalent series resistance R 1, a high Q value, moreover, it is possible to obtain a bending crystal oscillator of a small tuning fork capacity ratio.

これに対して、溝21および溝27の長さlについて本実施例では、溝21,27が音叉腕20,26から音叉基部40の長さlにまで延在し、基部の溝の長さlとなるような寸法とされている。それ故、音叉腕20,26に設けられた溝の長さは(l−l)で与えられ、Rの小さい振動子を得るために、(l−l)/(l−1)が0.4〜0.8の値を有する。更に、音叉形状の屈曲水晶振動子10の全長1は要求される周波数や収納容器の大きさなどから決定される。と共に、基本波モードで振動する良好な音叉形状の屈曲水晶振動子を得るためには、溝の長さlと全長lとの間には密接な関係が存在する。On the other hand, with respect to the length l 1 of the groove 21 and the groove 27, in this embodiment, the grooves 21 and 27 extend from the tuning fork arms 20 and 26 to the length l 2 of the tuning fork base 40, The dimensions are such that the length l 3 is obtained. Therefore, the length of the groove provided in the tuning fork arms 20 and 26 is given by (l 1 −l 3 ), and in order to obtain a vibrator having a small R 1 , (l 1 −l 3 ) / (l− 1 2 ) has a value of 0.4 to 0.8. Further, the total length 1 of the tuning fork-shaped bent quartz crystal resonator 10 is determined from the required frequency, the size of the storage container, and the like. At the same time, in order to obtain a good tuning-fork-shaped bent quartz crystal resonator that vibrates in the fundamental wave mode, there is a close relationship between the groove length l 1 and the total length l.

すなわち、音叉腕20,26又は音叉腕20,26と音叉基部40に設けられた溝の長さlと音叉形状の屈曲水晶振動子の全長lとの比(l/l)が0.2〜0.78となるように溝の長さは設けられる。このように形成する理由は、不要振動である高調波モード振動、特に、2次、3次高調波モード振動を抑圧する事ができると共に基本波モード振動の周波数安定性を高めることができる。それ故、基本波モードで容易に振動する良好な音叉形状の屈曲水晶振動子が実現できる。さらに詳述するならば、基本波モードで振動する音叉形状の屈曲水晶振動子の等価直列抵抗Rが高調波モード振動の等価直列抵抗Rより小さくなる。即ち、R<R(n=2,3のとき、2次、3次高調波モード振動の等価直列抵抗)となり、増幅器(CMOSインバータ)、コンデンサ、抵抗、本実施例の音叉形状の屈曲水晶振動子等から成る水晶発振器において、振動子が基本波モードで容易に振動する良好な水晶発振器が実現できる。又、溝の長さlは音叉腕の長さ方向に分割されていても良く、その中の少なくとも1個が前記辺比(l/l)を満足すれば良いか、又は、分割された溝の長さ方向の加えられた溝の長さが前記辺比(l/l)を満足すれば良い。That is, the ratio (l 1 / l) between the tuning fork arms 20 and 26 or the tuning fork arms 20 and 26 and the length l 1 of the groove provided in the tuning fork base 40 and the total length l of the tuning fork-shaped bent crystal resonator is 0. The length of the groove is provided to be 2 to 0.78. The reason for forming in this way is that it is possible to suppress harmonic mode vibrations, particularly secondary and third harmonic mode vibrations, which are unwanted vibrations, and to improve the frequency stability of fundamental wave mode vibrations. Therefore, a good tuning fork-shaped bent quartz crystal that easily vibrates in the fundamental wave mode can be realized. If More specifically, the equivalent series resistance R 1 of the bending quartz oscillator tuning fork vibrating at the fundamental mode is smaller than the equivalent series resistance R n of the harmonic mode vibration. That is, R 1 <R n (equivalent series resistance of second-order and third-order harmonic mode vibration when n = 2, 3), an amplifier (CMOS inverter), a capacitor, a resistor, and a tuning-fork-shaped bending of this embodiment In a crystal oscillator composed of a crystal oscillator or the like, a good crystal oscillator in which the oscillator easily vibrates in the fundamental wave mode can be realized. Further, the groove length l 1 may be divided in the length direction of the tuning fork arm, and at least one of them may satisfy the side ratio (l 1 / l) or may be divided. It is sufficient that the length of the added groove in the length direction of the groove satisfies the side ratio (l 1 / l).

また、この実施例では、音叉基部40は図5中、振動子10の長さlの下側部分全体とされ、又、音叉腕20及び音叉腕26は、図5中、振動子10の長さlの部分から上側の部分全体とされている。本実施例では音叉の叉部は矩形をしているが、本発明は前記形状に限定されるものではなく、音叉の叉部がU字型をしていても良い。この場合も矩形の形状と同じように、音叉腕と音叉基部との寸法の関係は前記関係と同じである。更に、本実施例では、溝は音叉腕と音叉基部に設けられているが、本発明はこれに限定されるものでなく、音叉腕にのみ溝を設けても良く、同様の効果が得られる。この場合、溝の長さl=0となる。また、本発明で言う溝の長さlとは、音叉腕にのみ溝が設けられている時には、溝幅Wと音叉腕幅Wとの比(W/W)が0.35より大きく、且つ、1より小さくなるように形成された溝の長さである。更に、前記音叉腕に設けられた溝が、音叉基部にまで延在し、音叉基部に延在した溝の間にさらに溝が設けられている時には、溝の長さlを含む長さがlである。しかし、音叉腕の溝が音叉基部に延在しているが、その溝の間にさらに溝が設けられていない時には、長さlは音叉腕の溝の長さである。Further, in this embodiment, in the tuning fork base portion 40 is 5, is the entire lower portion of the length l 2 of the transducer 10, also tuning fork arms 20 and tuning fork arms 26, in FIG. 5, the vibrator 10 there is a whole upper portion from the portion of the length l 2. In this embodiment, the tuning fork fork has a rectangular shape. However, the present invention is not limited to the shape described above, and the tuning fork fork may have a U-shape. In this case, as in the rectangular shape, the dimensional relationship between the tuning fork arm and the tuning fork base is the same as that described above. Further, in this embodiment, the groove is provided in the tuning fork arm and the tuning fork base, but the present invention is not limited to this, and the groove may be provided only in the tuning fork arm, and the same effect can be obtained. . In this case, the groove length l 3 = 0. Further, the length l 1 of the groove in the present invention, when the grooves only in the tuning fork arms are provided, the ratio of the groove width W 2 and the tuning fork arm width W (W 2 / W) is than 0.35 The length of the groove formed to be larger and smaller than 1. Further, when the groove provided in the tuning fork arm extends to the tuning fork base, and a groove is further provided between the grooves extending to the tuning fork base, the length including the groove length l 3 is set. l 1 . However, when the tuning fork arm groove extends to the tuning fork base, but no further groove is provided between the grooves, the length l 1 is the length of the tuning fork arm groove.

