JP2005039768A - Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator - Google Patents

Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator Download PDF

Info

Publication number
JP2005039768A
JP2005039768A JP2003436628A JP2003436628A JP2005039768A JP 2005039768 A JP2005039768 A JP 2005039768A JP 2003436628 A JP2003436628 A JP 2003436628A JP 2003436628 A JP2003436628 A JP 2003436628A JP 2005039768 A JP2005039768 A JP 2005039768A
Authority
JP
Japan
Prior art keywords
vibrating arm
crystal
groove
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003436628A
Other languages
Japanese (ja)
Other versions
JP4379119B2 (en
Inventor
Hirofumi Kawashima
宏文 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Piedek Technical Laboratory
Original Assignee
Piedek Technical Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Piedek Technical Laboratory filed Critical Piedek Technical Laboratory
Priority to JP2003436628A priority Critical patent/JP4379119B2/en
Priority to US11/004,783 priority patent/US7365478B2/en
Publication of JP2005039768A publication Critical patent/JP2005039768A/en
Application granted granted Critical
Publication of JP4379119B2 publication Critical patent/JP4379119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a miniature tuning fork quartz crystal resonator capable of vibrating in a flexural mode and having high stability at a frequency for a fundamental mode of vibration, a small equivalent series resistance R<SB>1</SB>and a high quality factor Q, and to provide a quartz crystal unit configured to include the quartz crystal resonator, and a quartz crystal oscillator for providing an output signal with a highly stable oscillation frequency. <P>SOLUTION: The tuning fork bent quartz crystal resonator having three electrode terminals comprises tuning fork arms; and a tuning fork base, each tuning fork arm having a groove at least on one of its upper and lower faces, electrodes being deposited to the side of the grooves and the side of each tuning fork arm, at least one of them acting like an earth electrode. Moreover, the quartz crystal oscillator is realized wherein the bent quartz crystal resonator configures the quartz crystal unit, the figure of merit in a fundamental mode of vibration is greater than the figure of merit in a second overtone mode of vibration, and the output signal from the quartz crystal oscillator has the oscillation frequency in the fundamental mode of vibration on the basis of a relation between an amplification factor of an amplifier circuit and a feedback factor of a feedback circuit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は屈曲モードで振動する振動腕と基部から成る水晶振動子とその振動子とケースと蓋から構成される水晶ユニットと増幅回路と帰還回路から成る水晶発振器に関する。特に、小型化、高精度化、耐衝撃性、低廉化の要求の強い情報通信機器用の基準信号源として最適な水晶振動子と水晶ユニットと水晶発振器で、新形状、新電極構成及び最適寸法を有する超小型の屈曲水晶振動子から構成される水晶ユニットと、基本波モード振動の発振周波数が出力信号である水晶発振器に関する。  The present invention relates to a crystal resonator including a vibrating arm and a base that vibrate in a bending mode, a crystal unit including the resonator, a case, and a lid, an amplifier circuit, and a feedback circuit. In particular, crystal units, crystal units, and crystal oscillators that are ideal as reference signal sources for information and communication equipment that are highly demanded for miniaturization, high accuracy, impact resistance, and low cost. New shapes, new electrode configurations, and optimal dimensions. The present invention relates to a crystal unit composed of an ultra-compact bent crystal resonator having a crystal oscillator and a crystal oscillator whose oscillation frequency of fundamental mode vibration is an output signal.

一例として、従来の屈曲水晶振動子は音叉腕と音叉基部から構成され、音叉腕の上下面と側面に電極が配置されている。即ち、2電極端子を構成するように電極が配置されている。また、従来の水晶ユニットはケースと蓋と一体に形成された音叉腕と音叉基部から成る音叉型屈曲水晶振動子から構成され、更に、水晶発振器は増幅器とコンデンサと抵抗と音叉腕の上下面と側面に電極が配置された従来の音叉型屈曲水晶振動子から成る水晶発振器がよく知られている。多用されている従来の音叉型屈曲水晶振動子は2本の音叉腕と音叉基部から構成され、前記振動子の共振周波数は音叉の腕幅Wに比例し、音叉の腕の長さの二乗に反比例する。それ故、小型化を図るためには、腕幅Wを小さくする必要がある。しかしながら、腕幅Wを小さくすると、等価直列抵抗Rが大きくなるという課題が残されていた。また、前記音叉型屈曲水晶振動子から成る従来例の水晶ユニットと水晶発振器の小型化も同時に課題として残されていた。As an example, a conventional bent quartz crystal resonator includes a tuning fork arm and a tuning fork base, and electrodes are disposed on the upper and lower surfaces and side surfaces of the tuning fork arm. That is, the electrodes are arranged so as to constitute a two-electrode terminal. In addition, the conventional crystal unit is composed of a tuning fork-type bending crystal unit composed of a tuning fork arm and a tuning fork base formed integrally with a case and a lid. Further, the crystal oscillator includes an amplifier, a capacitor, a resistor, and upper and lower surfaces of the tuning fork arm. A crystal oscillator composed of a conventional tuning-fork type bent crystal resonator having electrodes arranged on the side surfaces is well known. A conventional tuning fork-type bending crystal resonator that is frequently used is composed of two tuning fork arms and a tuning fork base, and the resonance frequency of the transducer is proportional to the arm width W of the tuning fork and is the square of the length of the tuning fork arm. Inversely proportional. Therefore, it is necessary to reduce the arm width W in order to reduce the size. However, reducing the arm width W, a problem that the equivalent series resistance R 1 becomes larger it had been left. Further, downsizing of the crystal unit and the crystal oscillator of the conventional example including the tuning-fork type bent crystal resonator has been left as a problem at the same time.

このRが大きくなる理由は、音叉腕に配置された電極の、水晶の電気軸(x軸)方向の電界成分Exが大きいほど等価直列抵抗Rが小さくなり、品質係数Q値が大きくなる。しかしながら、従来から使用されている音叉型屈曲水晶振動子は、各音叉腕の上下面と側面の4面に電極を配置している。そのために電界が直線的に働かず、かかる音叉型屈曲水晶振動子を小型化させると、電界成分Exが小さくなってしまい、等価直列抵抗Rが大きくなり、品質係数Q値が小さくなる。同時に、時間基準として高精度な、即ち、高い周波数安定性を有し、2次高調波モード振動を抑えた屈曲水晶振動子を得ることが課題として残されていた。また、前記課題を解決する方法として、例えば、特開昭56−65517では音叉腕に溝を設け、且つ、溝の構成と電極構成について開示している。しかしながら、アース電極からなる3電極端子の電極構成、溝の構成、寸法と振動モード並びに基本波モード振動での等価直列抵抗Rと2次高調波モード振動での等価直列抵抗Rとの関係及び周波数安定性に関係するフイガーオブメリットMについては全く開示されていない。と同時に、前記溝を設けた振動子を従来の回路に接続し、水晶発振回路を構成すると、基本波モード振動の出力信号が衝撃や振動などの影響で出力信号が2次高調波モード振動の周波数に変化、検出される等の問題が発生していた。さらに、水晶発振器の消費電流を低減するために、負荷容量Cを小さくすると、2次高調波モードの振動がし易くなり、基本波モード振動の出力周波数が得られない等の課題が残されていた。更に、隣接する振動腕に配置される電極が2電極端子の構成では、その形成が難しいという課題が残されていた。同時に、音叉の全長を短くできないという課題も残されていた。
特開昭56−65517 国際公開第00/44092 特開平10−153432 特開2003−163568
The reason why R 1 increases is that the equivalent series resistance R 1 decreases as the electric field component Ex of the electrode disposed on the tuning fork arm in the direction of the electric axis (x-axis) of the crystal increases, and the quality factor Q value increases. . However, in the tuning fork-type bent quartz crystal resonator that has been conventionally used, electrodes are arranged on the upper and lower surfaces and side surfaces of each tuning fork arm. For this reason, the electric field does not work linearly, and when the tuning fork type quartz crystal resonator is miniaturized, the electric field component Ex is reduced, the equivalent series resistance R 1 is increased, and the quality factor Q value is decreased. At the same time, there remains a problem of obtaining a bent crystal resonator that is highly accurate as a time reference, that is, has high frequency stability and suppresses second harmonic mode vibration. As a method for solving the above-mentioned problem, for example, JP-A-56-65517 discloses a groove on a tuning fork arm, and discloses a groove structure and an electrode structure. However, the electrode structure of three-electrode terminal made of ground electrodes, the configuration of the groove, the relationship between the equivalent series resistance R 2 of the equivalent series resistance R 1 of the second harmonic mode vibration in the vibration mode and fundamental mode vibration and dimension In addition, there is no disclosure of the finger of merit M related to frequency stability. At the same time, when the vibrator having the groove is connected to a conventional circuit to form a crystal oscillation circuit, the output signal of the fundamental mode vibration is affected by the impact or vibration, and the output signal is the second harmonic mode vibration. Problems such as frequency change and detection have occurred. Furthermore, in order to reduce the current consumption of the crystal oscillator, reducing the load capacitance C L, liable to vibration second harmonic mode, problems such as not to obtain the output frequency of the fundamental mode oscillation is left It was. Furthermore, when the electrodes arranged on the adjacent vibrating arms are configured with two electrode terminals, there remains a problem that it is difficult to form the electrodes. At the same time, there remains a problem that the overall length of the tuning fork cannot be shortened.
JP-A-56-65517 International Publication No. 00/44092 JP-A-10-153432 JP2003-163568

このようなことから、水晶振動子に配置される電極の構成、接続が容易で、水晶振動子が衝撃や振動を受けても、それらの影響を受けない2次高調波モード振動を抑えた基本波モードで振動する屈曲水晶振動子とそれを備えた水晶ユニットと水晶発振器が所望されていた。さらに、基本波モードで振動する水晶振動子の長さ寸法の短い、即ち、全長の短い超小型で、等価直列抵抗Rの小さい、品質係数Q値が高くなるような新形状で、電気機械変換効率の良い溝の構成と電極構成を有する超小型の屈曲水晶振動子とそれを具えた水晶ユニットと、その水晶ユニットを具えた、出力信号が基本波モード振動の発振周波数で、高い周波数安定性(高い時間精度)を有する超小型の水晶発振器が所望されていた。同時に、消費電流の少ない、立ち上がり時間の短い水晶発振器が所望されていた。For this reason, it is easy to configure and connect the electrodes placed on the crystal unit, and to suppress the second harmonic mode vibration that is not affected by the impact or vibration of the crystal unit. There has been a demand for a bent crystal resonator that vibrates in a wave mode, a crystal unit including the same, and a crystal oscillator. Furthermore, short length of the crystal resonator to vibrate in the fundamental mode, i.e., a short ultra-small overall length, a small equivalent series resistance R 1, the new shape, such as the quality factor Q value increases, the electric machine Ultra-compact bent crystal unit with groove structure and electrode configuration with good conversion efficiency, crystal unit equipped with it, and output signal with oscillation frequency of fundamental mode vibration with the crystal unit and high frequency stability An ultra-small crystal oscillator having high performance (high time accuracy) has been desired. At the same time, a crystal oscillator with low current consumption and short rise time has been desired.

本発明は、以下の方法で従来の課題を有利に解決した屈曲モードで振動する屈曲水晶振動子とそれを備えた水晶ユニットと水晶発振器を提供することを目的とするものである。  An object of the present invention is to provide a bent crystal resonator that vibrates in a bending mode that advantageously solves the conventional problems by the following method, a crystal unit including the same, and a crystal oscillator.