換言するならば、音叉形状の音叉腕の中立線を挟んだ、即ち、中立線を含む音叉腕の上下面に各々少なくとも1個の溝が長さ方向に設けられ、前記溝の両側面に電極が配置され、前記溝側面の電極とその電極に対抗する音叉腕側面の電極とが互いに異極となるように構成されていて、音叉腕に生ずる慣性モーメントが大きくなるように前記各々少なくとも1個の溝の内少なくとも1個の溝幅Wと音叉腕幅Wとの比(W/W)が0.35より大きく、1より小さく、且つ、前記溝の厚みtと音叉腕の厚みtとの比(t/t)が0.79より小さくなるように溝が形成されている。In other words, at least one groove is provided in the length direction on the upper and lower surfaces of the tuning fork arm that includes the neutral line, ie, the tuning fork arm including the neutral line, and electrodes are formed on both sides of the groove. Are arranged such that the electrode on the side surface of the groove and the electrode on the side surface of the tuning fork arm that opposes the electrode are different from each other, and each of the at least one of the at least one so as to increase the moment of inertia generated in the tuning fork arm. The ratio (W 2 / W) of the groove width W 2 of at least one of the grooves to the tuning fork arm width W is larger than 0.35 and smaller than 1, and the thickness t 1 of the groove and the thickness of the tuning fork arm The groove is formed so that the ratio (t 1 / t) to t is smaller than 0.79.

更に、本実施例の音叉腕の間隔はWで与えられ、間隔Wと溝幅WはW≧Wを満足するように構成され、間隔Wは0.05mm〜0.35mmで、溝幅Wは0.03mm〜0.12mmの値を有する。このように構成する理由は超小型の屈曲水晶振動子で、かつ、音叉形状と音又腕の溝をフオトリソグラフィ技術を用いて別々(別々の工程)に形成でき、更に、基本波モード振動の周波数安定性が高調波モード振動の周波数安定性より高くすることができる。この場合、厚みtは通常0.05mm〜0.12mmの水晶ウエハが用いられる。しかし、本発明は本実施例に限定されるものでなく、0.12mmより厚い水晶ウエハを使用してもよい。Further, the interval between the tuning fork arms of the present embodiment is given by W 4 , and the interval W 4 and the groove width W 2 are configured to satisfy W 4 ≧ W 2 , and the interval W 4 is 0.05 mm to 0.35 mm. in, the groove width W 2 has a value of 0.03Mm~0.12Mm. The reason for this configuration is an ultra-compact bent quartz crystal resonator, and the tuning fork shape and the groove of the tuning forearm can be formed separately (separate steps) using photolithography technology. The frequency stability can be made higher than the frequency stability of the harmonic mode vibration. In this case, a quartz wafer having a thickness t of usually 0.05 mm to 0.12 mm is used. However, the present invention is not limited to this embodiment, and a quartz wafer thicker than 0.12 mm may be used.

更に詳述するならば、屈曲水晶振動子の誘導性と電気機械変換効率と品質係数を表すフイガーオブメリットMは品質係数Q値と容量比rの比(Q/r)によって定義され(i=1のとき基本波振動、i=2のとき2次高調波振動、i=3のとき3次高調波振動)、屈曲水晶振動子の並列容量に依存しない機械的直列共振周波数fと並列容量に依存する直列共振周波数fの周波数差ΔfはフイガーオブメリットMに反比例し、その値Mが大きい程Δfは小さくなる。従って、Mが大きい程、屈曲水晶振動子の共振周波数は並列容量の影響を受けないので、屈曲水晶振動子の周波数安定性は良くなる。即ち、時間精度の高い音叉形状の屈曲水晶振動子が得られる。More specifically, the Figer of Merit M i representing the inductivity, electromechanical conversion efficiency, and quality factor of the bent quartz resonator is the ratio of the quality factor Q i value to the capacity ratio r i (Q i / r i ). Defined by (fundamental vibration when i = 1, second harmonic vibration when i = 2, third harmonic vibration when i = 3), and mechanical series resonance independent of the parallel capacitance of the bent quartz crystal frequency difference Delta] f of the series resonance frequency f r which depends on the parallel capacitance and the frequency f s is inversely proportional to the off Iga of merit M i, Delta] f becomes smaller as the value M i is large. Therefore, as M i is large, the resonance frequency of the bending crystal oscillator does not influenced by the parallel capacitance, the frequency stability of a flexural quartz crystal resonator is improved. That is, a tuning fork-shaped bent quartz crystal with high time accuracy can be obtained.

詳細には、前記音叉形状と溝と電極とその寸法の構成により、基本波モード振0動のフイガーオブメリットMが2次、3次高調波モード振動のフイガーオブメリットM、Mより大きくなる。即ち、M>Mとなる。但し、Mは高調波モード振動のフイガーオブメリットである。一例として、基本波モード振動の周波数が32.768kHzで、W/W=0.5、t/t=0.34、l/1=0.48のとき、製造によるバラツキが生ずるが、音叉形状の屈曲水晶振動子のM、M、MはそれぞれM>65、M<30、M<18となる。即ち、高い誘導性と電気機械変換効率の良い(等価直列抵抗Rの小さい)、品質係数の大きい基本波モードで振動する屈曲水晶振動子を得ることができる。その結果、基本波モード振動の周波数安定性が2次、3次高調波モード振動の周波数安定性より良くなると共に、2次、3次高調波モード振動を抑圧することができる。また、本発明の基本波モード振動の基準周波数は10kHz〜200kHzが用いられる。特に、32.768kHzは広く使用されている。In particular, the configuration of the dimensions as the tuning fork and the groove and the electrode, the fundamental mode vibration 0 motion of full Iga of merit M 1 is secondary, third harmonic mode vibration of full Iga of merit M 2, M Greater than 3 . That is, M 1 > M n . However, Mn is the fibre of merit of harmonic mode vibration. As an example, at the frequency of the fundamental mode oscillation 32.768kHz, when W 2 /W=0.5,t 1 /t=0.34,l 1 /1=0.48, although variations due to manufacturing may occur M 1 , M 2 , and M 3 of the tuning-fork-shaped bent quartz crystal resonator are M 1 > 65, M 2 <30, and M 3 <18, respectively. That is, (a small equivalent series resistance R 1) Good high inductive electromechanical conversion efficiency, can be obtained flexural quartz oscillator that vibrates at a large fundamental mode of the quality factor. As a result, the frequency stability of the fundamental mode vibration becomes better than the frequency stability of the second and third harmonic mode vibrations, and the second and third harmonic mode vibrations can be suppressed. Further, the reference frequency of the fundamental wave mode vibration of the present invention is 10 kHz to 200 kHz. In particular, 32.768 kHz is widely used.

図6は本発明の第2実施例の水晶ユニット又は水晶発振器に用いられる屈曲モードで振動する音叉形状の水晶振動子45の上面図である。音叉形状の屈曲水晶振動子45は、音叉腕46,47と音叉基部48とを具えて構成されている。即ち、音叉腕46,47の一端部が音叉基部48に接続されている。本実施例では、音叉基部48に切り欠き部53、54が設けられている。又、音叉腕46、47には中立線51、52を挟んで(含む)溝49、50が設けられている。更に、本実施例では溝49、50は音叉腕46、47の一部に設けられていて、溝49、50はそれぞれ幅Wと長さlを有する。更に詳述するならば、溝の面積S=W×lで示し、Sは0.025〜0.12mmの値を有するように構成される。このように溝の面積を構成する理由は化学的エッチング法による溝の形成が容易で、しかも、電気機械変換効率が良くなる溝の形成ができる。と同時に、基本波モード振動の品質係数Q値の高い屈曲モードで振動する音叉形状の水晶振動子が得られる。その結果、前記水晶振動子を具えた水晶ユニットと出力信号が基本波モード振動の周波数である水晶発振器が実現できる。FIG. 6 is a top view of a tuning-fork-shaped crystal resonator 45 that vibrates in a bending mode used in the crystal unit or crystal oscillator according to the second embodiment of the present invention. The tuning fork-shaped bent quartz crystal unit 45 includes tuning fork arms 46 and 47 and a tuning fork base 48. That is, one end of the tuning fork arms 46 and 47 is connected to the tuning fork base 48. In this embodiment, the tuning fork base 48 is provided with notches 53 and 54. Further, the tuning fork arms 46 and 47 are provided with grooves 49 and 50 with (including) the neutral lines 51 and 52, respectively. Further, the grooves 49 and 50 in this embodiment is provided in a part of the tuning fork arms 46 and 47, the grooves 49 and 50 each have a width W 2 and length l 1. More specifically, the groove area S = W 2 × 11 is shown, and S is configured to have a value of 0.025 to 0.12 mm 2 . The reason for configuring the groove area in this way is that it is easy to form a groove by a chemical etching method, and it is possible to form a groove with improved electromechanical conversion efficiency. At the same time, a tuning fork-shaped crystal resonator that vibrates in a bending mode having a high quality factor Q value of fundamental mode vibration can be obtained. As a result, a crystal unit including the crystal unit and a crystal oscillator whose output signal has the frequency of the fundamental mode vibration can be realized.

上記溝の面積Sでは、溝と音叉腕を別々の工程で加工できる。しかし、音叉腕とそれに設けられた溝を同時に加工するには、音叉腕の厚みtと溝幅Wと音叉腕の間隔Wと面積Sを最適寸法にする必要が有る。即ち、音叉腕の厚みtが0.06mm〜0.15mmのとき、溝幅Wが0.02mm〜0.068mmの範囲内に、更に、面積Sは0.023mm〜0.088mmの範囲内にあり、間隔Wは0.05mm〜0.35mmとなるように構成される。このように構成する理由は水晶の結晶性を利用し、その結晶性から貫通穴でない溝(音叉腕の長さ方向に分割された溝を含む)と音叉形状を同時に形成することができる。また、図6には示されていないが、音叉腕46,47の下面にも溝49,50と対抗する位置に溝が設けられている。In the groove area S, the groove and the tuning fork arm can be processed in separate steps. However, in processing the tuning fork arms and grooves provided in it at the same time, should there be an interval W 4 and the area S of the thickness t and groove width W 2 and the tuning fork arm of the tuning fork arms to the optimum dimensions. In other words, the tuning fork arms of thickness t when 0.06Mm~0.15Mm, within the groove width W 2 is 0.02Mm~0.068Mm, further area S of 0.023mm 2 ~0.088mm 2 in the range, the interval W 4 is configured to be 0.05 mm to 0.35 mm. The reason for such a configuration is that the crystallinity of quartz is used, and from the crystallinity, a groove (including a groove divided in the length direction of the tuning fork arm) and a tuning fork shape can be formed simultaneously. Although not shown in FIG. 6, grooves are also provided on the lower surfaces of the tuning fork arms 46 and 47 at positions facing the grooves 49 and 50.

更に、音叉基部48に設けられた切り欠き部53、54の音叉部側の幅寸法はWで与えられ、切り欠き部53、54の端部側の寸法はWで与えられる。そして、音叉基部48の端部側で表面実装型のケースや円筒型のケースに半田や接着剤によって固定されると

Figure 0004697190
た、切り欠き部53,54も振動子の固定による振動部のエネルギー損失を小さくすることができる。図6で示されている音叉腕の腕幅W、部分幅W、W、溝幅Wと間隔W及び溝の長さlと音叉振動子の全長lとの関係は図5で述べられているので、ここでは省略する。Furthermore, the width of the tuning fork portion of the cutout portions 53 and 54 provided in the fork base 48 is given by W 5, the dimensions of the end of the cutout portions 53 and 54 is given by W 6. And when it is fixed to the surface mount type case or cylindrical case by solder or adhesive on the end side of the tuning fork base 48
Figure 0004697190
In addition, the notches 53 and 54 can also reduce the energy loss of the vibration part due to the fixing of the vibrator. The relationship between the arm width W, the partial widths W 1 and W 3 , the groove width W 2 , the interval W 4, the groove length 11 and the overall length 1 of the tuning fork vibrator shown in FIG. Is omitted here.

図7は本発明の第3実施例の水晶ユニットの断面図又は第3実施例の水晶発振器に用いられる水晶ユニットの断面図である。水晶ユニット170は音叉形状の屈曲水晶振動子70、ケース71と蓋72を具えて構成されている。更に詳述するならば、振動子70はケース71に設けられた固定部74に導電性接着剤76や半田によって固定される。又、ケース71と蓋72は接合部材73を介して接合される。本実施例では、振動子70は図3と図6で詳細に述べられた屈曲モードで振動する音叉形状の水晶振動子10、45の内の一個と同じ振動子である。又、本実施例の水晶発振器では回路素子は水晶ユニットの外側に接続される。即ち、音叉形状の屈曲水晶振動子のみがユニット内に収納されている。この時、屈曲水晶振動子は真空中のユニット内に収納されている。  FIG. 7 is a cross-sectional view of a crystal unit according to a third embodiment of the present invention or a cross-sectional view of a crystal unit used in the crystal oscillator of the third embodiment. The crystal unit 170 includes a tuning fork-shaped bent crystal resonator 70, a case 71, and a lid 72. More specifically, the vibrator 70 is fixed to a fixing portion 74 provided on the case 71 with a conductive adhesive 76 or solder. The case 71 and the lid 72 are joined via a joining member 73. In the present embodiment, the vibrator 70 is the same vibrator as one of the tuning-fork-shaped crystal vibrators 10 and 45 that vibrate in the bending mode described in detail in FIGS. In the crystal oscillator of this embodiment, the circuit element is connected to the outside of the crystal unit. That is, only a tuning fork-shaped bent quartz crystal is housed in the unit. At this time, the bent crystal resonator is housed in a vacuum unit.

更に、ケースの部材はセラミックスかガラス、蓋の部材は金属かガラス、そして、接合部材は金属か低融点ガラスでできている。又、本実施例で述べられた振動子とケースと蓋との関係は以下に述べられる図8の水晶発振器にも適用される。  Further, the case member is made of ceramic or glass, the lid member is made of metal or glass, and the joining member is made of metal or low-melting glass. Further, the relationship between the vibrator, the case, and the lid described in this embodiment is also applied to the crystal oscillator of FIG. 8 described below.