即ち、本発明の水晶振動子の第1の態様は、屈曲モードで振動する振動腕と基部からなる屈曲水晶振動子で、前記振動腕は上面と下面と側面とを有し、前記振動腕の上下面の少なくとも一面に溝が設けられ、前記溝又は前記振動腕の側面の少なくとも一面にアース電極が配置されている水晶振動子である。
本発明の水晶ユニットの第1の態様は、水晶振動子とケースと蓋とを備えて構成される水晶ユニットで、前記水晶振動子は屈曲モードで振動する振動腕と基部からなる屈曲水晶振動子で、前記振動腕は上面と下面と側面とを有し、前記振動腕の上下面の少なくとも一面に溝が設けられ、前記溝又は前記振動腕の側面の少なくとも一面にアース電極が配置されている水晶ユニットである。
本発明の水晶ユニットの第2の態様は、水晶振動子とケースと蓋とを備えて構成される水晶ユニットで、前記水晶振動子は屈曲モードで振動する振動腕と基部からなる屈曲水晶振動子で、前記振動腕は上面と下面と側面とを有し、前記基部から突出するようにフレームが設けられていて、前記屈曲水晶振動子の圧電定数e12の絶対値が0.095C/m〜0.19C/mの範囲内にある水晶ユニットである。
本発明の水晶発振器の第1の態様は、増幅回路と帰還回路から構成されていて、増幅回路は増幅器と帰還抵抗素子とを備えて構成され、帰還回路は水晶振動子とコンデンサと抵抗素子とを備えて構成されている水晶発振回路から成る水晶発振器で、前記水晶振動子は屈曲モードで振動する振動腕と基部からなる屈曲水晶振動子で、前記振動腕は上面と下面と側面とを有し、前記屈曲水晶振動子の基本波モード振動のフイガーオブメリットMが2次高調波モード振動のフイガーオブメリットMより大きい屈曲水晶振動子を備えて前記水晶発振回路は構成されると共に、増幅回路と帰還回路とを備えて構成される前記水晶発振回路の増幅回路の基本波モード振動の負性抵抗の絶対値|−RL|と基本波モード振動の等価直列抵抗Rとの比が増幅回路の2次高調波モード振動の負性抵抗の絶対値|−RL|と2次高調波モード振動の等価直列抵抗Rとの比より大きくなるように前記水晶発振回路は構成されていて、前記屈曲水晶振動子を備えて構成された前記水晶発振回路の出力信号が基本波モード振動の発振周波数を有する水晶発振器である。
本発明の水晶発振器の第2の態様は、振動腕と基部とを備えて構成される屈曲水晶振動子の基部から突出するようにフレームが設けられ、前記屈曲水晶振動子の圧電定数e12の絶対値が0.095C/m〜0.19C/mの範囲内にある第1の態様に記載の水晶発振器である。
本発明の水晶振動子の第2の態様と、水晶ユニットと水晶発振器の第3の態様は、振動腕は第1振動腕と第2振動腕からなり、第1振動腕と第2振動腕の上下面に各々1個の溝が設けられ、前記溝と前記振動腕の側面に電極が配置されていて、前記側面に配置された電極はアース電極である第1の態様に記載の水晶振動子、又は第1の態様又は第2の態様に記載の水晶ユニット、又は第1の態様又は第2の態様に記載の水晶発振器である。
本発明の水晶振動子の第3の態様と、水晶ユニットと水晶発振器の第4の態様は、振動腕は第1振動腕と第2振動腕からなり、第1振動腕と第2振動腕の上下面に各々1個の溝が設けられ、前記溝と前記振動腕の側面に電極が配置されていて、前記溝に配置された電極はアース電極である第1の態様に記載の水晶振動子、又は第1の態様又は第2の態様に記載の水晶ユニット、又は第1の態様又は第2の態様に記載の水晶発振器である。
That is, the first aspect of the crystal resonator according to the present invention is a bending crystal resonator including a vibrating arm that vibrates in a bending mode and a base, and the vibrating arm has an upper surface, a lower surface, and a side surface. In the quartz resonator, a groove is provided on at least one of the upper and lower surfaces, and a ground electrode is disposed on at least one of the side surfaces of the groove or the vibrating arm.
A first aspect of the crystal unit of the present invention is a crystal unit including a crystal resonator, a case, and a lid, and the crystal resonator is a bent crystal resonator including a vibrating arm and a base that vibrate in a bending mode. The vibrating arm has an upper surface, a lower surface, and a side surface, a groove is provided on at least one surface of the upper and lower surfaces of the vibrating arm, and a ground electrode is disposed on at least one surface of the groove or the side surface of the vibrating arm. It is a crystal unit.
According to a second aspect of the crystal unit of the present invention, the crystal unit includes a crystal resonator, a case, and a lid. The crystal resonator includes a vibrating arm and a base that vibrate in a bending mode. in the vibrating arm having an upper surface and a lower surface and side surfaces, have a frame is provided so as to protrude from the base, absolute value 0.095C / m 2 of the piezoelectric constant e 12 of the bent crystal oscillator A crystal unit in the range of ˜0.19 C / m 2 .
According to a first aspect of the crystal oscillator of the present invention, the amplifier circuit includes an amplifier circuit and a feedback circuit. The amplifier circuit includes an amplifier and a feedback resistor element. The feedback circuit includes a crystal resonator, a capacitor, and a resistor element. A crystal oscillator comprising a crystal oscillation circuit, wherein the crystal resonator is a bending crystal resonator including a vibrating arm and a base that vibrate in a bending mode, and the vibrating arm has an upper surface, a lower surface, and a side surface. In addition, the crystal oscillation circuit is configured by including a bending crystal resonator in which the fundamental wave mode vibration of the bending crystal resonator has a greater Fibber of merit M 1 than the second harmonic mode vibration of the Fibre of Merit M 2. together, an amplifier circuit absolute value of the negative resistance of the fundamental mode oscillation of the amplifier circuit of the crystal oscillation circuit configured by a feedback circuit | -RL 1 | and the equivalent series resistance R 1 of the fundamental mode oscillation Second harmonic mode absolute value of the negative resistance of the oscillation of the ratio amplifier | -RL 2 | and the crystal oscillator circuit to be greater than the ratio of the equivalent series resistance R 2 of the second harmonic mode vibration arrangement And a crystal oscillator in which an output signal of the crystal oscillation circuit configured to include the bent crystal resonator has an oscillation frequency of fundamental mode vibration.
According to a second aspect of the crystal oscillator of the present invention, a frame is provided so as to protrude from a base portion of a bent crystal resonator including a vibrating arm and a base portion, and the piezoelectric constant e 12 of the bent crystal resonator is The crystal oscillator according to the first aspect, in which an absolute value is in a range of 0.095 C / m 2 to 0.19 C / m 2 .
According to a second aspect of the crystal resonator of the present invention and a third aspect of the crystal unit and the crystal oscillator, the vibrating arm includes a first vibrating arm and a second vibrating arm, and the first vibrating arm and the second vibrating arm 1. The crystal resonator according to the first aspect, wherein one groove is provided on each of the upper and lower surfaces, electrodes are disposed on side surfaces of the groove and the vibrating arm, and the electrodes disposed on the side surfaces are ground electrodes. Or the crystal unit according to the first aspect or the second aspect, or the crystal oscillator according to the first aspect or the second aspect.
According to a third aspect of the crystal resonator of the present invention and a fourth aspect of the crystal unit and the crystal oscillator, the vibrating arm includes a first vibrating arm and a second vibrating arm, and the first vibrating arm and the second vibrating arm The crystal resonator according to the first aspect, wherein one groove is provided on each of upper and lower surfaces, electrodes are disposed on side surfaces of the groove and the vibrating arm, and the electrode disposed in the groove is a ground electrode. Or the crystal unit according to the first aspect or the second aspect, or the crystal oscillator according to the first aspect or the second aspect.

このように、本発明は屈曲モードで振動する屈曲水晶振動子とそれを備えた水晶ユニットと水晶発振器で、しかも、屈曲水晶振動子の振動腕の電極の配置を改善することにより、等価直列抵抗Rの小さい、Q値の高い屈曲水晶振動子が得られ、かつ、増幅回路と帰還回路との関係を示すことにより、2次高調波モード振動を抑え、基本波モード振動で振動する発振周波数を出力する水晶発振器を得る事ができる。As described above, the present invention provides a bending crystal resonator that vibrates in a bending mode, a crystal unit and a crystal oscillator including the same, and improves the arrangement of the electrodes of the vibrating arms of the bending crystal resonator, thereby reducing the equivalent series resistance. An oscillation frequency in which a bent quartz crystal resonator having a small R 1 and a high Q value is obtained, and the second harmonic mode vibration is suppressed by showing the relationship between the amplifier circuit and the feedback circuit, and the fundamental mode vibration is vibrated. Can be obtained.

加えて、振動腕に溝を設け、且つ、3電極端子となる電極を振動腕に配置し、溝の寸法の最適化を図る事により、超小型で、等価直列抵抗Rが小さく、Q値が高く、電気機械変換効率の良い、安価な音叉形状の屈曲水晶振動子が得られる。と同時に、帰還回路の負荷容量を小さくできる。その結果、消費電流の少ない水晶発振器が実現できる。In addition, the grooves provided in the resonating arms, and an electrode made of a three electrode terminals disposed on the vibrating arm, by optimizing the dimensions of the grooves, ultra-small, low equivalent series resistance R 1, Q values A low-priced tuning fork-shaped bent quartz crystal having a high electromechanical conversion efficiency is obtained. At the same time, the load capacity of the feedback circuit can be reduced. As a result, a crystal oscillator with low current consumption can be realized.

以下、本発明の実施例を図面に基づき具体的に述べる。  Embodiments of the present invention will be specifically described below with reference to the drawings.

実施例1の屈曲水晶振動子Example 1 bent crystal resonator

図1の(a)と(b)は、本発明の実施例1の屈曲モードで振動する音叉形状の屈曲水晶振動子10の上面図と下面図を示す。また、x、y、zはそれぞれ水晶の電気軸、機械軸、光軸である。本実施例の屈曲水晶振動子10は振動腕(音叉腕)11、振動腕(音叉腕)12と基部25とを備えて構成され、振動腕11と振動腕12の一端部は基部(音叉基部)25に接続されている。また、振動腕11と振動腕12はそれぞれ上面と下面と側面とを有し、振動腕11の上面には溝13が下面には溝15が設けられ、又、振動腕12の上面と下面にも振動腕11と同様に溝14、16が設けられている。なお、角度θは、x軸廻りの回転角であり、通常0〜15°の範囲で選ばれる。本実施例では、振動腕11の中立線を挟むようにして溝13、15が設けられている。他方の振動腕12にも中立線を挟むようにして溝14、16が設けられている。  FIGS. 1A and 1B are a top view and a bottom view of a tuning-fork-shaped bent quartz crystal resonator 10 that vibrates in a bending mode according to the first embodiment of the present invention. Also, x, y, and z are the crystal electrical axis, mechanical axis, and optical axis, respectively. The bent crystal resonator 10 according to the present embodiment includes a vibrating arm (tuning fork arm) 11, a vibrating arm (tuning fork arm) 12, and a base 25. One end of the vibrating arm 11 and the vibrating arm 12 is a base (tuning fork base). ) 25. The vibrating arm 11 and the vibrating arm 12 each have an upper surface, a lower surface, and a side surface. A groove 13 is provided on the upper surface of the vibrating arm 11, and a groove 15 is provided on the lower surface. Also, like the vibrating arm 11, grooves 14 and 16 are provided. The angle θ is a rotation angle around the x axis, and is usually selected in the range of 0 to 15 °. In the present embodiment, grooves 13 and 15 are provided so as to sandwich the neutral line of the vibrating arm 11. The other vibrating arm 12 is also provided with grooves 14 and 16 so as to sandwich the neutral line.

更に、振動腕11の溝13、15には電極17、19が配置されていて、それぞれの電極が基部25の端部の電極17a、19aに接続されている。更に、電極17aと電極19aは基部25の側面の電極17bを介して接続されている。同様に、振動腕12の溝14、16には電極18、20が配置されていて、それぞれの電極が基部25の端部の電極18a、20aに接続されている。更に、電極18aと電極20aは基部25の側面の電極18bを介して接続されている。更に、振動腕11の側面には電極21,22が配置、接続され、振動腕12の側面には電極23,24が配置、接続されていて、電極22と電極23は同極となるように音叉の叉部付近で接続されている。即ち、電極21,22,23,24は同極となるように接続されている。  Furthermore, electrodes 17 and 19 are disposed in the grooves 13 and 15 of the vibrating arm 11, and the respective electrodes are connected to the electrodes 17 a and 19 a at the end of the base portion 25. Further, the electrode 17 a and the electrode 19 a are connected via an electrode 17 b on the side surface of the base portion 25. Similarly, electrodes 18 and 20 are disposed in the grooves 14 and 16 of the vibrating arm 12, and the respective electrodes are connected to the electrodes 18 a and 20 a at the end of the base 25. Furthermore, the electrode 18 a and the electrode 20 a are connected via an electrode 18 b on the side surface of the base portion 25. Furthermore, electrodes 21 and 22 are arranged and connected to the side surface of the vibrating arm 11, and electrodes 23 and 24 are arranged and connected to the side surface of the vibrating arm 12, so that the electrodes 22 and 23 have the same polarity. Connected near the tuning fork fork. That is, the electrodes 21, 22, 23, and 24 are connected to have the same polarity.

更に、振動腕の部分幅W、Wと溝幅Wとすると、振動腕11,12の腕幅WはW=

Figure 2005039768
となるように形成される。又、溝幅WはW≧W,Wを満足する条件で形成される。更に具体的に述べると、本実施例では、溝幅Wと腕幅Wとの比(W/W)が0.35より大きく、1より小さくなるように、好ましくは、0.35〜0.95の範囲内にある。また、図2で示すように、溝の厚みtと振動腕の厚みtとの比(t/t)が0.79より小さくなるように(t=0(貫通孔)を含む)、好ましくは、0.01〜0.79となるように溝が振動(音叉)腕に形成されている。本実施例では、t<tの関係を有するが、本発明はこれに限定されるものでなく、本発明はt=tの関係をも包含する。即ち、振動腕に溝のない平面である。電極は平面である上下面に配置され、電極の配置、接続は溝を有するときと同じである。このように形成することにより、振動腕の中立線を基点とするモーメントが大きくなる。即ち、電気機械変換効率が良くなるので、等価直列抵抗Rの小さい、Q値の高い、しかも、容量比の小さい音叉形状の屈曲水晶振動子を得ることができる。Furthermore, assuming that the partial widths W 1 and W 3 of the vibrating arms and the groove width W 2 , the arm width W of the vibrating arms 11 and 12 is W =
Figure 2005039768
W 3 is formed. Further, the groove width W 2 is formed under the conditions satisfying W 2 ≧ W 1 and W 3 . More specifically, in this embodiment, the ratio (W 2 / W) of the groove width W 2 to the arm width W is larger than 0.35 and smaller than 1, preferably 0.35 to It is in the range of 0.95. Further, as shown in FIG. 2, the ratio (t 1 / t) between the thickness t 1 of the groove and the thickness t of the vibrating arm is smaller than 0.79 (including t 1 = 0 (through hole)). Preferably, the groove is formed on the vibrating (tuning fork) arm so as to be 0.01 to 0.79. In the present embodiment, there is a relationship of t 1 <t, but the present invention is not limited to this, and the present invention also includes a relationship of t 1 = t. That is, the vibration arm is a flat surface without a groove. The electrodes are arranged on the upper and lower surfaces, which are flat, and the arrangement and connection of the electrodes are the same as when the grooves are provided. By forming in this way, the moment with the neutral line of the vibrating arm as a base point is increased. That is, since the electro-mechanical conversion efficiency is improved, a small equivalent series resistance R 1, a high Q value, moreover, it is possible to obtain a bending crystal oscillator of a small tuning fork capacity ratio.

これに対して、図示されていないが、溝13、15と溝14、16は溝の長さLを、振動腕は腕の長さLを有する。それ故、Rの小さい振動子を得るために、L/Lが0.4〜0.8の値を有する。ここで、溝に配置される電極が溝の一部に配置されるときには、Lは溝の電極の長さLである。更に、屈曲水晶振動子10の全長Lは要求される周波数や収納容器の大きさなどから決定される。本実施例では、音叉形状で、小型化を図るために、Lは2.8mm以下の寸法を有し、好ましくは、2.1mm以下の寸法を有する。より小型化を図るために、Lは1.02mm〜1.95mmの範囲内にある。そして、振動腕の全幅W(=2W+W)は0.43mm以下に、好ましくは、0.15mm〜0.36mmの範囲内にある。また、本実施例では、(音叉)基部の幅寸法はWで与えられ、W

Figure 2005039768
〜0.53mmの範囲内にある。更に、基本波モードで振動する良好な音叉形状の屈曲水晶振動子を得るためには、溝の長さLと全長Lとの間には密接な関係が存在する。On the other hand, although not shown, the grooves 13 and 15 and the grooves 14 and 16 have a groove length L 0 , and the vibrating arm has an arm length L. Therefore, in order to obtain a vibrator having a small R 1 , L 0 / L has a value of 0.4 to 0.8. Here, when the electrode disposed in the groove is disposed in a part of the groove, L 0 is the length L d of the electrode in the groove. Furthermore, the total length L t of the bent quartz resonator 10 is determined from such as the size of the frequency or container required. In this embodiment, in order to reduce the size of the tuning fork, L t has a dimension of 2.8 mm or less, and preferably has a dimension of 2.1 mm or less. In order to further reduce the size, L t is in the range of 1.02 mm to 1.95 mm. The overall width W 5 (= 2W + W 4 ) of the vibrating arm is below 0.43 mm, preferably in the range of 0.15Mm~0.36Mm. In this embodiment, the width dimension of the (tuning fork) base is given by WH , and W
Figure 2005039768
Within the range of ~ 0.53 mm. Further, in order to obtain a good tuning-fork-shaped bent quartz crystal resonator that vibrates in the fundamental wave mode, a close relationship exists between the groove length L 0 and the total length L t .

すなわち、振動腕11,12に設けられた溝の長さLと音叉形状の屈曲水晶振動子の全長Lとの比(L/L)が0.23〜0.88となるように溝の長さは設けられる。特に、Lは1.45mm以下に、好ましくは、Lは0.48mm〜1.29mmの範囲内にある。又、Lは基部(基部の溝の長さL)にまで延在しても良い。このように形成する理由は、特に、不要振動である2次高調波振動を抑圧する事ができると共に、基本波モード振動の周波数安定性を高めることができる。それ故、基本波モードで容易に振動する良好な屈曲水晶振動子が実現できる。詳述するならば、基本波モードで振動する音叉形状の屈曲水晶振動子の等価直列抵抗Rが2次高調波モード振動での等価直列抵抗Rより小さくなる。即ち、R<Rとなり、増幅器(CMOSインバータ)、コンデンサ、抵抗素子、本実施例の音叉形状の屈曲水晶振動子等から成る水晶発振器において、振動子が基本波モードで容易に発振する良好な水晶発振器が実現できる。即ち、基本波モード振動の発振周波数が出力信号として得られる。又、溝の長さLは振動腕の長さ方向に分割されていても良く、その中の少なくとも1個が前記辺比(L/L)を満足すれば良いか、又は、分割された溝の長さ方向の加えられた溝の長さが前記辺比(L/L)を満足すれば良い。That is, the ratio (L 0 / L t ) between the length L 0 of the groove provided in the vibrating arms 11 and 12 and the total length L t of the tuning fork-shaped bent quartz crystal resonator is 0.23 to 0.88. The length of the groove is provided. In particular, L 0 is 1.45 mm or less, preferably L 0 is in the range of 0.48 mm to 1.29 mm. Further, L 0 may extend to the base (the length L K of the groove on the base). The reason for forming in this way is that, in particular, it is possible to suppress the second harmonic vibration, which is an unnecessary vibration, and to improve the frequency stability of the fundamental mode vibration. Therefore, it is possible to realize a good bent crystal resonator that easily vibrates in the fundamental wave mode. If described in detail, the equivalent series resistance R 1 of the bending quartz oscillator tuning fork vibrating at the fundamental mode is smaller than the equivalent series resistance R 2 at the second harmonic mode vibration. That is, R 1 <R 2 , and in the crystal oscillator including the amplifier (CMOS inverter), the capacitor, the resistance element, the tuning-fork-shaped bent crystal resonator of this embodiment, etc., the resonator is easily oscillated in the fundamental mode. Crystal oscillator can be realized. That is, the oscillation frequency of the fundamental mode vibration is obtained as an output signal. Further, the groove length L 0 may be divided in the length direction of the vibrating arm, and at least one of them may satisfy the side ratio (L 0 / L t ) or may be divided. The length of the added groove in the length direction of the formed groove should satisfy the side ratio (L 0 / L t ).

また、この実施例では、基部25は図1の(a)と(b)中、振動子10のU字形状の下側と幅Wの部分全体とされ、又、振動腕11と振動腕12は、図1の(a)と(b)中、振動子10のU字形状の上側の部分全体とされている。本実施例では音叉の叉部はU字型をしているが、本発明は前記形状に限定されるものではなく、音叉の叉部が矩形をしていても良い。この場合もU字型の形状と同じように、振動腕と基部との寸法の関係は前記関係と同じである。また、本発明で言う溝の長さLとは、溝幅Wと振動腕幅Wとの比(W/W)が0.35より大きく、且つ、1より小さく、溝の厚みtと振動腕の厚みtとの比(t/t)が0.79より小さくなるように形成された溝の長さである。Further, in this embodiment, the base portion 25 in FIG. 1 (a) (b), is a whole portion of the lower side and the width W H of the U-shape of the vibrator 10, and the vibration arms and the vibrating arms 11 Reference numeral 12 denotes the entire U-shaped upper portion of the vibrator 10 in FIGS. In the present embodiment, the tuning fork fork has a U-shape, but the present invention is not limited to the above shape, and the tuning fork fork may have a rectangular shape. In this case as well, as in the U-shaped shape, the dimensional relationship between the vibrating arm and the base is the same as the above relationship. The groove length L 0 referred to in the present invention means that the ratio (W 2 / W) of the groove width W 2 to the vibrating arm width W is larger than 0.35, smaller than 1, and the groove thickness t. 1 is a length of a groove formed so that a ratio (t 1 / t) of 1 and the thickness t of the vibrating arm is smaller than 0.79.

換言するならば、中立線を含む振動腕の上下面に各々少なくとも1個の溝が長さ方向に設けられ、前記溝の両側面に電極が配置され、前記溝側面の電極とその電極に対抗する振動腕側面の電極とが互いに異極となるように構成され、振動腕に生ずる慣性モーメントが大きくなるように前記各々少なくとも1個の溝の内少なくとも1個の溝幅Wと振動腕幅Wとの比(W/W)が0.35より大きく、1より小さく、且つ、前記溝の厚みtと振動腕の厚みtとの比(t/t)が0.79より小さくなるように溝が形成されている。In other words, at least one groove is provided in the longitudinal direction on the upper and lower surfaces of the vibrating arm including the neutral line, electrodes are disposed on both side surfaces of the groove, and the electrodes on the side surfaces of the groove and the electrodes are opposed to the electrodes. vibrating arms and the side electrodes are configured such that different poles each other, at least one of groove width W 2 and the vibration arm width of said each at least one groove as the moment of inertia generated in the vibration arm is increased to The ratio (W 2 / W) to W is larger than 0.35 and smaller than 1 , and the ratio (t 1 / t) between the thickness t 1 of the groove and the thickness t of the vibrating arm is smaller than 0.79. A groove is formed so as to be.

一例として、振動腕は少なくとも第1振動腕と第2振動腕を具えて構成され、前記第1振動腕と前記第2振動腕と前記基部とはエッチング法によって一体に形成されていて、第1振動腕と第2振動腕の上下面にはそれぞれ厚みの方向に対抗して溝が設けられ、前記溝は第1振動腕と第2振動腕の中立線を挟んだ幅方向略中央部の上下面に各々1個の溝が設けられ、少なくとも1個の溝幅Wは部分幅W、Wと等しいか、又は部分幅W、Wより大きくなるように形成され、且つ、各々の溝には第1振動腕の溝の電極と第2振動腕の溝の電極との極性が異なる電極が配置されると共に、前記溝の電極と対抗して配置された振動腕の側面の電極とは極性が異なる3電極端子を構成し、前記3電極端子の内、1電極端子は第1振動腕の上下面の溝に配置、接続された電極から構成され、1電極端子は第2振動腕の上下面の溝に配置、接続された電極から構成され、残りの1電極端子は第1振動腕と第2振動腕の両側面に配置、接続された電極から構成されている。As an example, the vibrating arm includes at least a first vibrating arm and a second vibrating arm, and the first vibrating arm, the second vibrating arm, and the base are integrally formed by an etching method, Grooves are provided on the upper and lower surfaces of the vibrating arm and the second vibrating arm, respectively, in the thickness direction, and the groove is located above the central portion in the width direction across the neutral line of the first vibrating arm and the second vibrating arm. each one of the grooves is provided on the lower surface, are formed so as to at least one of the groove width W 2 equal or partial width W 1, W 3, or greater than the partial width W 1, W 3, and each In the groove, electrodes having different polarities between the electrode of the groove of the first vibrating arm and the electrode of the groove of the second vibrating arm are disposed, and the electrode on the side surface of the vibrating arm disposed opposite to the electrode of the groove 3 electrode terminals having different polarities from each other, and one of the three electrode terminals is above the first vibrating arm. The electrode is arranged and connected to the groove on the lower surface, and one electrode terminal is composed of the electrodes arranged and connected to the upper and lower surfaces of the second vibrating arm, and the remaining one electrode terminal is connected to the first vibrating arm and the first vibrating arm. 2 It is comprised from the electrode arrange | positioned and connected to the both sides | surfaces of a vibrating arm.

更に詳述するならば、屈曲水晶振動子の誘導性と電気機械変換効率と品質係数を表すフイガーオブメリットMは品質係数Q値と容量比rの比(Q/r)によって定義され(i=1のとき基本波振動、i=2のとき2次高調波振動)、屈曲水晶振動子の並列容量に依存しない機械的直列共振周波数fと並列容量に依存する直列共振周波数fの周波数差ΔfはフイガーオブメリットMに反比例し、その値Mが大きい程Δfは小さくなる。従って、Mが大きい程、屈曲水晶振動子の共振周波数は並列容量の影響を受けないので、屈曲水晶振動子の周波数安定性は良くなる。即ち、時間精度の高い屈曲水晶振動子が得られる。More specifically, the Figer of Merit M i representing the inductivity, electromechanical conversion efficiency, and quality factor of the bent quartz resonator is the ratio of the quality factor Q i value to the capacity ratio r i (Q i / r i ). defined by (i = 1 when the fundamental wave vibration, the second harmonic oscillation when i = 2), the series resonance that depends on the parallel capacitance and mechanical series resonance frequency f s that is independent of the parallel capacitance of the flexural crystal oscillator the frequency difference Δf of frequency f r is inversely proportional to the full Iga of merit M i, Δf becomes smaller as the value M i is large. Therefore, as M i is large, the resonance frequency of the bending crystal oscillator does not influenced by the parallel capacitance, the frequency stability of a flexural quartz crystal resonator is improved. That is, a bent crystal resonator with high time accuracy can be obtained.

詳細には、前記音叉形状と溝とその寸法の構成により、基本波モード振動のフイガーオブメリットMが2次高調波モード振動のフイガーオブメリットMより大きくなる。即ち、M>Mとなる。一例として、音叉形状の基本波モード振動の基準周波数が32.768kHzで、W/W=0.5、t/t=0.34、L/L=0.48のとき、製造によるバラツキが生ずるが、音叉形状の屈曲水晶振動子のM、MはそれぞれM>60、M<30となる。即ち、高い誘導性と電気機械変換効率の良い(等価直列抵抗Rの小さい)、品質係数の大きい基本波モードで振動する屈曲水晶振動子を得ることができる。その結果、基本波モード振動の周波数安定性が2次高調波モード振動の周波数安定性より良くなると共に、2次高調波モード振動を抑圧することができる。More specifically, the configuration of the tuning fork shape, the groove, and its dimensions makes the fibre-of-merit M 1 of the fundamental mode vibration larger than the fibre-of-merit M 2 of the second harmonic mode vibration. That is, M 1 > M 2 is satisfied. As an example, when the reference frequency of the fundamental wave mode vibration of the tuning fork shape is 32.768 kHz, W 2 /W=0.5, t 1 /t=0.34, L 0 / L t = 0.48 However, M 1 and M 2 of the tuning fork-shaped bent quartz crystal resonator satisfy M 1 > 60 and M 2 <30, respectively. That is, (a small equivalent series resistance R 1) Good high inductive electromechanical conversion efficiency, can be obtained flexural quartz oscillator that vibrates at a large fundamental mode of the quality factor. As a result, the frequency stability of the fundamental wave mode vibration becomes better than the frequency stability of the second harmonic mode vibration, and the second harmonic mode vibration can be suppressed.

図2は、図1の屈曲水晶振動子10の振動腕11,12のA−A′断面図を示す。振動腕11には溝13,15が設けられている。同様に、振動腕12には溝14,16が設けられている。更に、溝13と溝15には同極となる電極17,19が配置、接続され、溝14と溝16には同極となる電極18,20が配置、接続されている。また、振動腕11,12の側面には同極となる電極21,22,23,24が配置、接続され、これらの電極はアースに接地されている。即ち、アース電極で、記号B″で表す。更に詳述するならば、振動腕11の溝の電極と振動腕12の溝の電極とは極性の異なる電極が配置されている。それ故、本実施例では3電極端子B−B′−B″を構成している。即ち、1電極端子(記号B)は電極17,19から構成、接続されている。他の1電極端子(記号B′)は電極18,20から構成、接続されている。更に残りの1電極端子(記号B″)はアース電極(零の極性)で、電極21,22,23,24から構成、接続されている。即ち、3電極端子B、B′、B″に接続される電極はそれぞれ極性が異なる。更に電極について詳述するならば、本実施例では、第1振動腕11の両側面と第2振動腕12の両側面に配置された電極21,22,23,24に対抗して配置された対抗電極は前記第1振動腕と前記第2振動腕の両側面の電極の各々に対して一部分対抗して配置されている。  FIG. 2 is a cross-sectional view taken along the line AA ′ of the vibrating arms 11 and 12 of the bent crystal resonator 10 of FIG. The vibrating arm 11 is provided with grooves 13 and 15. Similarly, the vibrating arm 12 is provided with grooves 14 and 16. Further, electrodes 17 and 19 having the same polarity are arranged and connected to the groove 13 and the groove 15, and electrodes 18 and 20 having the same polarity are arranged and connected to the groove 14 and the groove 16. In addition, electrodes 21, 22, 23, and 24 having the same polarity are disposed and connected to the side surfaces of the vibrating arms 11 and 12, and these electrodes are grounded. That is, the ground electrode is represented by the symbol B ″. More specifically, the electrode of the groove of the vibrating arm 11 and the electrode of the groove of the vibrating arm 12 are arranged with different polarities. In the embodiment, a three-electrode terminal BB′-B ″ is configured. That is, one electrode terminal (symbol B) is configured and connected from electrodes 17 and 19. The other one electrode terminal (symbol B ′) is constructed and connected from electrodes 18 and 20. Further, the remaining one electrode terminal (symbol B ″) is a ground electrode (zero polarity) and is composed of and connected to the electrodes 21, 22, 23, 24. That is, to the three electrode terminals B, B ′, B ″. The electrodes to be connected have different polarities. Further, the electrodes will be described in detail. In this embodiment, the electrodes are arranged to oppose the electrodes 21, 22, 23 and 24 arranged on both side surfaces of the first vibrating arm 11 and both side surfaces of the second vibrating arm 12. The counter electrode is arranged to partially face each of the electrodes on both side surfaces of the first vibrating arm and the second vibrating arm.