図8は本発明の第4実施例の水晶発振器の断面図を示す。水晶発振器190は水晶発振回路とケース91と蓋92を具えて構成されている。本実施例では、水晶発振回路はケース91と蓋92から成る水晶ユニット内に収納されている。又、水晶発振回路は音叉形状の屈曲水晶振動子90と帰還抵抗を含む増幅器98とコンデンサー(図示されていない)とドレイン抵抗(図示されていない)を具えて構成されていて、増幅器98はCMOSインバータが用いられる。  FIG. 8 is a sectional view of a crystal oscillator according to a fourth embodiment of the present invention. The crystal oscillator 190 includes a crystal oscillation circuit, a case 91, and a lid 92. In this embodiment, the crystal oscillation circuit is housed in a crystal unit composed of a case 91 and a lid 92. The crystal oscillation circuit comprises a tuning fork-shaped bent crystal resonator 90, an amplifier 98 including a feedback resistor, a capacitor (not shown), and a drain resistor (not shown). An inverter is used.

更に、本実施例では、振動子90はケース91に設けられた固定部94に接着剤96や半田によって固定される。これに対して、増幅器98はケース91に固定されている。また、ケース91と蓋92は接合部材93を介して接合されている。本実施例の振動子90は図3と図6で詳細に述べられた音叉形状の屈曲水晶振動子10、45の中の振動子が用いられる。  Further, in this embodiment, the vibrator 90 is fixed to a fixing portion 94 provided in the case 91 by an adhesive 96 or solder. On the other hand, the amplifier 98 is fixed to the case 91. Further, the case 91 and the lid 92 are joined via a joining member 93. As the vibrator 90 of this embodiment, the vibrator in the tuning fork-shaped bent quartz crystal vibrators 10 and 45 described in detail in FIGS. 3 and 6 is used.

次に、本発明の水晶ユニットと水晶発振器の製造方法について述べる。上記音叉形状の屈曲水晶振動子は半導体の技術を用いたフオトリソグラフィ法と化学的エッチング法によって形成される。まず、研磨加工あるいはポリッシュ加工された水晶ウエハの上下面に金属膜(例えば、クロムそしてその上に金)をスパッタリング法又は蒸着法により形成する。次に、その金属膜の上にレジストが塗布される。そして、フオトリソ工程により、それらレジストと金属膜が音叉形状を残して除去された後、化学的エッチング法により、音叉腕と音叉基部を具えた音叉形状が形成される。この音叉形状を形成するときに、音叉基部に切り欠き部を形成しても良い。更に、音叉形状の面上に前記工程で示した金属膜とレジストが塗布され、フオトリソ工程と化学的エッチング法により、音叉腕又は音叉腕と音叉基部に溝が形成される。  Next, the manufacturing method of the crystal unit and crystal oscillator of the present invention will be described. The tuning fork-shaped bent quartz crystal resonator is formed by a photolithography method using a semiconductor technique and a chemical etching method. First, metal films (for example, chromium and gold thereon) are formed on the upper and lower surfaces of a polished or polished quartz crystal wafer by sputtering or vapor deposition. Next, a resist is applied on the metal film. Then, after the resist and the metal film are removed while leaving the tuning fork shape by a photolitho process, a tuning fork shape including a tuning fork arm and a tuning fork base is formed by a chemical etching method. When forming this tuning fork shape, a notch may be formed in the tuning fork base. Further, the metal film and resist shown in the above process are applied on the tuning fork-shaped surface, and grooves are formed in the tuning fork arm or the tuning fork arm and the tuning fork base by a photolitho process and a chemical etching method.

次に、溝を有する音叉形状に金属膜とレジストが再び塗布されて、フオトリソ工程により、電極が形成される。即ち、音叉腕の側面の電極と溝の側面の電極は極性が異なるように対抗して配置される。さらに詳述するならば、第1の音叉腕の側面電極と第2の音叉腕の溝の電極は同極に、第1の音叉腕の溝の電極と第2の音叉腕の側面電極は同極に構成され、第1の音叉腕の溝の電極と側面電極は極性が異なるように構成される。即ち。2電極端子が振動子に形成される。その結果、2電極端子に交番電圧を印加する事により、音叉腕は逆相で屈曲振動する。本実施例では、音叉形状の形成の後に溝を音叉腕又は音叉腕と音叉基部に形成しているが、本発明は前記実施例に限定されるものではなくて、まず、溝を形成してから音叉形状を形成してもよい。又は、音叉形状と溝を同時に形成しても良い。更に、この工程での溝の寸法等については前記した寸法と同じであり既に述べられているので、ここでは省略する。  Next, a metal film and a resist are again applied to the tuning fork shape having a groove, and an electrode is formed by a photolitho process. That is, the electrode on the side surface of the tuning fork arm and the electrode on the side surface of the groove are arranged to oppose each other so as to have different polarities. More specifically, the side electrode of the first tuning fork arm and the electrode of the groove of the second tuning fork arm have the same polarity, and the electrode of the groove of the first tuning fork arm and the side electrode of the second tuning fork arm have the same polarity. The electrode of the groove | channel of a 1st tuning fork arm and a side electrode are comprised so that polarity may differ. That is. Two electrode terminals are formed on the vibrator. As a result, by applying an alternating voltage to the two electrode terminals, the tuning fork arm bends and vibrates in reverse phase. In this embodiment, the groove is formed in the tuning fork arm or the tuning fork arm and the tuning fork base after the tuning fork shape is formed. However, the present invention is not limited to the above embodiment, and the groove is first formed. A tuning fork shape may be formed. Or you may form a tuning fork shape and a groove | channel simultaneously. Further, the dimensions and the like of the grooves in this step are the same as those described above and have already been described, and therefore are omitted here.

この実施例の工程により、水晶ウエハには多数個の音叉形状の屈曲水晶振動子が形成されている。それ故、次の工程では、このウエハの状態で、最初の周波数調整がレーザ又はプラズマエッチング又は蒸着にて行われる。と共に、不良振動子はマーキングされるかウエハから取り除かれる。また、本工程では10kHz〜200kHzの基準周波数に対して、周波数偏差は−9000PPM〜+5000PPMの範囲内にあるように周波数調整がなされる。更に、次の工程では、形成された振動子は表面実装型のケース、あるいは蓋又は円筒型のケースのリード線に接着材あるいは半田等で固定される。その固定後に、第2回目の周波数調整がレーザ又はプラズマエッチング又は蒸着にて行われる。本工程では、周波数偏差は−100PPM〜+100PPMの範囲内にあるように周波数調整がなされる。又、本発明での固定後に周波数調整が行われるということは、固定後すぐに周波数調整しても良いし、あるいは固定後にケースと蓋を接続した後に周波数調整をしても良い。即ち、固定後にいかなる工程を入れても、その後に周波数調整をすれば良く、本発明はこれらを全て包含するものである。  By the process of this embodiment, a large number of tuning fork-shaped bent quartz resonators are formed on the quartz wafer. Therefore, in the next step, the initial frequency adjustment is performed by laser or plasma etching or vapor deposition in this wafer state. At the same time, the defective vibrator is marked or removed from the wafer. In this step, the frequency is adjusted so that the frequency deviation is within the range of −9000 PPM to +5000 PPM with respect to the reference frequency of 10 kHz to 200 kHz. Further, in the next step, the formed vibrator is fixed to a lead wire of a surface mount type case, a lid or a cylindrical case with an adhesive or solder. After the fixing, the second frequency adjustment is performed by laser, plasma etching or vapor deposition. In this step, the frequency is adjusted so that the frequency deviation is within the range of −100 PPM to +100 PPM. The fact that the frequency adjustment is performed after fixing in the present invention may be performed immediately after fixing, or may be performed after connecting the case and the lid after fixing. That is, whatever process is performed after fixing, the frequency may be adjusted after that, and the present invention encompasses all of these.

尚、第3回目の周波数調整がなされるときには、前記2回目の周波数調整による周波数偏差は−950PPM〜+950PPMの範囲内にあるように周波数調整がなされる。又、上記実施例では、前記ウエハの状態で、最初の周波数調整を行い、それと共に、不良振動子はマーキングされるかウエハから取り除かれているが、本発明はこれに限定されるものでなく、本発明は水晶ウエハにできた多数個の音叉形状の屈曲水晶振動子をウエハの状態で検査し、良振動子か不良振動子を検査する工程を含めば良い。即ち、不良振動子はマーキングされるか、ウエハから取り除かれるか、コンピュタに記憶される。このような工程を含むことにより、不良振動子を早く見つけることができ、次工程に流れないので、歩留まりを上げることができる。その結果、安価な屈曲水晶振動子を得る事ができる。  When the third frequency adjustment is performed, the frequency adjustment is performed so that the frequency deviation due to the second frequency adjustment is in the range of −950 PPM to +950 PPM. In the above embodiment, the first frequency adjustment is performed in the state of the wafer, and at the same time, the defective vibrator is marked or removed from the wafer. However, the present invention is not limited to this. The present invention may include a step of inspecting a large number of tuning-fork-shaped bent crystal resonators formed on a crystal wafer in the state of the wafer and inspecting a good resonator or a defective resonator. That is, the defective vibrator is marked, removed from the wafer, or stored in a computer. By including such a process, a defective vibrator can be found quickly, and since it does not flow to the next process, the yield can be increased. As a result, an inexpensive bent quartz resonator can be obtained.

更に、周波数調整後に、前記振動子はケースと蓋となるユニットに真空中で収納され、水晶ユニットが得られる。蓋がガラスで構成されているときには、収納後、第3回目の周波数調整がレーザにて行われる。本工程では、周波数偏差は−50PPM〜+50PPMの範囲内にあるように周波数調整がなされる。本実施例では、周波数調整は3回の別々の工程で行われるが、少なくとも2回の別々の工程で行えば良い。例えば、第3回目の工程の周波数調整はしなくても良い。更に次の工程では、前記した振動子の2電極端子が増幅器とコンデンサと抵抗に電気的に接続される。換言するならば、増幅回路はCMOSインバータと帰還抵抗からなり、帰還回路は音叉形状の屈曲水晶振動子とドレイン抵抗とゲート側のコンデンサとドレイン側のコンデンサからなるように接続される。又、前記第3回目の周波数調整は水晶発振回路を構成後に行っても良い。  Furthermore, after adjusting the frequency, the vibrator is housed in a unit serving as a case and a lid in a vacuum to obtain a crystal unit. When the lid is made of glass, the third frequency adjustment is performed with a laser after storage. In this step, the frequency is adjusted so that the frequency deviation is within the range of −50 PPM to +50 PPM. In this embodiment, the frequency adjustment is performed in three separate steps, but may be performed in at least two separate steps. For example, the frequency adjustment in the third process may not be performed. In the next step, the two-electrode terminals of the vibrator are electrically connected to the amplifier, the capacitor, and the resistor. In other words, the amplifier circuit is composed of a CMOS inverter and a feedback resistor, and the feedback circuit is connected to be composed of a tuning fork-shaped bent crystal resonator, a drain resistor, a gate-side capacitor, and a drain-side capacitor. The third frequency adjustment may be performed after the crystal oscillation circuit is configured.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものではなく、上記第1実施例から第4実施例の水晶発振器に用いられる音叉形状の屈曲水晶振動子では、音叉腕又は音叉腕と音叉基部に溝を設けているが、例えば、音叉腕に貫通穴(t=0)を設けてもよい。即ち、貫通穴は溝の特別の場合で、本発明の溝は前記貫通穴をも包含するものである。又、上記実施例では、音叉腕は2本で構成されているが、本発明は3本以上の音叉腕を包含するものである。この場合、少なくとも2本の音叉腕が逆相で振動するように電極が構成されていれば良い。Although the present invention has been described based on the illustrated example, the present invention is not limited to the above-described example. In the tuning-fork-shaped bent crystal resonator used in the crystal oscillators of the first to fourth embodiments, the tuning fork Although the groove is provided in the arm or the tuning fork arm and the tuning fork base, for example, a through hole (t 1 = 0) may be provided in the tuning fork arm. That is, the through hole is a special case of a groove, and the groove of the present invention includes the through hole. In the above embodiment, the tuning fork arm is composed of two, but the present invention includes three or more tuning fork arms. In this case, the electrodes may be configured so that at least two tuning fork arms vibrate in opposite phases.

更に、本実施例では、溝が中立線を挟む(含む)ように音叉腕に設けられているが、本発明はこれに限定されるものでなく、中立線を残して、その両側に溝を形成しても良い。この場合、音叉腕の中立線を含めた部分幅Wは0.05mmより小さくなるように構成される。又、各々の溝の幅は0.04mmより小さくなるように構成され、溝の厚みtと音叉腕の厚みtの比は0.79以下に成るように構成される。このような構成により、MをMより大きくする事ができる。Further, in this embodiment, the groove is provided on the tuning fork arm so as to sandwich (include) the neutral line, but the present invention is not limited to this, and the groove is formed on both sides of the neutral line. It may be formed. In this case, partial width W 7 including the neutral line of the tuning fork arms are configured to be less than 0.05 mm. Further, the width of each groove is configured to be smaller than 0.04 mm, and the ratio of the thickness t 1 of the groove to the thickness t of the tuning fork arm is configured to be 0.79 or less. With such a configuration, M 1 can be made larger than M n .

更に、第1実施例〜第4実施例の水晶発振器とそれに用いられる音叉形状の屈曲水晶振動子について述べてきたが、これらの実施例の水晶発振器に用いられる水晶振動子はケースと蓋とから構成される、いわゆるユニット内に収納され、水晶ユニットを構成する。即ち、ケース又は蓋に設けられた固定部に導電性接着剤又は半田等によって固定部に本実施例の振動子は固定され、さらに、ケースと蓋とは接合部材を介して接合されていて、ケース内は真空になるように構成されている。このように構成することにより、等価直列抵抗Rの小さい、超小型の水晶ユニットを実現することができる。Furthermore, the crystal oscillators of the first to fourth embodiments and the tuning-fork-shaped bent crystal resonators used in the crystal oscillators have been described. The crystal resonators used in the crystal oscillators of these embodiments include a case and a lid. The crystal unit is configured by being housed in a so-called unit. That is, the vibrator of the present embodiment is fixed to the fixing portion by a conductive adhesive or solder or the like on the fixing portion provided on the case or the lid, and the case and the lid are bonded via the bonding member, The case is configured to be a vacuum. With this configuration, a small equivalent series resistance R 1, it is possible to realize a subminiature quartz crystal unit.