即ち、振動腕のz軸(厚み)方向に対抗する溝電極は同極に、且つ、大略x軸の方向に対抗する電極は極性が異なるように構成、配置されている。詳細には、厚み方向に対抗して設けられた溝に配置された電極の対抗する溝電極と溝電極との間には前記溝電極に対して垂直に発生する電界が厚み方法に存在しないように電極が配置されている。今、2電極端子B−B′間に直流電圧を印加(B端子に正極、B′端子に負極)すると、電界Exは図2に示した矢印のように働く。電界Exは振動腕の側面と溝内の側面とに対抗して配置された電極により前記電極に垂直に、即ち、直線的に引き出されるので、電界Exが大きくなり、その結果、振動(音叉)腕の長さ方向に同時に歪が発生すると共に、中立線に対して振動(音叉)腕の内側と外側では歪の方向が反対に発生し、且つ、第1振動(音叉)腕と第2振動(音叉)腕の中立線に対して音叉の内側に発生する歪の方向とが同じで、第1振動(音叉)腕と第2振動(音叉)腕の中立線に対して音叉の外側に発生する歪の方向が同じで、更に、前記内側の歪と前記外側の歪とが互いに反対の方向に発生する。それ故、2電極端子B−B′間に交番電圧を印加することにより、振動(音叉)腕が基本波モードで、かつ、逆相の屈曲モードで振動し、共振特性が良くなると共に、発生する歪の量も大きくなる。従って、音叉形状の屈曲水晶振動子を小型化させた場合でも、等価直列抵抗Rの小さい、品質係数Q値の高い屈曲モードで振動する音叉形状の屈曲水晶振動子が得られる。That is, the groove electrode that opposes the z-axis (thickness) direction of the vibrating arm is configured and arranged so as to have the same polarity and the electrode that opposes the x-axis direction generally has a different polarity. Specifically, the electric field generated perpendicularly to the groove electrode does not exist in the thickness method between the groove electrode opposed to the electrode disposed in the groove provided in the thickness direction. An electrode is disposed on the surface. Now, when a DC voltage is applied between the two electrode terminals B-B '(a positive electrode at the B terminal and a negative electrode at the B' terminal), the electric field Ex works as shown by the arrows in FIG. The electric field Ex is drawn perpendicularly to the electrode by the electrodes arranged opposite to the side surface of the vibrating arm and the side surface in the groove, that is, linearly drawn, so that the electric field Ex is increased, resulting in vibration (tuning fork). At the same time, distortion occurs in the length direction of the arm, and the direction of distortion occurs oppositely on the inside and outside of the vibrating (tuning fork) arm with respect to the neutral line, and the first vibrating (tuning fork) arm and the second vibration The direction of the distortion generated inside the tuning fork is the same as that of the (tuning fork) arm neutral line, and is generated outside the tuning fork with respect to the neutral line of the first and second vibrating (tuning fork) arms. The direction of strain to be generated is the same, and the inner strain and the outer strain are generated in opposite directions. Therefore, by applying an alternating voltage between the two electrode terminals B-B ', the vibrating (tuning fork) arm vibrates in the fundamental wave mode and in the bending mode of the opposite phase, improving the resonance characteristics and generating. The amount of distortion that occurs is also increased. Therefore, even when the tuning fork-shaped bent quartz crystal is reduced in size, a tuning fork-shaped bent quartz crystal that vibrates in a bending mode having a small equivalent series resistance R 1 and a high quality factor Q value can be obtained.

また、屈曲水晶振動子10の振動(音叉)腕は厚みtを有し、溝は厚みtを有している。ここで言う厚みtは溝の一番深いところの厚みを言う。本実施例では、溝の断面形状は矩形の形状をしているが、実際には大略U字形状、又は大略V字形状、あるいは大略U字形状と大略V字形状が合成された形状をしている。より詳細には、溝が深くなるにつれて、溝の幅は徐々に狭くなる傾向を示す。このことは他の実施例の屈曲水晶振動子でも言えることである。The vibration (tuning fork) arm of the bent quartz resonator 10 has a thickness t, groove has a thickness t 1. The thickness t 1 here refers to the thickness of the deepest part of the groove. In this embodiment, the cross-sectional shape of the groove is a rectangular shape, but in actuality, the groove has a substantially U shape, or a substantially V shape, or a shape in which a substantially U shape and a substantially V shape are combined. ing. More specifically, as the groove becomes deeper, the groove width tends to become narrower. This is also true for the bent quartz resonators of other embodiments.

実施例2の屈曲水晶振動子Bent crystal resonator of Example 2

図3の(a)と(b)は、本発明の実施例2の屈曲モードで振動する音叉形状の屈曲水晶振動子30の上面図と下面図を示す。本実施例の屈曲水晶振動子30は振動腕(音叉腕)31、振動腕(音叉腕)32と基部45とを備えて構成され、振動腕31と振動腕32の一端部は基部(音叉基部)45に接続されている。また、振動腕31と振動腕32はそれぞれ上面と下面と側面とを有し、振動腕31の上面には溝33が下面には溝35が設けられ、又、振動腕32の上面と下面にも振動腕31と同様に溝34、36が設けられている。更に、振動腕31の側面には電極41,42が配置、接続されていて、電極41が基部45の上下面の端部の電極41a、41cに接続されている。更に、電極41aと電極41cは基部45の側面の電極41bを介して接続されている。同様に、振動腕32の側面には電極43,44が配置、接続されていて、電極44が基部45の上下面の端部の電極44a、44cに接続されている。更に、電極44aと電極44cは基部45の側面の電極44bを介して接続されている。  FIGS. 3A and 3B are a top view and a bottom view of a tuning-fork-shaped bent crystal resonator 30 that vibrates in the bending mode according to the second embodiment of the present invention. The bent crystal resonator 30 of the present embodiment includes a vibrating arm (tuning fork arm) 31, a vibrating arm (tuning fork arm) 32, and a base 45. One end of the vibrating arm 31 and the vibrating arm 32 is a base (tuning fork base). ) 45. The vibrating arm 31 and the vibrating arm 32 each have an upper surface, a lower surface, and a side surface. A groove 33 is provided on the upper surface of the vibrating arm 31, and a groove 35 is provided on the lower surface. Similarly to the vibrating arm 31, grooves 34 and 36 are provided. Furthermore, electrodes 41 and 42 are disposed and connected to the side surface of the vibrating arm 31, and the electrode 41 is connected to the electrodes 41 a and 41 c at the upper and lower ends of the base 45. Furthermore, the electrode 41 a and the electrode 41 c are connected via the electrode 41 b on the side surface of the base 45. Similarly, electrodes 43 and 44 are arranged and connected to the side surface of the vibrating arm 32, and the electrode 44 is connected to the electrodes 44 a and 44 c at the upper and lower ends of the base 45. Furthermore, the electrode 44 a and the electrode 44 c are connected via an electrode 44 b on the side surface of the base 45.

更に、振動腕31の溝33,35には電極37,39が配置され、振動腕32の溝34,36には電極38,40が配置されていて、電極37と電極38は同極となるように接続され、かつ、電極39と電極40も同極となるように接続されている。そして、一方の接続された電極37,38は基部45の端部の電極46に接続され、他方の接続された電極39,40は基部45の端部の電極47に接続されている。更に、電極46と電極47は基部45の側面の電極46aを介して接続されている。即ち、電極37,38,39,40は同極となるように接続されている。尚、図3には示されていないが、振動子の各寸法の関係は実施例1と同じように形成される。  Furthermore, electrodes 37 and 39 are disposed in the grooves 33 and 35 of the vibrating arm 31, and electrodes 38 and 40 are disposed in the grooves 34 and 36 of the vibrating arm 32. The electrodes 37 and 38 have the same polarity. The electrodes 39 and 40 are also connected to have the same polarity. One connected electrode 37, 38 is connected to the electrode 46 at the end of the base 45, and the other connected electrode 39, 40 is connected to the electrode 47 at the end of the base 45. Further, the electrode 46 and the electrode 47 are connected via an electrode 46 a on the side surface of the base 45. That is, the electrodes 37, 38, 39, and 40 are connected so as to have the same polarity. Although not shown in FIG. 3, the relationship between the dimensions of the vibrator is formed in the same manner as in the first embodiment.

図4は、図3の屈曲水晶振動子30の振動腕31,32のC−C′断面図を示す。振動腕31には溝33,35が設けられている。同様に、振動腕32には溝34,36が設けられている。更に、溝33,34,35,36には同極となる電極37,38,39.40が配置、接続され、これらの電極はアースに接地されている。即ち、アース電極である。また、振動腕31の側面には同極となる電極41,42が配置、接続され、振動腕32の側面には同極となる電極43,44が配置、接続されている。更に詳述するならば、振動腕31の側面の電極と振動腕32の側面の電極とは極性の異なる電極が配置されている。それ故、本実施例では3電極端子D−D′−D″を構成している。即ち、1電極端子(記号D)は電極41,42から構成、接続されている。他の1電極端子(記号D′)は電極43,44から構成、接続されている。更に残りの1電極端子(記号D″)はアース電極(零の極性)で、電極37,38,39,40から構成、接続されている。即ち、3電極端子D、D′、D″に接続される電極はそれぞれ極性が異なる。更に電極について詳述するならば、第1振動腕31の両側面と第2振動腕32の両側面に配置された電極41,42,43,44に対抗して配置された対抗電極は前記第1振動腕と前記第2振動腕の両側面の電極の各々に対して一部分対抗して配置されている。今、2電極端子D−D′間に直流電圧を印加(D端子に正極、D′端子に負極)すると、電界Exは図4に示した矢印のように働く。それ故、2電極端子D−D′間に交番電圧を印加することにより、振動(音叉)腕が基本波モードで、かつ、逆相の屈曲モードで振動し、共振特性が良くなると共に、発生する歪の量も大きくなる。従って、音叉形状の屈曲水晶振動子を小型化させた場合でも、等価直列抵抗Rの小さい、Q値の高い屈曲モードで振動する音叉形状の屈曲水晶振動子が得られる。FIG. 4 is a cross-sectional view taken along the line CC ′ of the vibrating arms 31 and 32 of the bent crystal resonator 30 of FIG. The vibrating arm 31 is provided with grooves 33 and 35. Similarly, the vibrating arm 32 is provided with grooves 34 and 36. Further, electrodes 37, 38, 39.40 having the same polarity are arranged and connected to the grooves 33, 34, 35, 36, and these electrodes are grounded. That is, the ground electrode. Also, electrodes 41 and 42 having the same polarity are arranged and connected to the side surface of the vibrating arm 31, and electrodes 43 and 44 having the same polarity are arranged and connected to the side surface of the vibrating arm 32. More specifically, the electrodes on the side surfaces of the vibrating arm 31 and the electrodes on the side surface of the vibrating arm 32 have different polarities. Therefore, in this embodiment, a three-electrode terminal DD′-D ″ is configured. That is, one electrode terminal (symbol D) is configured and connected from electrodes 41 and 42. Other one-electrode terminal (Symbol D ′) is composed and connected from electrodes 43 and 44. Further, the remaining one electrode terminal (symbol D ″) is a ground electrode (zero polarity), composed of electrodes 37, 38, 39 and 40. It is connected. That is, the electrodes connected to the three-electrode terminals D, D ′, and D ″ have different polarities. Further, if the electrodes are described in detail, the both side surfaces of the first vibrating arm 31 and the both side surfaces of the second vibrating arm 32 are used. The counter electrodes arranged to oppose the arranged electrodes 41, 42, 43, 44 are arranged to partially face each of the electrodes on both side surfaces of the first vibrating arm and the second vibrating arm. Now, when a DC voltage is applied between the two electrode terminals D-D '(positive to D terminal and negative to D' terminal), the electric field Ex works as shown by the arrow in FIG. By applying an alternating voltage between D and D ', the vibrating (tuning fork) arm vibrates in the fundamental wave mode and in the bending mode of the opposite phase, improving the resonance characteristics and increasing the amount of distortion generated. Therefore, even when the tuning fork-shaped bent quartz crystal is downsized, the equivalent series Small anti R 1, flexural quartz crystal tuning fork vibrating at a high bending mode Q value is obtained.

実施例3の屈曲水晶振動子Bent crystal resonator of Example 3

図5の(a)と(b)は、本発明の実施例3の音叉形状の屈曲水晶振動子で、音叉腕(振動腕)の断面図を示す。図5の(a)では、屈曲水晶振動子50の振動腕51の上面に溝53が、振動腕52の上面には溝54が設けられている。更に、溝53と振動腕51の下面には同極となる電極56,61が配置、接続され、溝54と振動腕52の下面には同極となる電極59,62が配置、接続されている。また、振動腕51,52の側面には同極となる電極55,57,58,60が配置、接続され、これらの電極はアースに接地されている。即ち、アース電極で、記号E″で表す。更に詳述するならば、振動腕51の溝の電極と振動腕52の溝の電極とは極性の異なる電極が配置されている。それ故、本実施例では3電極端子E−E′−E″を構成している。即ち、1電極端子(記号E)は電極56,61から構成、接続されている。他の1電極端子(記号E′)は電極59,62から構成、接続されている。更に残りの1電極端子(記号E″)はアース電極(零の極性)で、電極55,57,58,60から構成、接続されている。即ち、3電極端子E、E′、E″に接続される電極はそれぞれ極性が異なる。  FIGS. 5A and 5B are sectional views of a tuning fork arm (vibrating arm) of a tuning fork-shaped bent quartz crystal resonator according to a third embodiment of the present invention. In FIG. 5A, a groove 53 is provided on the upper surface of the vibrating arm 51 of the bent crystal resonator 50, and a groove 54 is provided on the upper surface of the vibrating arm 52. Furthermore, electrodes 56 and 61 having the same polarity are arranged and connected to the lower surface of the groove 53 and the vibrating arm 51, and electrodes 59 and 62 having the same polarity are arranged and connected to the lower surface of the groove 54 and the vibrating arm 52. Yes. In addition, electrodes 55, 57, 58, and 60 having the same polarity are disposed and connected to the side surfaces of the vibrating arms 51 and 52, and these electrodes are grounded. That is, the electrode is represented by the symbol E ″. In more detail, the electrode of the groove of the vibrating arm 51 and the electrode of the groove of the vibrating arm 52 are arranged with different polarities. In the embodiment, a three-electrode terminal EE′-E ″ is configured. That is, one electrode terminal (symbol E) is configured and connected from the electrodes 56 and 61. The other one electrode terminal (symbol E ′) is constructed and connected from electrodes 59 and 62. Further, the remaining one electrode terminal (symbol E ″) is a ground electrode (zero polarity) and is configured and connected from electrodes 55, 57, 58 and 60. That is, to the three electrode terminals E, E ′ and E ″. The electrodes to be connected have different polarities.