更に、本実施例の屈曲水晶振動子の音叉形状と溝は化学的、物理的と機械的方法の内の少なくとも一つの方法を用いて加工される。例えば、物理的方法ではイオン化した原子、分子を飛散させて加工するものである。又、機械的方法では、ブラスト加工用の粒子を飛散させて加工するものである。  Further, the tuning fork shape and the groove of the bent quartz crystal resonator of this embodiment are processed using at least one of chemical, physical and mechanical methods. For example, in a physical method, ionized atoms and molecules are scattered and processed. In the mechanical method, particles for blasting are scattered and processed.

以上述べたように、本発明の水晶ユニットとその製造方法と水晶発振器を提供する事により多くの効果が得られることを既に述べたが、その中でも特に、次の如き著しい効果が得られる。
(1)音叉腕または音叉腕と音叉基部に複数個の溝を設け、且つ、それらの側面に極性の異なる電極が配置されているので、電界が垂直に働く。その結果、電気機械変換効率が良くなるので、等価直列抵抗Rが小さく、品質係数Q値の高い音叉形状の屈曲水晶振動子を具えた水晶ユニットと水晶発振器が得られる。
(2)音叉形状の屈曲水晶振動子の基本波モード振動のフイガーオブメリットMが高調波モード振動のフイガーオブメリットMり大きい振動子を具えて水晶発振器は構成され、更に、増幅回路の基本波モード振動の増幅率αと高調波モード振動の増幅率αとの比が帰還回路の高調波モード振動の帰還率βと基本波モード振動の帰還率βとの比より大きく、かつ、基本波モード振動の増幅率αと基本波モード振動の帰還率βの積が1より大きくなるように水晶発振器は構成されているので、負荷容量が小さくても、水晶発振器の出力信号は、基本波モード振動の周波数が出力として得られると共に、消費電流の少ない水晶発振器が実現できる。
(3)音叉形状と溝をフオトリソグラフィ法と化学的エッチング法によって形成でき、量産性に優れ、更に1枚の水晶ウエハ上に多数個の振動子を一度にバッチ処理にて形成できるので、安価な水晶振動子が得られる。と同時に、それを具えた安価な水晶ユニットと水晶発振器が実現できる。
(4)基本波モード振動のフイガーオブメリットMが高調波モード振動のフイガーオブメリットMより大きい振動子を具えて水晶発振器は構成されるので、出力信号が基本波モード振動の周波数が得られると共に、高い周波数安定性を有する水晶発振器が実現できる。即ち、高い時間精度を有する水晶発振器を得る事ができる。
As described above, it has already been described that many effects can be obtained by providing the crystal unit, the manufacturing method thereof, and the crystal oscillator of the present invention. Among them, the following remarkable effects can be obtained.
(1) Since a plurality of grooves are provided in the tuning fork arm or the tuning fork arm and the tuning fork base, and electrodes having different polarities are arranged on the side surfaces thereof, the electric field works vertically. As a result, the electromechanical conversion efficiency is improved, the equivalent series resistance R 1 small crystal units and crystal oscillator comprises a flexural quartz crystal resonator with high tuning fork quality factor Q value is obtained.
(2) crystal oscillator off Iga of merit M 1 of the fundamental wave mode vibrations comprises a full Iga of merit M n Ri large oscillator harmonic mode oscillation in the flexural quartz crystal tuning fork is configured, furthermore, amplification The ratio of the amplification factor α 1 of the fundamental mode vibration of the circuit and the amplification factor α n of the harmonic mode vibration is the ratio of the feedback factor β n of the harmonic mode vibration of the feedback circuit and the feedback factor β 1 of the fundamental mode vibration. Since the crystal oscillator is configured so that the product of the amplification factor α 1 of the fundamental wave mode vibration and the feedback factor β 1 of the fundamental wave mode vibration is larger than 1 , even if the load capacitance is small, the crystal oscillator As an output signal of the oscillator, a fundamental mode vibration frequency can be obtained as an output, and a crystal oscillator with low current consumption can be realized.
(3) Tuning fork shape and groove can be formed by photolithography method and chemical etching method, which is excellent in mass productivity and can be formed on a single quartz wafer by batch processing at a time, so it is inexpensive. Crystal unit can be obtained. At the same time, an inexpensive crystal unit and crystal oscillator with it can be realized.
(4) Since the full Iga of merit M 1 of the fundamental wave mode vibration crystal oscillator comprises a full Iga of merit M n greater than oscillator harmonic mode vibration is configured, the output signal of the fundamental mode vibration frequencies And a crystal oscillator having high frequency stability can be realized. That is, a crystal oscillator having high time accuracy can be obtained.

本発明の水晶振動子と水晶ユニットと水晶発振器は超小型で、高い周波数安定性を有するので、特に、超小型で、高い周波数安定性を必要とする携帯機器や民生機器等の電子機器に適用できる。  Since the crystal unit, crystal unit and crystal oscillator of the present invention are ultra-compact and have high frequency stability, they are especially applicable to electronic devices such as portable devices and consumer devices that are ultra-compact and require high frequency stability. it can.

本発明の水晶発振器を構成する水晶発振回路図の一実施例である。It is one Example of the crystal oscillation circuit diagram which comprises the crystal oscillator of this invention. 図1の帰還回路図を示す。The feedback circuit diagram of FIG. 1 is shown. 本発明の第1実施例の水晶ユニット又は第1実施例の水晶発振器に用いられる屈曲モードで振動する音叉形状の水晶振動子の外観図とその座標系を示す。FIG. 2 shows an external view and a coordinate system of a tuning fork-shaped crystal resonator that vibrates in a bending mode used in the crystal unit of the first embodiment of the present invention or the crystal oscillator of the first embodiment. 図3の音叉形状の屈曲水晶振動子の音叉基部のD−D′断面図を示す。FIG. 4 shows a DD ′ cross-sectional view of the tuning fork base of the tuning fork-shaped bent crystal resonator of FIG. 3. 図3の音叉形状の屈曲水晶振動子の上面図を示す。FIG. 4 is a top view of the tuning fork-shaped bent quartz crystal resonator of FIG. 3. 本発明の第2実施例の水晶ユニット又は第2実施例の水晶発振器に用いられる屈曲モードで振動する音叉形状の水晶振動子の上面図である。It is a top view of the crystal unit of the tuning fork shape which vibrates in the bending mode used for the crystal unit of 2nd Example of this invention, or the crystal oscillator of 2nd Example. 本発明の第3実施例の水晶ユニットの断面図又は第3実施例の水晶発振器に用いられる水晶ユニットの断面図である。It is sectional drawing of the crystal unit of 3rd Example of this invention, or sectional drawing of the crystal unit used for the crystal oscillator of 3rd Example. 本発明の第4実施例の水晶発振器の断面図を示す。Sectional drawing of the crystal oscillator of 4th Example of this invention is shown. 従来の音叉形状の屈曲水晶振動子の斜視図とその座標系を示す。A perspective view and a coordinate system of a conventional tuning fork-shaped bent quartz crystal resonator are shown. 図9の音叉形状水晶振動子の音叉腕の断面図である。FIG. 10 is a cross-sectional view of a tuning fork arm of the tuning fork-shaped crystal resonator of FIG. 9.