更に、図5の(b)では、屈曲水晶振動子70の振動腕71の上面には溝73が、振動腕72には溝74が設けられている。更に、溝73,74と振動腕71,72の下面に同極となる電極76,79,81,82が配置、接続され、これらの電極はアースに接地されている。即ち、アース電極である。また、振動腕71の側面には同極となる電極75,77が配置、接続され、振動腕72の側面には同極となる電極78,80が配置、接続されている。更に詳述するならば、振動腕71の側面の電極と振動腕72の側面の電極とは極性の異なる電極が配置されている。それ故、本実施例では3電極端子F−F′−F″を構成している。即ち、1電極端子(記号F)は電極75,77から構成、接続されている。他の1電極端子(記号F′)は電極78,80から構成、接続されている。更に残りの1電極端子(記号F″)はアース電極(零の極性)で、電極76,79,81,82から構成、接続されている。即ち、3電極端子F、F′、F″に接続される電極はそれぞれ極性が異なる。それ故、2電極端子E−E′間、又は2電極端子F−F′間に直流電圧を印加(E端子、F端子に正極、E′端子、F′端子に負極)すると、電界Exは図5の(a)と(b)に示した矢印のように働く。それ故、2電極端子E−E′間、又は2電極端子F−F′間に交番電圧を印加することにより、振動(音叉)腕が基本波モードで、かつ、逆相の屈曲モードで振動し、共振特性が良くなると共に、発生する歪の量も大きくなる。従って、音叉形状の屈曲水晶振動子を小型化させた場合でも、等価直列抵抗Rの小さい、Q値の高い屈曲モードで振動する音叉形状の屈曲水晶振動子が得られる。また、本実施例では、溝は振動腕の上面に設けられているが、本発明はこれに限定されず、溝は振動腕の上下面の少なくとも一面に設ければ良い。Further, in FIG. 5B, a groove 73 is provided on the upper surface of the vibrating arm 71 of the bent crystal resonator 70, and a groove 74 is provided on the vibrating arm 72. Furthermore, electrodes 76, 79, 81, 82 having the same polarity are disposed and connected to the lower surfaces of the grooves 73, 74 and the vibrating arms 71, 72, and these electrodes are grounded. That is, the ground electrode. Further, electrodes 75 and 77 having the same polarity are arranged and connected to the side surface of the vibrating arm 71, and electrodes 78 and 80 having the same polarity are arranged and connected to the side surface of the vibrating arm 72. More specifically, the electrodes on the side surfaces of the vibrating arm 71 and the electrodes on the side surface of the vibrating arm 72 have different polarities. Therefore, in this embodiment, a three-electrode terminal FF′-F ″ is constituted. That is, one electrode terminal (symbol F) is constituted and connected by electrodes 75 and 77. Other one-electrode terminal (Symbol F ′) is constructed and connected from electrodes 78 and 80. Further, the remaining one electrode terminal (symbol F ″) is a ground electrode (zero polarity) and is composed of electrodes 76, 79, 81 and 82. It is connected. That is, the electrodes connected to the three electrode terminals F, F ′, F ″ have different polarities. Therefore, a DC voltage is applied between the two electrode terminals EE ′ or between the two electrode terminals FF ′ ( When the E terminal and the F terminal are positive, and the E ′ terminal and the F ′ terminal are negative), the electric field Ex works as indicated by the arrows shown in FIGS. By applying an alternating voltage between E 'or between the two electrode terminals FF', the vibrating (tuning fork) arm vibrates in the fundamental wave mode and in the bending mode of the opposite phase, and the resonance characteristics are improved. Therefore, even when the tuning fork-shaped bent quartz resonator is downsized, the tuning-fork-shaped bent quartz crystal that vibrates in a bending mode with a small equivalent series resistance R 1 and a high Q value is obtained. In this embodiment, the groove is provided on the upper surface of the vibrating arm. The light is not limited to this, and the groove may be provided on at least one of the upper and lower surfaces of the vibrating arm.

実施例4の屈曲水晶振動子Bent crystal resonator of Example 4

図6の(a)と(b)は、本発明の実施例4の屈曲モードで振動する屈曲水晶振動子の上面図とG−G′断面図を示す。本実施例の振動子の形状は音叉形状で、屈曲水晶振動子90は少なくとも振動腕91、振動腕92と基部95とを具えて構成され、振動腕91と振動腕92の一端部は基部95に接続されている。更に、基部95からフレーム96が突出していて、基部95とフレーム96は一体に形成されている。また、振動腕91と振動腕92はそれぞれ上面と下面と側面とを有し、振動腕91の上面には溝93が設けられ、又、振動腕92の上面にも振動腕91と同様に溝94が設けられている。また、振動腕91,92の下面にも上面と同様に溝が設けられている(図6の(b)参照)。本実施例の屈曲水晶振動子では、フレーム96が収納される容器の固定部に導電接着剤又は半田等で固定される。また、基部95は長さ寸法Lと幅寸法Wを有し、Lは小型化を図るために、0.5mm未満の寸法を有する。好ましくは、0.015mm〜0.45mmの範囲内にある。更に、屈曲水晶振動子の固定による振動部の振動エネルギーの漏れを小さくするために、振動腕とフレームの間隔W10とフレームの幅W11はそれぞれ、W10は0.032mm〜0.21mmの範囲内にあり、W11は0.25mm〜0.88mmの範囲内にある。更に、耐衝撃性を高めるために、W11=(1.2〜7.6)×Wの関係を有する。但し、Wは振動腕の幅である。また、Wは溝幅で、WとWは部分幅である。また、小型化を図るために本実施例では、腕の全幅W′(=2W+2W10+W11)は1.2mm以下で、好ましくは、0.63mm〜1.1mmの範囲内にある。更に、衝撃による欠けを防ぐために、基部の角を丸く、又は切り欠きの形状にしても良い。FIGS. 6A and 6B are a top view and a GG ′ cross-sectional view of a bent crystal resonator that vibrates in a bending mode according to the fourth embodiment of the present invention. The shape of the vibrator of the present embodiment is a tuning fork shape, and the bent quartz crystal vibrator 90 includes at least a vibrating arm 91, a vibrating arm 92, and a base portion 95. One end portion of the vibrating arm 91 and the vibrating arm 92 is a base portion 95. It is connected to the. Further, a frame 96 projects from the base portion 95, and the base portion 95 and the frame 96 are integrally formed. The vibrating arm 91 and the vibrating arm 92 each have an upper surface, a lower surface, and a side surface. A groove 93 is provided on the upper surface of the vibrating arm 91, and a groove is formed on the upper surface of the vibrating arm 92 in the same manner as the vibrating arm 91. 94 is provided. Also, grooves are provided on the lower surfaces of the vibrating arms 91 and 92 in the same manner as the upper surface (see FIG. 6B). In the bent quartz crystal resonator according to the present embodiment, the frame 96 is fixed to a fixing portion of a container in which the frame 96 is stored with a conductive adhesive or solder. Further, the base 95 has a length dimension L 1 and width W H, L 1 is to reduce the size, with dimensions of less than 0.5 mm. Preferably, it exists in the range of 0.015 mm-0.45 mm. Furthermore, in order to reduce the leakage of vibration energy of the vibration part by the fixing of the bending quartz oscillator, respectively, the width W 11 of the interval W 10 and the frame of the vibrating arms and the frame W 10 is the 0.032mm~0.21mm Within the range, W 11 is in the range of 0.25 mm to 0.88 mm. Furthermore, in order to improve impact resistance, a relationship of W 11 = (1.2 to 7.6) × W is established. Where W is the width of the vibrating arm. Further, W 2 in the groove width, W 1 and W 3 being a partial width. In order to reduce the size, in this embodiment, the total arm width W ′ 5 (= 2W + 2W 10 + W 11 ) is 1.2 mm or less, and preferably in the range of 0.63 mm to 1.1 mm. Furthermore, in order to prevent chipping due to impact, the corners of the base may be rounded or notched.

更に、図6の(b)では、振動腕91,92とフレーム96の断面形状と電極配置について詳述する。振動腕91には溝93,97が、振動腕92には溝94,98が設けられている。更に、溝93,97には同極となる電極100,101が、溝94,98には同極となる電極106,107が配置されている。また、振動腕91の側面には同極となる電極99,102が配置され、振動腕92の側面には同極となる電極105,108が配置されている。詳細には、溝の側面に電極が配置され、前記電極に対抗して極性の異なる電極が振動腕の側面に配置されている2電極端子H−H′を構成している。即ち、一方の1電極端子は電極99,102,106,107から構成、接続されている。他の1電極端子は電極100,101,105,108から構成、接続されている。更に、前記一方の1電極端子はフレーム96に配置された電極103に接続され、前記他の1電極端子はフレーム96に配置された電極104に接続されている。また、フレーム96が容器の固定部に固定され、電極103、104が容器(例えば、ケース)の電極に電気的に接続される。又、電極間の浮遊容量を減らすためにフレームに電極に沿ってスリットを設けても良い。  Further, in FIG. 6B, the cross-sectional shapes and electrode arrangements of the vibrating arms 91 and 92 and the frame 96 will be described in detail. The vibrating arm 91 is provided with grooves 93 and 97, and the vibrating arm 92 is provided with grooves 94 and 98. Furthermore, electrodes 100 and 101 having the same polarity are disposed in the grooves 93 and 97, and electrodes 106 and 107 having the same polarity are disposed in the grooves 94 and 98. Further, electrodes 99 and 102 having the same polarity are disposed on the side surface of the vibrating arm 91, and electrodes 105 and 108 having the same polarity are disposed on the side surface of the vibrating arm 92. Specifically, an electrode is disposed on the side surface of the groove, and a two-electrode terminal H-H ′ is configured in which electrodes having different polarities are disposed on the side surface of the vibrating arm in opposition to the electrode. That is, one one-electrode terminal is configured and connected from the electrodes 99, 102, 106, and 107. The other one electrode terminal is configured and connected to electrodes 100, 101, 105, and 108. Further, the one electrode terminal is connected to the electrode 103 arranged on the frame 96, and the other one electrode terminal is connected to the electrode 104 arranged on the frame 96. Further, the frame 96 is fixed to the fixing portion of the container, and the electrodes 103 and 104 are electrically connected to the electrodes of the container (for example, the case). Further, in order to reduce the stray capacitance between the electrodes, a slit may be provided along the electrodes in the frame.

今、2電極端子H−H′間に直流電圧を印加(H端子に正極、H′端子に負極)すると電界Exは図6の(b)に示した矢印のように働く。それ故、2電極端子H−H′間に交番電圧を印加することにより、振動(音叉)腕が逆相の屈曲モードで振動し、共振特性が良くなると共に、発生する歪の量も大きくなる。従って、音叉形状の屈曲水晶振動子を小型化させた場合でも、等価直列抵抗Rの小さい、品質係数Q値の高い屈曲モードで振動する音叉形状の屈曲水晶振動子が得られる。本実施例では、振動腕に溝を設けているが、溝はなくても良い。この場合には、溝の電極は振動腕の上下面である平面に配置されている。更に、本実施例では、2電極端子の電極構成について述べたが、上記実施例1から上記実施例3の3電極端子の電極構成でも良い。この場合には、アース電極もフレームまで延びて配置されている。一例として、図6の(b)の電極103と電極104の間に配置される。Now, when a DC voltage is applied between the two electrode terminals H-H '(positive at the H terminal and negative at the H' terminal), the electric field Ex works as indicated by the arrow shown in FIG. Therefore, when an alternating voltage is applied between the two electrode terminals H-H ', the vibrating (tuning fork) arm vibrates in the anti-phase bending mode, the resonance characteristics are improved, and the amount of distortion generated is increased. . Therefore, even when the tuning fork-shaped bent quartz crystal is reduced in size, a tuning fork-shaped bent quartz crystal that vibrates in a bending mode having a small equivalent series resistance R 1 and a high quality factor Q value can be obtained. In this embodiment, the vibrating arm is provided with a groove, but the groove may not be provided. In this case, the electrode of the groove is disposed on a plane that is the upper and lower surfaces of the vibrating arm. Furthermore, in the present embodiment, the electrode configuration of the two-electrode terminal has been described. However, the electrode configuration of the three-electrode terminal of the first to third embodiments may be used. In this case, the ground electrode is also extended to the frame. As an example, it is disposed between the electrode 103 and the electrode 104 in FIG.

更に、上記実施例1から実施例4の屈曲水晶振動子は圧電定数e12(=e′12)によって励振され、その絶対値が大きい程、電気機械変換効率は良くなる。本発明の屈曲水晶振動子の圧電定数e12の絶対値は0.095C/mより大きい値を有する。通常は、圧電定数e12の絶対値は0.095C/m〜0.19C/mの範囲内にある。特に、基本波モード振動で、より小さい等価直列抵抗Rを得るために、好ましくは、e12の絶対値は0.12C/m〜0.19C/mの範囲内にある。但し、e12の計算には水晶の圧電定数e11=0.171C/mと圧電定数e14=−0.0406C/mを用いた。Furthermore, the bending crystal resonators of the first to fourth embodiments are excited by the piezoelectric constant e 12 (= e ′ 12 ), and the larger the absolute value, the better the electromechanical conversion efficiency. The absolute value of piezoelectric constant e 12 of the flexural crystal oscillator of the present invention have a 0.095C / m 2 greater than. Usually, the absolute value of the piezoelectric constant e 12 is in the range of 0.095 C / m 2 to 0.19 C / m 2 . In particular, the fundamental mode vibration, in order to obtain a smaller equivalent series resistance R 1, preferably, the absolute value of e 12 is in the range of 0.12C / m 2 ~0.19C / m 2 . However, the piezoelectric constant e 11 = 0.171 C / m 2 and the piezoelectric constant e 14 = −0.0406 C / m 2 of quartz were used for the calculation of e 12 .

実施例1の水晶ユニットCrystal unit of Example 1

図7は本発明の実施例1の水晶ユニットの上面図である。水晶ユニット130は音叉形状の屈曲水晶振動子10(実施例1の屈曲水晶振動子)、ケース131と蓋(図示されていない)とを具えて構成されている。表面実装型のケース131には固定部138が設けられ、その上に電極132,133,134が配置され、図示されていないがケースの裏面まで延在して配置されている。即ち、3電極端子を構成している。更に詳述するならば、振動子10の基部25はケース131に設けられた固定部138に導電性接着剤や半田によって固定される。詳細には、基部25の電極17a、26、18aが固定部138の電極132,133,134にそれぞれ電気的に接続され、且つ、固定されるように固定部材135,136,137を用いて固定される。固定部材として、接着剤や半田など電気的に導電性の材料が使用される。又、ケース131と蓋は接合部材を介して接合される。また、振動子10の代わりに上記実施例2から上記実施例4の屈曲水晶振動子を搭載しても良い。上記実施例4の場合には、電極端子は2電極端子を構成するようにケースに2個の電極が配置される。  FIG. 7 is a top view of the crystal unit according to the first embodiment of the present invention. The crystal unit 130 includes a tuning fork-shaped bent crystal resonator 10 (the bent crystal resonator of the first embodiment), a case 131 and a lid (not shown). The surface mount type case 131 is provided with a fixing portion 138, and electrodes 132, 133, and 134 are arranged thereon, and are extended to the back surface of the case, although not shown. That is, a three-electrode terminal is configured. More specifically, the base portion 25 of the vibrator 10 is fixed to a fixing portion 138 provided on the case 131 with a conductive adhesive or solder. Specifically, the electrodes 17a, 26, and 18a of the base portion 25 are electrically connected to the electrodes 132, 133, and 134 of the fixing portion 138, respectively, and are fixed using fixing members 135, 136, and 137 so as to be fixed. Is done. As the fixing member, an electrically conductive material such as an adhesive or solder is used. In addition, the case 131 and the lid are joined via a joining member. Further, instead of the vibrator 10, the bent quartz crystal vibrator of the second embodiment to the fourth embodiment may be mounted. In the case of the said Example 4, two electrodes are arrange | positioned at a case so that an electrode terminal may comprise 2 electrode terminals.

また、前記実施例の水晶ユニットは回路素子(CMOSインバータ、抵抗素子、コンデンサ)に接続され、水晶ユニットの外側に設けられた2電極端子、又は3電極端子に電気的に接続される。即ち、音叉形状の屈曲水晶振動子のみがユニット内に収納されている。このとき、屈曲水晶振動子は真空中のユニット内に収納されている。更に、ケースの部材はセラミックスかガラス、蓋の部材は金属かガラス、そして、接合部材は金属か低融点ガラスでできている。また、前記構成とは異なり、容器(ユニット)内に回路素子と一緒に実施例1から実施例4の音叉形状の屈曲水晶振動子を収納しても良い。  Further, the crystal unit of the embodiment is connected to a circuit element (CMOS inverter, resistor element, capacitor), and is electrically connected to a two-electrode terminal or a three-electrode terminal provided outside the crystal unit. That is, only a tuning fork-shaped bent quartz crystal is housed in the unit. At this time, the bent crystal resonator is housed in a vacuum unit. Further, the case member is made of ceramic or glass, the lid member is made of metal or glass, and the joining member is made of metal or low-melting glass. Unlike the above-described configuration, the tuning fork-shaped bent quartz crystal resonators of the first to fourth embodiments may be housed in a container (unit) together with the circuit elements.

図8の(a)と(b)は、本発明の屈曲水晶振動子の電気的等価回路図である。(a)は3電極端子の場合で、(b)は2電極端子の場合である。L、C、Rはそれぞれ等価インダクタンス、等価容量、等価直列抵抗を示す。(a)では、3電極端子J−J′−J″からなり、電極端子J″はアースに接地されている。また、C、C、Cは各電極間の容量で、Cは2電極端子J−J′間の容量で、Cは2電極端子J−J″間の容量で、Cは2電極端子J′−J″間の容量である。それ故、これらの容量の和は電気的に2電極端子K−K′の並列容量Cに等価的に置き換えることができる。即ち、C=C+C+Cとなり、3電極端子は実質的には2電極端子で扱うことができる。FIGS. 8A and 8B are electrical equivalent circuit diagrams of the bent crystal resonator of the present invention. (A) is a case of 3 electrode terminals, (b) is a case of 2 electrode terminals. L 1 , C 1 , and R 1 represent equivalent inductance, equivalent capacitance, and equivalent series resistance, respectively. In (a), it is composed of three electrode terminals J-J'-J ", and the electrode terminal J" is grounded. Also, C 2, C 3, C 4 in capacitance between the electrodes, C 2 is a capacitance between the second electrode terminal J-J ', C 3 in the capacitance between the second electrode terminal J-J ", C 4 Is the capacitance between the two electrode terminals J′-J ″. Therefore, the sum of these capacitances can be electrically replaced with the parallel capacitance C 0 of the two-electrode terminals KK ′. That is, C 0 = C 2 + C 3 + C 4 , and the three-electrode terminal can be practically handled by the two-electrode terminal.

実施例1の水晶発振器Example 1 Crystal Oscillator

図9は本発明の実施例1の水晶発振器を構成する水晶発振回路図の一実施例である。本実施例では、水晶発振回路151は増幅器(CMOSインバータ)152、帰還抵抗154、ドレイン抵抗157、コンデンサ155,156と2電極端子の音叉形状の屈曲水晶振動子153から構成されている。即ち、水晶発振回路151は、増幅器152と帰還抵抗154から成る増幅回路158とドレイン抵抗157、コンデンサ155,156と屈曲水晶振動子153から成る帰還回路159から構成されている。詳細には、本発明の水晶発振回路は、増幅回路と帰還回路から構成されていて、増幅回路は少なくとも増幅器から構成され、帰還回路は少なくとも音叉形状の屈曲水晶振動子とコンデンサから構成されている。又、本実施例の水晶発振器に用いられる音叉形状の屈曲水晶振動子は、上記実施例4で述べた2電極端子の屈曲水晶振動子が用いられ、前記振動子は容器(ユニット)に収納されている。いわゆる、水晶ユニットが用いられる。  FIG. 9 is an example of a crystal oscillation circuit diagram constituting the crystal oscillator of Example 1 of the present invention. In this embodiment, the crystal oscillation circuit 151 includes an amplifier (CMOS inverter) 152, a feedback resistor 154, a drain resistor 157, capacitors 155 and 156, and a tuning fork-shaped bent crystal resonator 153 having two electrodes. That is, the crystal oscillation circuit 151 includes an amplifier circuit 158 including an amplifier 152 and a feedback resistor 154, a drain resistor 157, capacitors 155 and 156, and a feedback circuit 159 including a bent crystal resonator 153. More specifically, the crystal oscillation circuit of the present invention is composed of an amplifier circuit and a feedback circuit, the amplifier circuit is composed of at least an amplifier, and the feedback circuit is composed of at least a tuning-fork-shaped bent crystal resonator and a capacitor. . Further, the tuning-fork-shaped bent crystal resonator used in the crystal oscillator of the present embodiment uses the two-electrode terminal bent crystal resonator described in the fourth embodiment, and the resonator is housed in a container (unit). ing. A so-called crystal unit is used.

実施例2の水晶発振器Example 2 Crystal Oscillator

図10は本発明の実施例2の水晶発振器を構成する水晶発振回路図の一実施例である。本実施例の水晶発振回路161の構成は、基本的には実施例1の水晶発振回路と同じであるが、異なる点は屈曲水晶振動子の電極構成で、本実施例では、3電極端子の音叉形状の屈曲水晶振動子163が用いられている。即ち、1電極端子がアースに接地されている。又、本実施例の水晶発振器に用いられる音叉形状の屈曲水晶振動子は、上記実施例1から実施例3の屈曲水晶振動子で述べた3電極端子の屈曲水晶振動子が用いられ、前記振動子は容器(ユニット)に収納されている。いわゆる、水晶ユニットが用いられる。  FIG. 10 is an example of a crystal oscillation circuit diagram constituting the crystal oscillator of Example 2 of the present invention. The configuration of the crystal oscillation circuit 161 of the present embodiment is basically the same as that of the crystal oscillation circuit of the first embodiment, but the difference is the electrode configuration of the bent crystal resonator. A tuning fork-shaped bent quartz crystal 163 is used. That is, one electrode terminal is grounded. Further, the tuning-fork-shaped bent quartz crystal used in the quartz oscillator of the present embodiment is the three-electrode terminal bent quartz crystal described in the above-mentioned bent quartz crystal according to the first to third embodiments. The child is stored in a container (unit). A so-called crystal unit is used.

図11は図9の帰還回路図を示す。今、屈曲モードで振動する音叉形状の水晶振動子の角周波数をω、ドレイン抵抗157の抵抗をR、コンデンサ155、156の容量をC、C、水晶のクリスタルインピーダンスをRei,入力電圧をV,出力電圧をVとすると、帰還率βはβ=|V/|Vで定義される。但し、iは屈曲振動モードの振動次数を表し、例えば、i=1のとき、基本波モード振動、i=2のとき、2次高調波モード振動である。更に、負荷容量CはC=C/(C+C)で与えられ、C=C=CgdとR>>Reiとすると、帰還率βはβ=1/(1+kC )で与えられる。但し、kはω、R、Reiの関数で表される。又、Reiは近似的に等価直列抵抗Rに等しくなる。FIG. 11 shows the feedback circuit diagram of FIG. Now, the angular frequency of the tuning-fork-shaped quartz crystal vibrating in the bending mode is ω i , the resistance of the drain resistor 157 is R d , the capacitance of the capacitors 155 and 156 is C g , C d , and the crystal impedance of the crystal is R ei , When the input voltage is V 1 and the output voltage is V 2 , the feedback rate β i is defined by β i = | V 2 | i / | V 1 | i . However, i represents the vibration order of the bending vibration mode. For example, when i = 1, it is fundamental wave mode vibration, and when i = 2, it is second harmonic mode vibration. Further, the load capacity C L is given by C L = C g C d / (C g + C d ). When C g = C d = C gd and R d >> R ei , the feedback rate β i is β i = 1 / (1 + kC L 2 ). However, k is expressed by a function of ω i , R d , and R ei . R ei is approximately equal to the equivalent series resistance R i .

このように、帰還率βと負荷容量Cとの関係から、Cが小さくなると、基本波モード振動と高調波モード振動の帰還率はそれぞれ大きくなることが良く分かる。それ故、Cが小さくなると、基本波モード振動よりも2次高調波モード振動の方が発振し易くなる。その理由は高調波モード振動の最大振動振幅が基本波モード振動の最大振動振幅より小さいために、発振持続条件である振幅条件と位相条件を同時に満足するためである。Thus, from the relationship between the feedback rate β i and the load capacitance C L , it is well understood that the feedback rates of the fundamental mode vibration and the harmonic mode vibration increase as C L decreases. Thus, the C L decreases, towards the second harmonic mode vibration tends to oscillate than the fundamental mode vibration. The reason is that since the maximum vibration amplitude of the harmonic mode vibration is smaller than the maximum vibration amplitude of the fundamental mode vibration, the amplitude condition and the phase condition which are oscillation continuation conditions are satisfied simultaneously.

本発明の屈曲水晶振動子を用いた水晶発振器は、消費電流が少なく、しかも、出力周波数が高い周波数安定性(高い時間精度)を有する、基本波モード振動の発振周波数である水晶発振器を提供することを目的としている。それ故、消費電流を少なくするために、負荷容量Cは18pF以下を用いる。より消費電流を少なくするには、消費電流は負荷容量に比例するので、C=14pF以下が好ましい。また、2次高調波モードの振動を抑え、発振器の出力信号が基本波モード振動の発振周波数を得るために、α/α>β/βとαβ>1を満足するように本実施例の発振回路は構成される。但し、α、αは基本波モード振動と2次高調波モード振動の増輻回路の増幅率で、β、βは基本波モード振動と2次高調波モード振動の帰還回路の帰還率である。The crystal oscillator using the bent crystal resonator according to the present invention provides a crystal oscillator having a fundamental mode oscillation frequency with low current consumption and high frequency stability (high time accuracy). The purpose is that. Therefore, in order to reduce current consumption, the load capacitance C L is used below 18 pF. In order to further reduce the current consumption, since the current consumption is proportional to the load capacity, C L = 14 pF or less is preferable. Further, in order to suppress the vibration of the second harmonic mode and the output signal of the oscillator obtains the oscillation frequency of the fundamental mode vibration, α 1 / α 2 > β 2 / β 1 and α 1 β 1 > 1 are satisfied. Thus, the oscillation circuit of this embodiment is configured. However, α 1 and α 2 are amplification factors of the fundamental wave mode vibration and the second harmonic mode vibration, and β 1 and β 2 are feedback of the fundamental mode vibration and the second harmonic mode vibration feedback circuit. Rate.

換言するならば、増幅回路の基本波モード振動の増幅率αと2次高調波モード振動の増幅率αとの比が帰還回路の2次高調波モード振動の帰還率βと基本波モード振動の帰還率βとの比より大きく、かつ、基本波モード振動の増幅率αと基本波モード振動の帰還率βの積が1より大きくなるように構成される。このような構成により、消費電流の少ない、出力信号が基本波モード振動の発振周波数である水晶発振器が実現できる。又、水晶発振回路の出力信号はバッファ回路を介して出力される。更に、基本波モード振動での最適な帰還率を得るために、ドレイン抵抗Rは通常200kΩから1MΩの範囲内にあるが、好ましくは、300kΩから600kΩが用いられる。In other words, the ratio between the amplification factor α 1 of the fundamental mode vibration of the amplifier circuit and the amplification factor α 2 of the second harmonic mode vibration is equal to the feedback factor β 2 of the second harmonic mode oscillation of the feedback circuit and the fundamental wave. greater than the ratio of the feedback factor beta 1 mode vibration, and the product of the feedback factor beta 1 amplification factor alpha 1 and the fundamental mode vibration of the fundamental wave mode vibration is configured to be greater than 1. With such a configuration, it is possible to realize a crystal oscillator that consumes less current and whose output signal has an oscillation frequency of fundamental mode vibration. The output signal of the crystal oscillation circuit is output through a buffer circuit. Furthermore, in order to obtain an optimum feedback factor of the fundamental mode oscillation, but the drain resistance R d is usually 200kΩ within the 1 M.OMEGA, preferably, 600Keiomega is used from 300Keiomega.