符号の説明Explanation of symbols

1 増幅回路
9 帰還回路
入力電圧
出力電圧
20,26,46,47 音叉腕
溝幅
W 音叉腕の腕幅
,W 音叉腕の部分幅
音叉腕の間隔
音叉腕の中立線を含む部分幅
溝の長さ
音叉基部の長さ
l 音叉形状の屈曲水晶振動子の全長
t 音叉腕又は音叉腕と音叉基部の厚み
溝の厚み
DESCRIPTION OF SYMBOLS 1 Amplifying circuit 9 Feedback circuit V 1 Input voltage V 2 Output voltage 20, 26, 46, 47 Tuning fork arm W 2 groove width W Tuning fork arm arm width W 1 , W 3 Tuning fork arm partial width W 4 Tuning fork arm interval W partial width l 1 groove length l 2 tuning fork base portion of the full-length t tuning fork arms or thicknesses of t 1 groove of the tuning fork arms and fork base of length l tuning fork of the bent crystal oscillator containing 7 tuning fork arms of the neutral line

Claims (2)

水晶振動子と、その水晶振動子を収納するケースと、そのケースをカバーする蓋とを備えて構成される水晶ユニットの製造方法で、前記水晶振動子は、音叉基部とその音叉基部に接続された第1音叉腕と第2音叉腕とを備えて構成され、第1音叉腕と第2音叉腕の各々は、上面とそれに対抗する下面と側面とを有し、第1音叉腕と第2音叉腕の各々の上下面に溝が形成され、逆相の屈曲モードで振動する音叉型屈曲水晶振動子で、その音叉型屈曲水晶振動子を備えて構成される水晶ユニットの製造方法であって、
Figure 0004697190
うに、音叉形状と溝と電極の寸法を決定する工程を備えていて、第1音叉腕と第2音叉腕の各々の上下面に形成された溝は、第1音叉腕と第2音叉腕が形成された後に形成され、その溝を形成した後に第1音叉腕の上下面のに配置された第1電極と第2音叉腕の上下面のに配置された第1電極との極性が異なるように第1電極が配置され、かつ、前記溝の第1電極と対抗して配置された音叉腕の側面の第2電極とは極性が異なる2電極端子を構成し、前記2電極端子の内、1電極端子は第1音叉腕の上下面の溝に配置された第1電極と第2音叉腕の側面に配置された第2電極から構成され、かつ、上下面の溝に配置された第1電極と側面に配置された第2電極とが接続され、他の1電極端子は第1音叉腕の側面に配置された第2電極と第2音叉腕の上下面の溝に配置された第1電極から構成されかつ、側面に配置された第2電極と上下面の溝に配置された第1電極とが接続され、その後に、音叉型屈曲水晶振動子を収納するケース内に収納した後に、音叉型屈曲水晶振動子の周波数が調整され、音叉型屈曲水晶振動子の周波数を調整した後に、ケースと蓋が接合され、かつ、前記音叉型屈曲水晶振動子はその音叉型屈曲水晶振動子の基本波モード振動並列容量に依存しない機械的直列共振周波数と並列容量に依存する直列共振周波数の周波数差が、2次高調波モード振動の並列容量に依存しない機械的直列共振周波数と並列容量に依存する直列共振周波数の周波数差より小さく、かつ、前記基本波モード振動のフイガーオブメリットMが、前記2次高調波モード振動のフイガーオブメリットMより大きいことを特徴とする水晶ユニットの製造方法。
A method for manufacturing a crystal unit comprising a crystal resonator, a case for storing the crystal resonator, and a lid for covering the case. The crystal resonator is connected to a tuning fork base and a tuning fork base. Each of the first tuning fork arm and the second tuning fork arm. Each of the first tuning fork arm and the second tuning fork arm has an upper surface, a lower surface and a side surface opposed to the upper surface, and a first tuning fork arm and a second tuning fork arm. A tuning fork-type bending crystal resonator that has grooves formed on the upper and lower surfaces of each tuning-fork arm and vibrates in a reverse-phase bending mode, and a method for manufacturing a crystal unit comprising the tuning-fork type bending crystal resonator. ,
Figure 0004697190
As described above, the tuning fork shape, the dimensions of the groove and the electrode are provided, and the grooves formed on the upper and lower surfaces of the first tuning fork arm and the second tuning fork arm are formed by the first tuning fork arm and the second tuning fork arm, respectively. is formed after being formed, after forming the groove, the polarity of the first electrode and the first electrode disposed in the groove of the upper and lower surfaces of the second tuning fork arms which are arranged in the groove of the upper and lower surfaces of the first tuning fork arms are arranged differently first electrode, and constitutes a second electrode terminal polarity different from the second electrode side of the first electrode and the counter to arranged tuning fork arms of said groove, said second electrode terminal 1 electrode terminal is comprised from the 1st electrode arrange | positioned at the groove | channel of the upper and lower surfaces of a 1st tuning fork arm, and the 2nd electrode arrange | positioned at the side surface of a 2nd tuning fork arm, and is arrange | positioned at the groove | channel of an up-and-down surface. The first electrode and the second electrode disposed on the side surface are connected, and the other one electrode terminal is connected to the second electrode disposed on the side surface of the first tuning fork arm. Two tuning fork arms are composed of first electrodes arranged in the upper and lower grooves, and the second electrode arranged on the side surface and the first electrode arranged in the upper and lower grooves are connected, and then the tuning fork type After housing the bent crystal unit in the case, the frequency of the tuning fork type bent crystal unit is adjusted, and after adjusting the frequency of the tuning fork type bent crystal unit, the case and the lid are joined, and the tuning fork The frequency difference between the mechanical series resonance frequency that does not depend on the parallel capacitance of the fundamental wave mode vibration of the tuning fork type quartz crystal resonator and the series resonance frequency that depends on the parallel capacitance is that of the second harmonic mode vibration. smaller than the frequency difference between the series resonance frequency which depends on the parallel capacitance and mechanical series resonance frequency that is independent of the parallel capacitor, and the fundamental mode vibration of the full Iga of merit M 1 is, of the second harmonic mode vibration off Method for manufacturing a quartz unit, characterized in that greater than Guarding of merit M 2.
音叉基部とその音叉基部に接続された第1音叉腕と第2音叉腕とを備えて構成され、第1音叉腕と第2音叉腕の各々は、上面とそれに対抗する下面と側面とを有し、 第1音叉腕と第2音叉腕の各々の上下面に溝が形成され、逆相の屈曲モードで振動する音叉型屈曲水晶振動子の製造方法で、
Figure 0004697190
うに、音叉形状と溝と電極の寸法を決定する工程と、第1音叉腕と第2音叉腕と音叉基部とを備えた音叉形状を形成する工程と、第1音叉腕と第2音叉腕の各々の上下面に溝を形成する工程と、を備え、前記音叉形状と前記溝を形成した後に、第1音叉腕の上下面の溝に配置された第1電極と第2音叉腕の上下面の溝に配置された第1電極との極性が異なるように第1電極が配置され、前記溝の第1電極と対抗して配置された音叉腕の側面の第2電極とは極性が異なる2電極端子を構成し、前記2電極端子の内、1電極端子は第1音叉腕の上下面の溝に配置された第1電極と第2音叉腕の側面に配置された第2電極から構成され、かつ、上下面の溝に配置された第1電極と側面に配置された第2電極とが接続され、他の1電極端子は第1音叉腕の側面に配置された第2電極と第2音叉腕の上下面の溝に配置された第1電極から構成され、かつ、側面に配置された第2電極と上下面の溝に配置された第1電極とが接続され、前記音叉型屈曲水晶振動子はその音叉型屈曲水晶振動子の基本波モード振動の並列容量に依存しない機械的直列共振周波数と並列容量に依存する直列共振周波数の周波数差が、2次高調波モード振動の並列容量に依存しない機械的直列共振周波数と並列容量に依存する直列共振周波数の周波数差より小さく、かつ、前記基本波モ
Figure 0004697190
A tuning fork base, and a first tuning fork arm and a second tuning fork arm connected to the tuning fork base, each of the first tuning fork arm and the second tuning fork arm having an upper surface, a lower surface and a side surface opposed to the upper surface. And a method of manufacturing a tuning fork-type bending crystal resonator in which grooves are formed on the upper and lower surfaces of each of the first tuning fork arm and the second tuning fork arm and vibrate in a bending mode of opposite phase.
Figure 0004697190
A step of determining the tuning fork shape, groove and electrode dimensions, a step of forming a tuning fork shape comprising a first tuning fork arm, a second tuning fork arm and a tuning fork base, and a first tuning fork arm and a second tuning fork arm. Forming grooves on the upper and lower surfaces of the first tuning fork arm and the upper and lower surfaces of the first tuning fork arm and the second tuning fork arm after forming the groove and the groove. The first electrode is arranged to have a different polarity from the first electrode arranged in the groove, and the polarity is different from the second electrode on the side surface of the tuning fork arm arranged opposite to the first electrode of the groove. An electrode terminal is configured, and one of the two electrode terminals is composed of a first electrode disposed in a groove on the upper and lower surfaces of the first tuning fork arm and a second electrode disposed on a side surface of the second tuning fork arm. And the first electrode disposed in the upper and lower grooves and the second electrode disposed on the side surface are connected, and the other one electrode terminal is the first tuning fork. The second electrode disposed on the side surface of the first and the first electrode disposed in the groove on the upper and lower surfaces of the second tuning fork arm, and the second electrode disposed on the side surface and the first electrode disposed in the upper and lower surface grooves. One electrode is connected, and the tuning fork type quartz crystal resonator has a frequency difference between a mechanical series resonance frequency that does not depend on the parallel capacitance of the fundamental mode vibration of the tuning fork type quartz crystal resonator and a series resonance frequency that depends on the parallel capacitance. Is smaller than the frequency difference between the mechanical series resonance frequency independent of the parallel capacitance of the second harmonic mode vibration and the series resonance frequency dependent on the parallel capacitance, and the fundamental mode
Figure 0004697190
JP2007153338A 2002-01-11 2007-05-14 Manufacturing methods for crystal units and crystal units Expired - Lifetime JP4697190B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153338A JP4697190B6 (en) 2002-01-11 2007-05-14 Manufacturing methods for crystal units and crystal units

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002040795 2002-01-11
JP2002040795 2002-01-11
JP2007153338A JP4697190B6 (en) 2002-01-11 2007-05-14 Manufacturing methods for crystal units and crystal units

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002383549A Division JP2003273702A (en) 2002-01-11 2002-12-24 Quartz unit, its manufacturing method, and quartz oscillator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010183451A Division JP5401653B2 (en) 2002-01-11 2010-08-02 Quartz crystal manufacturing method and crystal unit manufacturing method

Publications (3)

Publication Number Publication Date
JP2007295605A JP2007295605A (en) 2007-11-08
JP4697190B2 true JP4697190B2 (en) 2011-06-08
JP4697190B6 JP4697190B6 (en) 2011-11-30

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665517A (en) * 1979-10-15 1981-06-03 Ebauches Sa Piezoelectric vibrator
WO2000044092A1 (en) * 1999-01-20 2000-07-27 Seiko Epson Corporation Vibrator and electronic device with vibrator
JP2002076806A (en) * 2000-09-01 2002-03-15 Seiko Epson Corp Method for manufacturing vibration reed, the vibration reed, vibrator having the vibration reed, oscillator and mobile phone
JP2002359536A (en) * 2001-03-27 2002-12-13 Seiko Epson Corp Piezoelectric oscillator and manufacturing method therefor
JP2003273702A (en) * 2002-01-11 2003-09-26 Piedekku Gijutsu Kenkyusho:Kk Quartz unit, its manufacturing method, and quartz oscillator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665517A (en) * 1979-10-15 1981-06-03 Ebauches Sa Piezoelectric vibrator
WO2000044092A1 (en) * 1999-01-20 2000-07-27 Seiko Epson Corporation Vibrator and electronic device with vibrator
JP2002076806A (en) * 2000-09-01 2002-03-15 Seiko Epson Corp Method for manufacturing vibration reed, the vibration reed, vibrator having the vibration reed, oscillator and mobile phone
JP2002359536A (en) * 2001-03-27 2002-12-13 Seiko Epson Corp Piezoelectric oscillator and manufacturing method therefor
JP2003273702A (en) * 2002-01-11 2003-09-26 Piedekku Gijutsu Kenkyusho:Kk Quartz unit, its manufacturing method, and quartz oscillator

Also Published As

Publication number Publication date
JP2007295605A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5531319B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JP2005039767A (en) Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator
JP2005039768A (en) Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP3749917B2 (en) Manufacturing method of crystal oscillator
JP4411494B2 (en) Crystal oscillator
JP4411495B2 (en) Crystal unit with a bent crystal unit
JP4697190B2 (en) Manufacturing methods for crystal units and crystal units
JP4697190B6 (en) Manufacturing methods for crystal units and crystal units
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof
JP4697196B2 (en) Crystal unit and crystal oscillator manufacturing method
JP4697196B6 (en) Crystal unit and crystal oscillator manufacturing method
JP4074935B2 (en) Quartz crystal oscillator and crystal oscillator manufacturing method
JP2003273696A (en) Method for manufacturing crystal unit and method of manufacturing crystal oscillator
JP4411496B6 (en) Portable device equipped with crystal oscillator and manufacturing method thereof
JP4411496B2 (en) Portable device equipped with crystal oscillator and manufacturing method thereof
JP4453017B6 (en) Manufacturing method of crystal unit
JP4453017B2 (en) Manufacturing method of crystal unit
JP4411492B6 (en) Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment
JP4411492B2 (en) Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment
JP2003273647A (en) Crystal oscillator and method of manufacturing the same
JP2003273695A (en) Crystal unit and crystal oscillator
JP2003273702A (en) Quartz unit, its manufacturing method, and quartz oscillator
JP2003273697A (en) Crystal oscillator, and method of manufacturing crystal oscillator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R150 Certificate of patent or registration of utility model

Ref document number: 4697190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term