又、本実施例の水晶発振回路を構成する増幅回路の増幅部は負性抵抗−RLでその特性を示すことができる。i=1のとき基本波モード振動の負性抵抗で、i=2のとき2次高調波モード振動の負性抵抗である。本実施例の水晶発振器は、増幅回路の基本波モード振動の負性抵抗の絶対値|−RL|と基本波モード振動の等価直列抵抗Rとの比が増幅回路の2次高調波モード振動の負性抵抗の絶対値|−RL|と2次高調波モード振動の等価直列抵抗Rとの比より大きくなるように発振回路が構成される。即ち、|−RL|/R>|−RL|/Rを満足するように構成される。好ましくは、|−RL|/R>1>|−RL|/Rの関係を有する。このような水晶発振回路の構成により、2次高調波モード振動の発振起動が抑えられるので基本波モード振動の発振周波数が出力信号として得られる。特に、超小型化した音叉形状の屈曲水晶振動子で前記目的を達成するには、一例として、基本波モード振動の基準周波数が32.768kHz(発振周波数が大略32.768kHz)の場合、その基本波モード振動での増幅部での負性抵抗の絶対値|−RL|が80kΩより大きく、且つ、2次高調波モード振動の増幅部での負性抵抗の絶対値|−RL|が75kΩより小さくなることが必要である。また、本実施例の水晶発振回路を構成する屈曲水晶振動子の電極構成は2電極端子であるが、図8で述べたように、2電極端子でも3電極端子でも電気的等価回路は同じになるので、3電極端子の屈曲水晶振動子を用いても、2電極端子と同じ結果の水晶発振回路が得られることは言うまでもない。Further, the amplifying part of the amplifying circuit constituting the crystal oscillation circuit of the present embodiment can exhibit the characteristic by a negative resistance -RL i . When i = 1, it is a negative resistance of fundamental mode vibration, and when i = 2, it is a negative resistance of second harmonic mode vibration. In the crystal oscillator of the present embodiment, the ratio of the absolute value | −RL 1 | of the negative resistance of the fundamental mode vibration of the amplifier circuit to the equivalent series resistance R 1 of the fundamental mode vibration is the second harmonic mode of the amplifier circuit. The oscillation circuit is configured to be larger than the ratio between the absolute value | −RL 2 | of the negative resistance of vibration and the equivalent series resistance R 2 of the second harmonic mode vibration. That is, it is configured to satisfy | −RL 1 | / R 1 > | −RL 2 | / R 2 . Preferably, it has a relationship of | -RL 1 | / R 1 >1> | -RL 2 | / R 2 . With such a configuration of the crystal oscillation circuit, the oscillation activation of the second harmonic mode vibration can be suppressed, so that the oscillation frequency of the fundamental mode vibration can be obtained as an output signal. In particular, in order to achieve the above-described object with an ultra-miniaturized tuning-fork-shaped bent quartz crystal, as an example, when the reference frequency of the fundamental mode vibration is 32.768 kHz (oscillation frequency is approximately 32.768 kHz), the basic The absolute value | -RL 1 | of the negative resistance in the amplification section in the wave mode vibration is larger than 80 kΩ, and the absolute value | -RL 2 | of the negative resistance in the amplification section of the second harmonic mode vibration is It is necessary to be smaller than 75 kΩ. In addition, the electrode configuration of the bent crystal unit constituting the crystal oscillation circuit of the present embodiment is a two-electrode terminal. However, as described in FIG. 8, the electric equivalent circuit is the same for both the two-electrode terminal and the three-electrode terminal. Therefore, it goes without saying that a crystal oscillation circuit having the same result as that of the two-electrode terminal can be obtained even when the three-terminal bent crystal resonator is used.

更に、上記実施例1〜実施例4の音叉形状の屈曲水晶振動子の基本波モード振動での容量比rは2次高調波モード振動の容量比rより小さくなるように構成されている。このような構成により、同じ負荷容量Cの変化に対して、基本波モードで振動する屈曲水晶振動子の周波数変化が2次高調波モードで振動する屈曲水晶振動子の周波数変化より大きくなる。例えば、C=18pF付近では、そのC値が1pF変わると、基本波モード振動の周波数変化は2次高調波モード振動の周波数変化より大きくなる。それ故、基本波モード振動では、Cの可変量が小さくても、周波数の可変範囲を広くできるという著しい効果を有する。また、上記各実施例の屈曲水晶振動子の基本波モード振動での容量比rは230から490の範囲内にあり、容量比rは1500より大きい値を有する。Further, the capacity ratio r 1 in the fundamental mode vibration of the tuning fork-shaped bent quartz crystal of the first to fourth embodiments is configured to be smaller than the capacity ratio r 2 of the second harmonic mode vibration. . With such a configuration, with respect to the same change in the load capacitance C L, greater than the frequency change of the bending quartz oscillator frequency change of the bending quartz oscillator which oscillates at the fundamental mode oscillates at the second harmonic mode. For example, in the vicinity of C L = 18 pF, when the C L value changes 1 pF, the frequency change in the fundamental mode oscillation is greater than the frequency variation of the second harmonic mode vibration. Therefore, the fundamental mode vibration has significant effect even with a small variable amounts of C L, it can widen the variable range of frequency. In addition, the capacitance ratio r 1 in the fundamental mode vibration of the bent quartz crystal of each of the above embodiments is in the range of 230 to 490, and the capacitance ratio r 2 has a value greater than 1500.

また、音叉形状の屈曲水晶振動子の容量比r、rはそれぞれr=C/C、r=C/Cで与えられる。但し、Cは電気的等価回路の並列容量で、CとCは等価回路の基本波モード振動と2次高調波モード振動の等価容量である。即ち、Cは屈曲水晶振動子の2電極端子間、又は3電極端子間の、各々の端子間の全容量である。換言するならば、電界が生じる電極間の容量である。更に、音叉形状の屈曲水晶振動子の基本波モード振動と2次高調波モード振動の品質係数はQ値とQ値で与えられる。そして、前記各実施例の音叉形状の屈曲水晶振動子は、基本波モードで振動する共振周波数の並列容量による依存性が2次高調波モードで振動する共振周波数の並列容量による依存性より小さく成るように構成される。すなわち、r/2Q <r/2Q を満たすように構成される。この構成により、基本波モードで振動する共振周波数の並列容量による影響が無視できるほど極めて小さくなるので、高い周波数安定性を有する基本波モードで振動する音叉形状の屈曲水晶振動が得られる。又、本発明では、r/2Q とr/2Q をそれぞれSとSと置き、SとSをそれぞれ基本波モード振動と2次高調波モード振動の周波数安定係数と呼ぶ。即ち、S=r/2Q とS=r/2Q で与えられる。更に、通常、Q>Q

Figure 2005039768
内にあるときには、Q<Qの関係が得られる場合がある。The capacitance ratios r 1 and r 2 of the tuning fork-shaped bent quartz crystal resonator are given by r 1 = C 0 / C 1 and r 2 = C 0 / C 2 , respectively. However, C 0 is a shunt capacitance electrical equivalent circuit, C 1 and C 2 is the equivalent capacitance of the fundamental mode vibration and second harmonic mode vibration of an equivalent circuit. That is, C 0 is the total capacitance between the terminals, between the two electrode terminals or between the three electrode terminals of the bent crystal resonator. In other words, it is the capacitance between electrodes where an electric field is generated. Further, the quality factor of the fundamental mode vibration and the second harmonic mode vibration of the tuning fork-shaped bent quartz crystal resonator is given by Q 1 value and Q 2 value. In each of the tuning fork-shaped bent quartz resonators of the above-described embodiments, the dependency of the resonance frequency oscillating in the fundamental wave mode due to the parallel capacitance is smaller than the dependency of the resonance frequency oscillating in the second harmonic mode due to the parallel capacitance. Configured as follows. That is, it is configured to satisfy r 1 / 2Q 1 2 <r 2 / 2Q 2 2 . With this configuration, the influence of the parallel capacitance of the resonance frequency oscillating in the fundamental wave mode is so small that it can be ignored, so that a tuning-fork-shaped bent quartz crystal oscillating in the fundamental wave mode having high frequency stability can be obtained. Further, in the present invention, r 1 / 2Q 1 2 and r 2 / 2Q 2 2 are respectively set as S 1 and S 2 , and S 1 and S 2 are respectively frequency-stable for fundamental mode vibration and second harmonic mode vibration. Called coefficient. That is, S 1 = r 1 / 2Q 1 2 and S 2 = r 2 / 2Q 2 2 are given. Furthermore, usually Q 1 > Q 2
Figure 2005039768
If it is within the range, a relationship of Q 1 <Q 2 may be obtained.

又、上記各実施例で述べた振動子の基本波モード振動の電気機械結合係数は、2次高調波モード振動の電気機械結合係数より大きくなると共に、基本波モード振動の等価直列抵抗Rは35kΩ〜105kΩの範囲内にある。又、RはR/R>1の関係を有する。即ち、少なくともR>35kΩの関係を満たすように溝と電極が構成されている。上記各実施例の音叉形状の屈曲水晶振動子の基本波モード振動での基準周波数として32.768kHzが用いられるが、本発明はこの周波数に限定されるものでなく、10kHz〜200kHzの基準周波数に適用される。また、上記実施例では、圧電材料として水晶を用いたが、本発明はこれに限定されるものでなく、本発明は他の圧電材料、例えば、タンタル酸リチウム(L)、ニオブ酸リチウム(L)、ランガサイトを含む全ての圧電材料を包含し、且つ、本発明の振動子、ユニットと発振器に適用される。更に、上記実施例では、振動腕の溝の厚みtと振動腕の厚みtとの比(t/t)は0.79以下で

Figure 2005039768
In addition, the electromechanical coupling coefficient of the fundamental mode vibration of the vibrator described in the above embodiments is larger than the electromechanical coupling coefficient of the second harmonic mode vibration, and the equivalent series resistance R 1 of the fundamental mode vibration is It is in the range of 35 kΩ to 105 kΩ. R 2 has a relationship of R 2 / R 1 > 1. That is, the groove and the electrode are configured to satisfy at least the relationship of R 2 > 35 kΩ. Although the reference frequency of 32.768 kHz is used as the reference frequency in the fundamental mode vibration of the tuning-fork-shaped bent quartz crystal of each of the above embodiments, the present invention is not limited to this frequency, and the reference frequency of 10 kHz to 200 kHz is used. Applied. Further, in the above embodiment, using quartz as the piezoelectric material, the present invention is not limited thereto, the present invention is another piezoelectric materials, for example, lithium tantalate (L i T a O 3) , It includes all piezoelectric materials including lithium niobate (L i N b O 3 ), langasite, and is applied to the vibrator, unit and oscillator of the present invention. Furthermore, in the above embodiment, the ratio (t 1 / t) between the groove thickness t 1 of the vibrating arm and the thickness t of the vibrating arm is 0.79 or less.
Figure 2005039768

また、本発明の水晶発振器の製造方法の一例として、音叉形状の屈曲水晶振動子の基準周波数が32.768kHzで、水晶発振回路の出力信号が32.768kHz±100ppm(parts per million)以内の発振周波数を出力周波数として得るには、まず、水晶ウエハ内にフォトリソグラフィ法とエッチング法(例えば、化学的エッチング法又はイオンエッチング法)により、溝あり又は溝なしの振動子で、電極が配置され、且つ、32.768kHzの周波数より高くなるように振動子が形成される。このとき、振動子は上記実施例1〜実施例4で述べた振動子形状と電極配置とを有する。次に、前記振動子を収納する容器の固定部に固定した後に、水晶発振回路の出力信号が32.768kHz±100ppm以内の発振周波数が出力周波数として得られるように音叉腕に重りを付加して周波数調整するか、若しくは、周波数が32.768kHzより低くなるように音叉腕に重りを付着し、前記振動子を収納する容器の固定部に固定した後に、水晶発振回路の出力信号が32.768kHz±100ppm以内の発振周波数が出力周波数として得られるように音叉腕の重りを除去して周波数調整される。この場合、周波数が32.768kHzより低くなるように音叉腕に重りを付着する工程は、ウエハの状態で行い、更に、ウエハの状態で−9500ppm〜+100ppmの範囲内にあるようにレーザビーム等を用いて発振周波数を調整する工程を入れても良い。その後に、振動子は容器に固定され、上述したように発振周波数の調整がなされる。また、水晶発振回路は増幅器、コンデンサ、抵抗素子と屈曲水晶振動子とを備えて構成され、水晶発振回路の負荷容量C値は18pF以下が用いられる。更に、前記周波数調整には、レーザビームと、蒸着と、電子ビームと、イオン化した原子、分子による、いわゆるイオンエッチング法、又はスパッタリング法の内の少なくとも一つが使用される。また、本実施例では、溝あり又は溝なしの振動子で、電極が配置され、且つ、32.768kHzより周波数が高くなるように、水晶ウエハ内に振動子が形成され、その後に、水晶ウエハ内で良振動子か不良振動子かを検査する工程を入れても良い。即ち、不良振動子が存在するときには、不良振動子は水晶ウエハから取り除かれるか、又は振動子に何かマーキングされるか、又は振動子はコンピユタに記憶される。Further, as an example of the method for manufacturing the crystal oscillator of the present invention, the oscillation frequency of the tuning fork-shaped bent crystal resonator is 32.768 kHz and the output signal of the crystal oscillation circuit is within 32.768 kHz ± 100 ppm (parts per million). In order to obtain the frequency as the output frequency, first, an electrode is disposed in a crystal wafer by a photolithographic method and an etching method (for example, a chemical etching method or an ion etching method) with a grooved or non-grooved vibrator, In addition, the vibrator is formed to have a frequency higher than 32.768 kHz. At this time, the vibrator has the vibrator shape and electrode arrangement described in the first to fourth embodiments. Next, after fixing to the fixing part of the container for housing the vibrator, a weight is added to the tuning fork arm so that an oscillation frequency within 32.768 kHz ± 100 ppm is obtained as an output frequency of the output signal of the crystal oscillation circuit. After adjusting the frequency or attaching a weight to the tuning fork arm so that the frequency is lower than 32.768 kHz, and fixing the tuning fork arm to the fixing portion of the container for housing the vibrator, the output signal of the crystal oscillation circuit is 32.768 kHz. The frequency is adjusted by removing the weight of the tuning fork arm so that an oscillation frequency within ± 100 ppm is obtained as the output frequency. In this case, the step of attaching the weight to the tuning fork arm so that the frequency is lower than 32.768 kHz is performed in the wafer state, and further, the laser beam or the like is applied so that it is in the range of −9500 ppm to +100 ppm in the wafer state. A step of adjusting the oscillation frequency may be included. Thereafter, the vibrator is fixed to the container, and the oscillation frequency is adjusted as described above. Further, the crystal oscillator amplifier, a capacitor is configured to include a resistor element and a flexural quartz crystal resonator, the load capacitance C L value of the crystal oscillator circuit is used below 18 pF. Furthermore, for the frequency adjustment, at least one of a so-called ion etching method or sputtering method using a laser beam, vapor deposition, electron beam, and ionized atoms and molecules is used. Further, in this embodiment, a vibrator is formed in a crystal wafer so that the electrodes are arranged with a grooved or non-grooved vibrator and the frequency is higher than 32.768 kHz, and then the crystal wafer is formed. A step of inspecting whether the resonator is a good resonator or a defective resonator may be included. That is, when a defective vibrator is present, the defective vibrator is removed from the quartz wafer, or some marking is made on the vibrator, or the vibrator is stored in the computer.

本発明の水晶振動子と水晶ユニットと水晶発振器は超小型で、高い周波数安定性を有するので、特に、超小型で、高い周波数安定性を必要とする携帯機器や民生機器等に適用できる。  Since the crystal resonator, crystal unit, and crystal oscillator of the present invention are ultra-compact and have high frequency stability, they are particularly applicable to portable devices and consumer devices that are ultra-compact and require high frequency stability.

(a)と(b)は、本発明の実施例1の屈曲水晶振動子の上面図と下面図を示す。(A) And (b) shows the top view and bottom view of the bending crystal oscillator of Example 1 of this invention. 図1のA−A′断面図を示す。FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1. (a)と(b)は、本発明の実施例2の屈曲水晶振動子の上面図と下面図を示す。(A) And (b) shows the top view and bottom view of the bending crystal oscillator of Example 2 of this invention. 図3のC−C′断面図を示す。FIG. 4 is a cross-sectional view taken along the line CC ′ of FIG. 3. (a)と(b)は、本発明の実施例3の屈曲水晶振動子の振動腕(音叉腕)の断面図を示す。(A) And (b) shows sectional drawing of the vibrating arm (tuning fork arm) of the bending crystal oscillator of Example 3 of this invention. (a)と(b)は、本発明の実施例4の屈曲水晶振動子の上面図とG−G′断面図を示す。(A) And (b) shows the top view and GG 'sectional drawing of the bending crystal oscillator of Example 4 of this invention. 本発明の実施例1の水晶ユニットの上面図である。It is a top view of the crystal unit of Example 1 of this invention. (a)と(b)は、本発明の屈曲水晶振動子の電気的等価回路図である。(A) And (b) is an electrical equivalent circuit schematic of the bending crystal oscillator of this invention. 本発明の実施例1の水晶発振器を構成する水晶発振回路図の一実施例を示す。1 shows one embodiment of a crystal oscillation circuit diagram constituting the crystal oscillator of Embodiment 1 of the present invention. 本発明の実施例2の水晶発振器を構成する発振回路図の一実施例を示す。One Example of the oscillation circuit diagram which comprises the crystal oscillator of Example 2 of this invention is shown. 図9の帰還回路図を示す。FIG. 10 is a feedback circuit diagram of FIG. 9.

符号の説明Explanation of symbols

音叉基部の幅
、W11 音叉腕の間隔、フレームの幅
、L 溝の長さ、音叉基部の長さ
音叉の全長
WH tuning fork base width W 4 , W 11 tuning fork arm spacing, frame width L 0 , L 1 groove length, tuning fork base length L t total length of tuning fork

Claims (7)

屈曲モードで振動する振動腕と基部からなる屈曲水晶振動子で、前記振動腕は上面と下面と側面とを有し、前記振動腕の上下面の少なくとも一面に溝が設けられ、前記溝又は前記振動腕の側面の少なくとも一面にアース電極が配置されていることを特徴とする水晶振動子。  A bending crystal resonator comprising a vibrating arm and a base that vibrates in a bending mode, wherein the vibrating arm has an upper surface, a lower surface, and a side surface, and a groove is provided on at least one surface of the upper and lower surfaces of the vibrating arm. A crystal resonator, wherein a ground electrode is disposed on at least one side surface of the vibrating arm. 水晶振動子とケースと蓋とを備えて構成される水晶ユニットで、
前記水晶振動子は屈曲モードで振動する振動腕と基部からなる屈曲水晶振動子で、前記振動腕は上面と下面と側面とを有し、前記振動腕の上下面の少なくとも一面に溝が設けられ、前記溝又は前記振動腕の側面の少なくとも一面にアース電極が配置されていることを特徴とする水晶ユニット。
A crystal unit composed of a crystal unit, case, and lid,
The crystal unit is a flexural crystal unit composed of a vibrating arm that vibrates in a bending mode and a base, and the vibrating arm has an upper surface, a lower surface, and a side surface, and a groove is provided on at least one surface of the upper and lower surfaces of the vibrating arm. A grounding electrode is disposed on at least one side of the groove or the side surface of the vibrating arm.
水晶振動子とケースと蓋とを備えて構成される水晶ユニットで、
前記水晶振動子は屈曲モードで振動する振動腕と基部からなる屈曲水晶振動子で、前記振動腕は上面と下面と側面とを有し、前記基部から突出するようにフレームが設けられていて、前記屈曲水晶振動子の圧電定数e12の絶対値が0.095C/m〜0.19C/mの範囲内にあることを特徴とする水晶ユニット。
A crystal unit composed of a crystal unit, case, and lid,
The crystal unit is a bending crystal unit composed of a vibrating arm and a base that vibrate in a bending mode, the vibrating arm has an upper surface, a lower surface, and a side surface, and a frame is provided so as to protrude from the base unit. crystal unit absolute value of piezoelectric constant e 12 of the bent crystal oscillator is characterized in that in the range of 0.095C / m 2 ~0.19C / m 2 .
増幅回路と帰還回路から構成されていて、増幅回路は増幅器と帰還抵抗素子とを備えて構成され、帰還回路は水晶振動子とコンデンサと抵抗素子とを備えて構成されている水晶発振回路から成る水晶発振器で、
前記水晶振動子は屈曲モードで振動する振動腕と基部からなる屈曲水晶振動子で、前記振動腕は上面と下面と側面とを有し、
前記屈曲水晶振動子の基本波モード振動のフイガーオブメリットMが2次高調波モード振動のフィガーオブメリットMより大きい屈曲水晶振動子を備えて前記水晶発振回路は構成されると共に、
増幅回路と帰還回路とを備えて構成される前記水晶発振回路の増幅回路の基本波モード振動の負性抵抗の絶対値|−RL|と基本波モード振動の等価直列抵抗Rとの比が増幅回路の2次高調波モード振動の負性抵抗の絶対値|−RL|と2次高調波モード振動の等価直列抵抗Rとの比より大きくなるように前記水晶発振回路は構成されていて、
前記屈曲水晶振動子を備えて構成された前記水晶発振回路の出力信号が基本波モード振動の発振周波数であることを特徴とする水晶発振器。
The amplifier circuit is composed of an amplifier circuit and a feedback circuit. The amplifier circuit is composed of an amplifier and a feedback resistor element, and the feedback circuit is composed of a crystal oscillation circuit composed of a crystal resonator, a capacitor and a resistor element. Crystal oscillator,
The crystal unit is a flex crystal unit composed of a vibrating arm and a base that vibrate in a bending mode, and the vibrating arm has an upper surface, a lower surface, and a side surface,
With said crystal oscillating circuit off Iga of merit M 1 of the fundamental wave mode vibrations comprises a Figa of merit M 2 greater flexural crystal oscillator of the second harmonic mode oscillation in the flexural crystal oscillator is configured,
Ratio of absolute value | −RL 1 | of negative resistance of fundamental wave mode vibration and equivalent series resistance R 1 of fundamental wave mode vibration of the amplification circuit of the crystal oscillation circuit configured to include an amplification circuit and a feedback circuit The crystal oscillation circuit is configured so that is larger than the ratio of the absolute value | −RL 2 | of the negative resistance of the second harmonic mode vibration of the amplifier circuit to the equivalent series resistance R 2 of the second harmonic mode vibration. And
A crystal oscillator characterized in that an output signal of the crystal oscillation circuit configured to include the bent crystal resonator is an oscillation frequency of fundamental mode vibration.
振動腕と基部とを備えて構成される屈曲水晶振動子の基部から突出するようにフレームが設けられ、前記屈曲水晶振動子の圧電定数e12の絶対値が0.095C/m〜0.19C/mの範囲内にあることを特徴とする請求項4に記載の水晶発振器。Vibrating arms and the frame is provided so as to protrude from the base of the formed bending quartz oscillator and a base, absolute value 0.095C / m 2 ~0 piezoelectric constant e 12 of the bent crystal oscillator. The crystal oscillator according to claim 4, wherein the crystal oscillator is in a range of 19 C / m 2 . 振動腕は第1振動腕と第2振動腕からなり、第1振動腕と第2振動腕の上下面に各々1個の溝が設けられ、前記溝と前記振動腕の側面に電極が配置されていて、前記側面に配置された電極はアース電極であることを特徴とする請求項1に記載の水晶振動子、又は請求項2又は請求項3に記載の水晶ユニット、又は請求項4又は請求項5に記載の水晶発振器。  The vibrating arm includes a first vibrating arm and a second vibrating arm. One groove is provided on each of the upper and lower surfaces of the first vibrating arm and the second vibrating arm, and electrodes are disposed on the side surfaces of the groove and the vibrating arm. The electrode disposed on the side surface is a ground electrode, or the crystal unit according to claim 1, or the crystal unit according to claim 2 or 3, or claim 4 or claim. Item 6. The crystal oscillator according to Item 5. 振動腕は第1振動腕と第2振動腕からなり、第1振動腕と第2振動腕の上下面に各々1個の溝が設けられ、前記溝と前記振動腕の側面に電極が配置されていて、前記溝に配置された電極はアース電極であることを特徴とする請求項1に記載の水晶振動子、又は請求項2又は請求項3に記載の水晶ユニット、又は請求項4又は請求項5に記載の水晶発振器。  The vibrating arm includes a first vibrating arm and a second vibrating arm. One groove is provided on each of the upper and lower surfaces of the first vibrating arm and the second vibrating arm, and electrodes are disposed on the side surfaces of the groove and the vibrating arm. The electrode disposed in the groove is a ground electrode, or the crystal unit according to claim 1, or the crystal unit according to claim 2 or claim 3, or claim 4 or claim. Item 6. The crystal oscillator according to Item 5.
JP2003436628A 2003-06-30 2003-12-17 Crystal oscillator Expired - Fee Related JP4379119B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003436628A JP4379119B2 (en) 2003-06-30 2003-12-17 Crystal oscillator
US11/004,783 US7365478B2 (en) 2003-12-17 2004-12-03 Piezoelectric crystal resonator, piezoelectric crystal unit having the crystal resonator and electronic apparatus having the crystal resonator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003205844 2003-06-30
JP2003436628A JP4379119B2 (en) 2003-06-30 2003-12-17 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2005039768A true JP2005039768A (en) 2005-02-10
JP4379119B2 JP4379119B2 (en) 2009-12-09

Family

ID=34220631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436628A Expired - Fee Related JP4379119B2 (en) 2003-06-30 2003-12-17 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP4379119B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081698A (en) * 2005-09-13 2007-03-29 Daishinku Corp Tuning-fork piezoelectric oscillating member and piezoelectric oscillating device
JP2007329879A (en) * 2006-06-09 2007-12-20 Kyocera Kinseki Hertz Corp Tuning-fork type bending crystal oscillator piece and manufacturing method therefor
EP1895658A2 (en) 2006-08-31 2008-03-05 Kyocera Kinseki Corporation Tuning fork crystal oscillation plate and method of manufacturing the same
JP2008118254A (en) * 2006-11-01 2008-05-22 River Eletec Kk Bending vibrator
JP2014022965A (en) * 2012-07-19 2014-02-03 Seiko Epson Corp Vibration piece, vibrator, oscillator, and electronic apparatus
JP2014165669A (en) * 2013-02-25 2014-09-08 Sii Crystal Technology Inc Piezoelectric vibrator, oscillator, electronic apparatus and radio clock
JP2015087257A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Vibration piece, angular velocity sensor, electronic apparatus, movable body and manufacturing method of vibration piece
JP2015087256A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Vibration piece, angular velocity sensor, electronic apparatus and movable body
CN112504966A (en) * 2020-12-09 2021-03-16 之江实验室 Silicon tuning fork microphone for photoacoustic spectrum detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057236A (en) 2012-09-13 2014-03-27 Seiko Epson Corp Vibration piece, vibrator, oscillator, electronic apparatus and moving body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081698A (en) * 2005-09-13 2007-03-29 Daishinku Corp Tuning-fork piezoelectric oscillating member and piezoelectric oscillating device
JP2007329879A (en) * 2006-06-09 2007-12-20 Kyocera Kinseki Hertz Corp Tuning-fork type bending crystal oscillator piece and manufacturing method therefor
EP1895658A2 (en) 2006-08-31 2008-03-05 Kyocera Kinseki Corporation Tuning fork crystal oscillation plate and method of manufacturing the same
JP2008060952A (en) * 2006-08-31 2008-03-13 Kyocera Kinseki Corp Tuning fork crystal oscillation board and method of manufacturing the same
EP1895658A3 (en) * 2006-08-31 2012-06-27 Kyocera Kinseki Corporation Tuning fork crystal oscillation plate and method of manufacturing the same
JP2008118254A (en) * 2006-11-01 2008-05-22 River Eletec Kk Bending vibrator
JP2014022965A (en) * 2012-07-19 2014-02-03 Seiko Epson Corp Vibration piece, vibrator, oscillator, and electronic apparatus
US8928422B2 (en) 2012-07-19 2015-01-06 Seiko Epson Corporation Resonator element, resonator, oscillator, and electronic apparatus
JP2014165669A (en) * 2013-02-25 2014-09-08 Sii Crystal Technology Inc Piezoelectric vibrator, oscillator, electronic apparatus and radio clock
JP2015087257A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Vibration piece, angular velocity sensor, electronic apparatus, movable body and manufacturing method of vibration piece
JP2015087256A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Vibration piece, angular velocity sensor, electronic apparatus and movable body
CN112504966A (en) * 2020-12-09 2021-03-16 之江实验室 Silicon tuning fork microphone for photoacoustic spectrum detection
CN112504966B (en) * 2020-12-09 2024-04-12 之江实验室 Silicon tuning fork microphone for photoacoustic spectrum detection

Also Published As

Publication number Publication date
JP4379119B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP4026074B2 (en) Crystal unit, crystal unit and crystal oscillator
JP5531319B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JP4379119B2 (en) Crystal oscillator
JP4411494B2 (en) Crystal oscillator
JP4411495B2 (en) Crystal unit with a bent crystal unit
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP3749917B2 (en) Manufacturing method of crystal oscillator
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof
JP4411492B6 (en) Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment
JP4411496B2 (en) Portable device equipped with crystal oscillator and manufacturing method thereof
JP2005094733A (en) Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof
JP4411496B6 (en) Portable device equipped with crystal oscillator and manufacturing method thereof
JP4411492B2 (en) Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment
JP4697196B2 (en) Crystal unit and crystal oscillator manufacturing method
JP4697190B2 (en) Manufacturing methods for crystal units and crystal units
JP4697190B6 (en) Manufacturing methods for crystal units and crystal units
JP4697196B6 (en) Crystal unit and crystal oscillator manufacturing method
JP4074935B2 (en) Quartz crystal oscillator and crystal oscillator manufacturing method
JP2003273647A (en) Crystal oscillator and method of manufacturing the same
JP2005094734A (en) Resonator, resonator unit, oscillator, and electronic apparatus
JP2003273695A (en) Crystal unit and crystal oscillator
JP2003273701A (en) Quartz oscillator
JP2003273702A (en) Quartz unit, its manufacturing method, and quartz oscillator
JP2003273697A (en) Crystal oscillator, and method of manufacturing crystal oscillator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees