JP2007329879A - Tuning-fork type bending crystal oscillator piece and manufacturing method therefor - Google Patents

Tuning-fork type bending crystal oscillator piece and manufacturing method therefor Download PDF

Info

Publication number
JP2007329879A
JP2007329879A JP2006187214A JP2006187214A JP2007329879A JP 2007329879 A JP2007329879 A JP 2007329879A JP 2006187214 A JP2006187214 A JP 2006187214A JP 2006187214 A JP2006187214 A JP 2006187214A JP 2007329879 A JP2007329879 A JP 2007329879A
Authority
JP
Japan
Prior art keywords
tuning fork
deep groove
tuning
vibrating arm
type bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006187214A
Other languages
Japanese (ja)
Inventor
Shigeru Kizaki
茂 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Kinseki Hertz Corp
Original Assignee
Kyocera Kinseki Hertz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Kinseki Hertz Corp filed Critical Kyocera Kinseki Hertz Corp
Priority to JP2006187214A priority Critical patent/JP2007329879A/en
Publication of JP2007329879A publication Critical patent/JP2007329879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure and a manufacturing method in which a plurality of pieces are produced, at the same time, from a laminar crystalline substrate by photoetching technology, in order to reduce the dispersion in the characteristics of a tuning-fork type bending crystal oscillator piece. <P>SOLUTION: A tuning-fork type bending crystal oscillator piece 1 consists of a laminar crystalline substrate of a Z' plate, and the tuning-fork type bending crystal oscillator piece is constituted of a left oscillating arm 2 and a right oscillating arm 3 being integral with a basal portion 1a; with deep grooves 6, 7 showing a shape of, at least one line of inverted trapezoid or substantially a V-shape being provided on any ones of the front and the back surfaces of the left oscillating arm 2 and the right oscillating arm 3, while having a depth of 50% to 90% of a thickness of the tuning-fork type bending crystal oscillator piece 1; with the inside, having the deep groove 6 of the left oscillating arm 2 and an electrode film formed on its opposite face being connected with both side electrodes of the right oscillating arm 7 to form one terminal; and with both the side electrodes of the left oscillating arm 2 being connected to the inside, having the deep groove 7 of the right oscillating arm 3 and an electrode film formed on its opposite face to form another terminal, to bend and oscillate under the condition where an alternating voltage is applied between the two terminals. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はフォトエッチング技術を用いて製造される音叉型屈曲水晶振動片の高性能化及び薄板水晶基板内に多数個形成された音叉型屈曲水晶振動片の特性バラツキを低減化するための構造、高精度加工プロセスに関するものである。  The present invention is a structure for improving the performance of a tuning fork-type bending quartz crystal vibrating piece manufactured using photo-etching technology and reducing the characteristic variation of a large number of tuning-fork type bending quartz crystal vibrating pieces formed in a thin plate crystal substrate, It relates to high-precision machining processes.

音叉型屈曲水晶振動子はモバイルコンピューター、携帯電話、小型情報機器などに基準信号源として搭載され製品の小型化、薄型化、低価格化の要求には依然強いものがある。このような従来の音叉型屈曲水晶振動片とその製造方法について、図面を用いて説明する。  Tuning fork-type bent quartz resonators are mounted as reference signal sources in mobile computers, mobile phones, small information devices, etc., and there are still strong demands for miniaturization, thinning, and price reduction of products. Such a conventional tuning fork-type bending quartz crystal vibrating piece and a manufacturing method thereof will be described with reference to the drawings.

図3は従来の音叉型屈曲水晶振動片(以下説明内容により振動片とする)を示す平面図であり、図4は図3の振動片の両腕部P−P´を切断した断面図である。  FIG. 3 is a plan view showing a conventional tuning-fork type bending crystal vibrating piece (hereinafter referred to as a vibrating piece according to the description), and FIG. 4 is a cross-sectional view of the vibrating piece shown in FIG. is there.

図3において、振動片100は厚みが100ミクロンで基部100aとこれから突出して形成された左振動腕部101及び右振動腕部102から構成されている。このような振動片は、フォトリソグラフィー技術と化学エッチング技術により作られる。また、左振動腕部101には深溝103と右振動腕部102にも深溝104が形成されている。この深溝は表と裏の両面に形成する場合が一般的であり、その深さは30ミクロン強である。  In FIG. 3, the vibrating piece 100 has a thickness of 100 microns, and includes a base portion 100 a and a left vibrating arm portion 101 and a right vibrating arm portion 102 formed so as to protrude therefrom. Such a vibrating piece is made by a photolithography technique and a chemical etching technique. Further, a deep groove 103 is formed in the left vibrating arm portion 101 and a deep groove 104 is also formed in the right vibrating arm portion 102. This deep groove is generally formed on both the front and back sides, and the depth is slightly over 30 microns.

図4において、左振動腕部101の表側に有する深溝内には表主面電極103aが裏側に有する深溝内には裏主面電極103bが形成され電気的に結線されて、右振動腕部102の左側面電極107aと右側面電極107bに電気的に結線される。結線は例えば図3に示す配線膜108により行い、右端子部109に導出され一端子が得られる。  In FIG. 4, the back main surface electrode 103 b is formed in the deep groove that the front main surface electrode 103 a has on the back side in the deep groove on the front side of the left vibration arm portion 101, and is electrically connected to the right vibration arm portion 102. The left side electrode 107a and the right side electrode 107b are electrically connected. For example, the wiring is performed by the wiring film 108 shown in FIG. 3 and is led out to the right terminal portion 109 to obtain one terminal.

一方、図4における左振動腕部101に有する左側面電極106aと右側面電極106bは電気的に結線され、それらは図3の配線膜105により図4の右振動腕部102の表側に有する深溝内の表主面電極104aと裏側に有する深溝内の裏主面電極104bに電気的に結線され左端子部110に導出され一端子となり、左右で二端子が得られる。  On the other hand, the left side electrode 106a and the right side electrode 106b included in the left vibrating arm 101 in FIG. 4 are electrically connected, and they are deep grooves on the front side of the right vibrating arm 102 in FIG. 4 by the wiring film 105 in FIG. The front main surface electrode 104a and the back main surface electrode 104b in the deep groove on the back side are electrically connected and led out to the left terminal portion 110 to become one terminal, and two terminals are obtained on the left and right.

図4にて二端子間に交番電圧を印加し、その状態を瞬時にとらえると左振動腕部101の左側面電極106aと右側面電極106bは+となり、表主面電極103aと裏主面電極103bは−となり、+から−に電界が生じる。一方、右振動腕部102ではその極性が反対となる。これらの電界により水晶に伸縮現象が生まれ図3に示す矢印111の如く屈曲振動が得られる。  When an alternating voltage is applied between the two terminals in FIG. 4 and the state is instantaneously captured, the left side electrode 106a and the right side electrode 106b of the left vibrating arm 101 become +, and the front main surface electrode 103a and the back main surface electrode 103b becomes-, and an electric field is generated from + to-. On the other hand, the polarity of the right vibrating arm 102 is opposite. These electric fields cause expansion and contraction in the crystal, and bending vibration is obtained as shown by an arrow 111 shown in FIG.

上記図3、図4で説明した振動片の製造方法を図5に記している。図5は工程Aから工程Fまでを示し、音叉外形と深溝及び電極膜をパターン化する一連の工程である。図5の説明を図3、図4の左振動腕部101の断面をもって行う。  FIG. 5 shows a method for manufacturing the resonator element described with reference to FIGS. FIG. 5 shows steps A to F, and is a series of steps for patterning the tuning fork outline, the deep groove, and the electrode film. 5 will be described with reference to the cross section of the left vibrating arm 101 shown in FIGS.

工程Aは100ミクロンの厚みからなる薄板水晶基板150の表裏に耐食膜、例えばCr151とAu152の2層膜をスパッタにて形成し、その上に感光性レジストを表裏に塗布した後、音叉外形に必要な露光、現像を行い、感光性レジストによる外形パターン153を得る。  In step A, a corrosion resistant film, for example, a two-layer film of Cr 151 and Au 152 is formed on the front and back of a thin quartz substrate 150 having a thickness of 100 microns by sputtering, and a photosensitive resist is applied on the front and back, and then the tuning fork outline is formed. Necessary exposure and development are performed to obtain an outer pattern 153 using a photosensitive resist.

工程Bで露出したAu152とCr151を順次化学エッチングする。従って、音叉外形以外の場所は水晶面154が表面に露出する。次に外形パターン153に用いた感光性レジストは感光してないため、除去せず再度深溝形状のパターンを露光、現像し深溝部分の露出したAu152を化学エッチングする。その結果Cr151が表面に露出し工程Bのような図となる。一般にこの感光性レジストにはポジ型(光分解型)が用いられる。上記化学エッチングの際には感光しない環境下で行うようにする。  The Au 152 and Cr 151 exposed in step B are sequentially chemically etched. Accordingly, the crystal surface 154 is exposed on the surface other than the tuning fork outline. Next, since the photosensitive resist used for the external pattern 153 is not exposed to light, the deep groove-shaped pattern is exposed and developed again without being removed, and the Au 152 exposed in the deep groove portion is chemically etched. As a result, Cr 151 is exposed on the surface, resulting in a process B. Generally, a positive type (photolytic type) is used for the photosensitive resist. The chemical etching is performed in an environment that is not exposed to light.

工程Cでは工程Bに示す状態でフッ化水素酸とフッ化アンモニウムの混合液により露出した水晶面154をエッチングし音叉の外形形状を得る。このとき理想な形状より一歩手前のエッチング時間とする。しかる後、Au152と感光性レジスト153aをマスクにCr151をエッチングし水晶面151aが露出する。  In the process C, the crystal face 154 exposed by the mixed liquid of hydrofluoric acid and ammonium fluoride is etched in the state shown in the process B to obtain the outer shape of the tuning fork. At this time, the etching time is one step before the ideal shape. Thereafter, Cr 151 is etched using Au 152 and photosensitive resist 153a as a mask to expose crystal surface 151a.

工程Dでは工程Cの図に示す状態のまま、再度、露出した水晶面151aをフッ化水素酸とフッ化アンモニウムの混合液に浸してエッチングすると深溝155が得られ、音叉外形も完全にエッチングされ理想の形状となり、その深溝の深さは30〜40ミクロン程度である。次に順次感光性レジスト153aとAu152及びCr151を除去する。残ったものは水晶のみで、音叉外形と深溝155が形成される。  In the process D, the deep crystal 155 is obtained by immersing the exposed quartz surface 151a again in a mixed solution of hydrofluoric acid and ammonium fluoride in the state shown in the figure of the process C, and the deep fork 155 is completely etched. It becomes an ideal shape, and the depth of the deep groove is about 30 to 40 microns. Next, the photosensitive resist 153a, Au152 and Cr151 are sequentially removed. What remains is only quartz, and a tuning fork outline and a deep groove 155 are formed.

工程Eでは工程Dで得られた水晶面の全面に電極膜156を形成する。電極膜156は一般にCrとAuの2層膜やアルミニウムなどが用いられ、スパッタや真空蒸着を用いる。ここではCrとAuの2層膜で説明する。膜厚は2層で1000オングストローム程度であり、深溝155の内部にも形成される。次に図3、図4に示すような電極形状を得るために、感光性レジスト157を全面に塗布し、パターン化に必要なプロセスである露光、現像を行う。この際に露光装置はマスクと薄板水晶基板が接触し破壊する恐れがあるため、非接触の両面投影露光装置を用いるのが一般的である。また、この感光性レジストの立体塗布には電着レジストを用いる。  In step E, an electrode film 156 is formed on the entire quartz surface obtained in step D. The electrode film 156 is generally a two-layer film of Cr and Au, aluminum, or the like, and sputtering or vacuum deposition is used. Here, a description will be given with a two-layer film of Cr and Au. The thickness of the two layers is about 1000 angstroms, and it is also formed inside the deep groove 155. Next, in order to obtain an electrode shape as shown in FIGS. 3 and 4, a photosensitive resist 157 is applied to the entire surface, and exposure and development, which are processes necessary for patterning, are performed. At this time, since there is a risk that the mask and the thin quartz substrate come into contact with each other and break the exposure apparatus, it is common to use a non-contact double-sided projection exposure apparatus. An electrodeposition resist is used for three-dimensional coating of the photosensitive resist.

工程Fでは残った感光性レジスト(図示せず)をマスクに電極膜をエッチングし、その後に感光レジストを除去すれば、側面電極159a、159bと表主面電極158aと裏主面電極158bが得られて完成する。  In Step F, the electrode film is etched using the remaining photosensitive resist (not shown) as a mask, and then the photosensitive resist is removed to obtain the side electrodes 159a and 159b, the front main surface electrode 158a and the back main surface electrode 158b. To be completed.

その後に周波数調整用の金属皮膜を先端部106部に形成するものである。上記金属皮膜にはAu、Agが用いられ、レーザー法を用いてトリミングする。あるいはイオンエッチング法を用いて除去し所望の周波数に合わせこむ。これらはウェハー状態であるいは容器に実装した後、もしくは容器を封止した後にも行われている。  Thereafter, a metal film for frequency adjustment is formed on the tip portion 106. Au and Ag are used for the metal film, and trimming is performed using a laser method. Or it removes using an ion etching method and it adjusts to a desired frequency. These are performed in a wafer state, after being mounted on a container, or after the container is sealed.

US−3969641US-3969641 特開昭52−61985JP 52-61985 特開昭56−65517JP-A-56-65517 国際公開番号 WO00/44092International Publication Number WO00 / 44092 特許第3729249Patent No. 3729249 特開2004−159072JP2004-159072

発明が解決しようとする課題Problems to be solved by the invention

上記図3、図4、図5で説明した従来の音叉型屈曲水晶振動片100には次のような問題点があった。
(イ)振動片100には左振動腕部101と右振動腕部102にそれぞれ深溝が表裏に形成されているため、図5に示す製造方法では、音叉外形と深溝の形状や露光装置の上下合わせ精度による位置バラツキや両面エッチングによる深溝の深さバラツキが表裏に生じ、それは周波数バラツキとなってウェハー内に多数個設置したときにウェハーの中央と周辺で周波数が大きく異なったり、ウェハー間の周波数バラツキが大きくなったりする。ちなみに深溝が無い場合と比較しそれは3倍であった。従って周波数調整量が極めて大きくなるなどの問題があった。参考特許文献として特開昭52−61985の図4、あるいは国際公開番号WO00/44092の構造である。
The conventional tuning fork-type bent quartz crystal vibrating piece 100 described with reference to FIGS. 3, 4, and 5 has the following problems.
(A) Since the vibration piece 100 has deep grooves formed on the front and back sides of the left vibration arm portion 101 and the right vibration arm portion 102, respectively, in the manufacturing method shown in FIG. Position variations due to alignment accuracy and deep groove depth variations due to double-sided etching occur on the front and back, which is a frequency variation, and when multiple wafers are installed in the wafer, the frequency differs greatly between the center and the periphery of the wafer, and the frequency between wafers Variations will become larger. By the way, it was 3 times compared to the case without deep grooves. Accordingly, there is a problem that the frequency adjustment amount becomes extremely large. As a reference patent document, FIG. 4 of JP-A-52-61985, or the structure of International Publication No. WO00 / 44092.

(ロ)また、左振動腕部101と右振動腕部102とで形状が異なった場合は左右の振動周波数が異なるためバランスが取れなくなり、基部に振動漏れ分が伝わり結果的にクリススタルインピーダンス(以下CI値)高くが安定もしにくい問題があった。(B) If the left vibrating arm 101 and the right vibrating arm 102 are different in shape, the left and right vibration frequencies are different, so that the balance is not achieved, and the vibration leakage is transmitted to the base, resulting in a crystal impedance ( In the following, the CI value was high, but it was difficult to stabilize.

上記(イ)と(ロ)の原因には次の点が考えられる。図3、図4に示すような表裏に深溝を図5の方法で製造するならば両面投影露光装置の裏表の合致精度が一般に数ミクロンあり、更に分解能も5ミクロンレベルと低く、音叉外形と深溝を別々に2回露光する方法であるから最も悪く重なると数ミクロン×2の精度バラツキとなる。これは上下左右のみならず回転方向のズレも生じる。更に電極露光もあるため3回の露光となって、精度バラツキが拡大し工程が増え、更に両面投影露光装置は高額であり本ブロセスでは歩留まりも低い。本露光装置を使用する理由は水晶をエッチングにより外形加工した後に電極パターンを形成するが薄板水晶基板は既に抜けており、マスクと薄板水晶基板を密着すると振動片が脱落してしまう。従って、高額な非接触方式を採用しないと製造困難である。
この点は参考文献特開昭56−65517も同様である。
The following points can be considered as the causes of the above (a) and (b). If deep grooves are manufactured on the front and back as shown in FIGS. 3 and 4 by the method shown in FIG. 5, the accuracy of matching the back and front of the double-sided projection exposure apparatus is generally several microns, and the resolution is as low as 5 microns. Since the exposure is performed twice separately, the worst case overlap results in an accuracy variation of several microns × 2. This causes not only vertical and horizontal but also rotational deviation. Furthermore, since there are electrode exposures, the exposure is performed three times, the accuracy variation is increased, and the number of processes is increased. Further, the double-sided projection exposure apparatus is expensive and the yield is low in this process. The reason why this exposure apparatus is used is that the electrode pattern is formed after external processing of the crystal by etching, but the thin crystal substrate has already been removed, and when the mask and the thin crystal substrate are brought into close contact with each other, the resonator element falls off. Therefore, it is difficult to manufacture unless an expensive non-contact method is adopted.
This point is the same as in Japanese Patent Laid-Open No. 56-65517.

更に製造方法の問題として、図5の工程C−Cは工程Cの問題点を示したものであるが、Cr151をエッチングすると電池腐食の悪影響もあり数十秒と短時間にエッチングされ制御困難からサイドエッチングが大きくパターン160が細る。その問題はウェハー間でも大きく差が出てくる。それを工程Dにて水晶をエッチングすると工程D−Dに示すように左側には段差155bや右側に段差155cなどが生じる。すなわち、工程Bと工程Cで2回のCr151のエッチングを行っているためバラツキが大きいといえる。ちなみに完成品は工程F−Fに示すようなものとなり、工程Fのような断面図にはならない場合もある。参考特許文献として特許第3729249号及び特開2004−159072である。  Further, as a problem of the manufacturing method, the process C-C in FIG. 5 shows the problem of the process C. However, if Cr151 is etched, there is an adverse effect of battery corrosion, and it is etched in a few tens of seconds and difficult to control. The side etching is large and the pattern 160 is thin. The problem varies greatly between wafers. When the crystal is etched in the process D, as shown in the process DD, a step 155b is formed on the left side and a step 155c is formed on the right side. That is, it can be said that the variation is large because the Cr 151 is etched twice in the process B and the process C. Incidentally, the finished product is as shown in the process FF and may not be a cross-sectional view like the process F. Reference patent documents include Japanese Patent No. 3729249 and Japanese Patent Application Laid-Open No. 2004-159072.

本発明は、これらの問題点を解決するためになされたものであり、その主たる課題は超小型であってもCI値が低く、ウェハー内・ウェハー間の周波数バラツキが小さく、且つ工程数が少なく、安価な設備で高歩留まりを達成することにある。  The present invention has been made in order to solve these problems, and the main problems thereof are a low CI value, a small frequency variation within a wafer and between wafers, and a small number of steps, even if it is ultra-compact. It is to achieve a high yield with inexpensive equipment.

課題を解決するための手段Means for solving the problem

上記目的を達成するため本発明の音叉型屈曲水晶振動片は、以下の特徴を有する。
水晶基板からフォトエッチング技術により複数個を同時に作成する音叉型屈曲水晶振動片であって、前記音叉型屈曲水晶振動片は幅方向がX軸、長手方向がY軸、厚み方向がZ軸であって、Y軸はX軸を中心にカット角θが−10°〜+10°回転させた範囲によるZ´板の薄板水晶基板からなり、前記音叉型屈曲水晶振動片は左振動腕部と右振動腕部が基部と一体をなし、左振動腕部と右振動腕部の表裏のいずれか一方の面には少なくとも一本の逆台形もしくは略V字状からなる深溝を有し、前記深溝の深さは音叉型屈曲水晶振動片の厚みに対して50%から90%の深さからなり、左振動腕部の深溝を有する内部とその反対面に形成された電極膜は右振動腕部の両側面電極と結線されて一端子をなし、左振動腕部の両側面電極は右振動腕部の深溝を有する内部とその反対面に形成された電極膜と結線されて一端子とし、その二端子間に交番電圧を印加することで屈曲振動することを特徴とする。
In order to achieve the above object, a tuning-fork type bending crystal vibrating piece of the present invention has the following characteristics.
A tuning fork-type bending quartz crystal vibrating piece that is simultaneously prepared from a quartz substrate by photoetching technology, wherein the tuning-fork type bending quartz crystal vibrating piece has an X axis in the width direction, a Y axis in the longitudinal direction, and a Z axis in the thickness direction. The Y-axis is composed of a Z′-plate thin quartz substrate with a cut angle θ rotated about −10 ° to + 10 ° around the X-axis. The arm part is integrated with the base part, and at least one deep trapezoidal or substantially V-shaped deep groove is formed on one of the front and back surfaces of the left vibration arm part and the right vibration arm part. The thickness is 50% to 90% of the thickness of the tuning-fork type bending crystal vibrating piece, and the electrode film formed on the inside of the left vibrating arm portion having the deep groove and the opposite surface is on both sides of the right vibrating arm portion. Connected to the surface electrode to form one terminal, and the left side arm of the left vibrating arm is the right vibrating arm Deep groove inside and as its electrode film formed on the opposite surface and connected has been one terminal having, characterized in that bending vibration by applying an alternating voltage between the two terminals.

薄板水晶基板からフォトエッチング技術により複数個を同時に作成する音叉型屈曲水晶振動片であって、前記音叉型屈曲水晶振動片は幅方向がX軸、長手方向がY軸、厚み方向がZ軸であって、Y軸はX軸を中心にカット角θが−10°〜+10°回転させた範囲によるZ´板の薄板水晶基板からなり、前記音叉型屈曲水晶振動片は左振動腕部と右振動腕部が基部と一体をなし、左振動腕部と右振動腕部の表裏のいずれか一方の面には少なくとも一本の逆台形もしくは略V字状からなる深溝を有し、前記深溝の深さは音叉型屈曲水晶振動片の厚みに対して50%から90%の深さからなり、左振動腕部の深溝を有する内部に形成された電極膜は右振動腕部の両側面電極と結線されて一端子をなし、左振動腕部の両側面電極は右振動腕部の深溝を有する内部に形成された電極膜と結線されて一端子とし、その二端子間に交番電圧を印加することで屈曲振動することを特徴とする。  A tuning fork-type bending quartz crystal vibrating piece that is simultaneously produced by a photoetching technique from a thin quartz substrate, wherein the tuning-fork type bending quartz crystal vibrating piece has an X axis in the width direction, a Y axis in the longitudinal direction, and a Z axis in the thickness direction. The Y-axis is composed of a Z′-plate thin quartz substrate with a cut angle θ rotated about −10 ° to + 10 ° around the X-axis. The vibrating arm portion is integrally formed with the base portion, and has at least one inverted trapezoidal or substantially V-shaped deep groove on one of the front and back surfaces of the left vibrating arm portion and the right vibrating arm portion. The depth is 50% to 90% with respect to the thickness of the tuning fork-type bent quartz crystal vibrating piece, and the electrode film formed in the inside having the deep groove of the left vibrating arm portion is formed on both side electrodes of the right vibrating arm portion. Connected to form one terminal, the left side arm of the left vibrating arm has a deep groove in the right vibrating arm. And formed inside the electrode film and connected to with one terminal which is characterized in that bending vibration by applying an alternating voltage between the two terminals.

また、本発明による音叉型屈曲水晶振動片の製造方法は、薄板水晶基板の表裏に耐食性膜を形成する工程と、前記耐食性膜をフォトエッチング技術により表裏の一方の面には耐食性膜が音叉外形形状として残るように、他方の面には耐食性膜が音叉外形形状として残るようにかつ左右の振動腕部に有する深溝の部分は耐食性膜が残らないように処理する工程と、前記工程のフォトエッチング技術で用いた感光性レジストを除去する工程と、新たに表裏に有する耐食性膜上に感光性レジストをコートし電極膜形成に必要なパターンを作成する工程と、耐食性膜を有しない露出した水晶面を両面よりエッチングして音叉外形を得る処理と、表裏のいずれか一方に有する露出した深溝部分の水晶面をハーフエッチングする処理を同時処理する工程と、表裏に有する耐食性膜を除去する工程と、電極膜を真空蒸着法により形成する工程と、前記感光性レジストとその上に形成された電極膜を剥離する工程と、耐食膜をエッチングする工程とを有することを特徴とする。  The method for manufacturing a tuning-fork-type bending quartz crystal resonator element according to the present invention includes a step of forming a corrosion-resistant film on the front and back of a thin quartz substrate, and the corrosion-resistant film is formed on one side of the front and back by a photo-etching technique. A step of processing so that a corrosion-resistant film remains on the other surface as a tuning fork outer shape so that it remains as a shape, and a portion of the deep groove in the left and right vibrating arms does not leave a corrosion-resistant film; The process of removing the photosensitive resist used in the technology, the process of creating a pattern necessary for electrode film formation by coating the photosensitive resist on the new corrosion resistant film on the front and back, and the exposed quartz surface without the corrosion resistant film A process of simultaneously etching a process for obtaining a tuning fork outline by etching from both sides, and a process for half-etching the crystal surface of the exposed deep groove portion on either of the front and back sides; A step of removing the corrosion-resistant film on the front and back, a step of forming an electrode film by vacuum deposition, a step of peeling off the photosensitive resist and the electrode film formed thereon, and a step of etching the corrosion-resistant film It is characterized by having.

音叉型屈曲振動片の深溝を有する面の反対面側の両腕先端部には、音叉型屈曲振動片の共振周波数を調整する金属皮膜を形成し、この金属皮膜を除去することで所望の周波数に合わせ込むようにしてある。  A metal film that adjusts the resonance frequency of the tuning fork type bending vibration piece is formed on the tip of both arms opposite to the surface having the deep groove of the tuning fork type bending vibration piece, and the desired frequency is obtained by removing this metal film. To fit.

また、音叉型屈曲水晶振動片の共振周波数は、32KHZ〜200KHZの範囲であることが好ましい。  Moreover, it is preferable that the resonance frequency of the tuning fork type quartz crystal vibrating piece is in a range of 32 KHZ to 200 KHZ.

発明の効果The invention's effect

本発明によると、超小型であってもCI値が低く、ウェハー内・ウェハー間の周波数バラツキが小さく、且つ工程数が少なく、安価な設備で高歩留まりを達成することができる。    According to the present invention, even if it is ultra-compact, the CI value is low, the frequency variation within and between wafers is small, the number of processes is small, and high yield can be achieved with inexpensive equipment.

以下、本発明の実施の形態について、32.768KHZの振動片を例に図面をもって説明する。図1は本発明の実施の形態の振動片を示す平面図であり、図2は本発明による振動片の両腕T−T´部の断面図である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking a 32.768 KHZ resonator element as an example. FIG. 1 is a plan view showing a resonator element according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of both arms TT ′ of the resonator element according to the present invention.

図1−Aは深溝を有する表面で図1−Bはその裏面である。振動片1の厚みは100ミクロンであって、基部1aの長さ560ミクロンと一体で突出して形成された左振動腕部2と右振動腕部3からなり、両腕の又部底部からの長さは1711ミクロンで全長2271ミクロン、腕幅はそれぞれ123ミクロン、又幅は82ミクロンに設定した。また、本発明は深溝を表裏のいずれか一方、すなわち片面のみに形成し左振動腕部2に深溝6を右振動腕部3に深溝7を彫り、深溝の幅は93ミクロン、長さは850ミクロンである。図2に示すように深溝は片面よりの化学エッチングで、その形状は逆台形となって深さ方向に角度を有し底面までの深さQ1は80ミクロンで、厚みQ2が100ミクロンであるからQ1はQ2に対して80%となる。  FIG. 1A is a front surface having a deep groove, and FIG. 1B is a rear surface thereof. The thickness of the vibrating piece 1 is 100 microns, and is composed of a left vibrating arm portion 2 and a right vibrating arm portion 3 which are formed integrally with the length 560 microns of the base portion 1a. The length was 1711 microns, the total length was 2271 microns, the arm width was 123 microns, and the width was 82 microns. Further, according to the present invention, the deep groove is formed on either one of the front and back sides, that is, only on one side, and the deep groove 6 is carved in the left vibrating arm portion 2 and the deep groove 7 is carved in the right vibrating arm portion 3, and the deep groove width is 93 microns and the length is 850. Micron. As shown in FIG. 2, the deep groove is chemically etched from one side, the shape is inverted trapezoidal, and has an angle in the depth direction, the depth Q1 to the bottom is 80 microns, and the thickness Q2 is 100 microns. Q1 is 80% with respect to Q2.

図1−Aと図1−Bと図2において、左振動腕部2の左側面電極8と右側面電極10は右振動腕部3の表面に有する深溝7内に有する電極膜7aとその裏側に有する平面電極17bとは裏配線電極15も使用し、電気的に結線されて端子部4に接続されて一端子を得る。一方、左振動腕部2の表面に有する深溝6内に有する電極膜6aとその裏側に有する平面電極17aとは表配線電極14も使用し電気的に結線され右端子部5に接続され一端子を得て、合計二端子とした。また、両腕に有する表裏の電極膜は又部に有するバンド部16により側面の一部を通じて電気的に接続されている。また、土手部18の幅は2ミクロンから20ミクロンと狭い範囲が好ましい。  1A, FIG. 1B, and FIG. 2, the left side electrode 8 and the right side electrode 10 of the left vibrating arm portion 2 have an electrode film 7a in the deep groove 7 on the surface of the right vibrating arm portion 3 and the back side thereof. The back wiring electrode 15 is also used with the planar electrode 17b included in the electrode, and is electrically connected to be connected to the terminal portion 4 to obtain one terminal. On the other hand, the electrode film 6a in the deep groove 6 on the surface of the left vibrating arm portion 2 and the planar electrode 17a on the back side thereof are electrically connected using the front wiring electrode 14 and connected to the right terminal portion 5 to be connected to one terminal. A total of two terminals were obtained. In addition, the front and back electrode films on both arms are electrically connected through a part of the side surface by a band part 16 also provided on the part. The width of the bank portion 18 is preferably in a narrow range of 2 microns to 20 microns.

本発明により得られた振動片の二端子間に交番電圧を印加すると瞬時に見たときには図2のように電界が生じる。本発明では左振動腕部2の側面電極8の面からは垂直に電界が発生し、深溝内電極6aにやや角度をもって電極面に引き込まれる。一方、右振動腕部3の深溝内電極7aのテーパ面からは面に垂直な電界が発生するが、前記左振動腕部2から発生する電界とはその向きがテーパの角度分があり同一ではない。それは裏面に有する平面電極と側面電極の関係も同様に電界の方向は異なる。  When an alternating voltage is applied between the two terminals of the resonator element obtained according to the present invention, an electric field is generated as shown in FIG. In the present invention, an electric field is generated vertically from the surface of the side electrode 8 of the left vibrating arm 2 and is drawn into the electrode surface at a slight angle by the deep groove inner electrode 6a. On the other hand, an electric field perpendicular to the surface is generated from the tapered surface of the deep groove inner electrode 7a of the right vibrating arm 3, but the direction of the electric field generated from the left vibrating arm 2 is the same as the taper angle. Absent. The direction of the electric field is also different for the relationship between the planar electrode and the side electrode on the back surface.

一方、図6と図7により本発明の他の実施例を説明する。図6−Aは図1−Aと同様であるが、その裏面は図6−Bのごとく両腕とも電極は設けない構造であり、配線電極15のみを有している。しかしその平面の音叉先端部には周波数調整用の金属皮膜19が形成してあり、材料はAu、Ag、Pdが用いられる。図7は図6−AのQ−Q´断面であるが、電気的結線は図に示す内容である。(詳細説明は省略する)  Meanwhile, another embodiment of the present invention will be described with reference to FIGS. 6A is the same as FIG. 1A, but the back surface has a structure in which no electrode is provided on both arms as shown in FIG. 6B, and only the wiring electrode 15 is provided. However, a metal film 19 for adjusting the frequency is formed on the tip of the tuning fork on the plane, and materials of Au, Ag, and Pd are used. FIG. 7 is a cross-sectional view taken along the line QQ ′ of FIG. 6A, and the electrical connection has the contents shown in the figure. (Detailed explanation is omitted)

また、更に別の実施例として、図9は音叉の両腕断面図であるが、表面には2本の略V字形状の深溝90があり、深さは厚みの50〜90%である。また、図10はその裏面91に電極膜を形成していない。これらも上述の発明における性能とほぼ同様である。本実施例では2本を例としているが、これ以上の本数でも良い。  As still another embodiment, FIG. 9 is a cross-sectional view of both arms of a tuning fork, and there are two substantially V-shaped deep grooves 90 on the surface, and the depth is 50 to 90% of the thickness. In FIG. 10, no electrode film is formed on the back surface 91 thereof. These are also almost the same as the performance in the above-mentioned invention. In this embodiment, two lines are taken as an example, but a larger number may be used.

図8に本発明による製造方法を図1の振動片の両腕断面を用いて説明する。工程JはZ´板の薄板水晶基板300の表裏に耐食膜301をスパッタリングにて成膜する。この耐食膜材料はCr、酸化アルミニウム、Cr+Auの何れかを用いるが本説明はCrにて行う。  FIG. 8 illustrates a manufacturing method according to the present invention using the cross-sections of both arms of the resonator element of FIG. In step J, a corrosion-resistant film 301 is formed on the front and back surfaces of a thin quartz substrate 300 of Z ′ plate by sputtering. The corrosion resistant film material is any one of Cr, aluminum oxide, and Cr + Au, but this description will be made with Cr.

次に工程Kにて前記耐食膜上に感光性レジスト(ポジ型)を両面に形成し、乾燥後表裏の両面に音叉形状のCrが残るように露光、現像、乾燥(以下パターン化)と音叉形状以外のCrのエッチングを行う。このときに深溝に相当する部分も同時にエッチングし水晶面303aを露出させる。これにより表面には音叉形状の外形を決定する左部Cr303と右部Cr304が残り、裏面には音叉形状のCr302が残る。すなわち、本工程では音叉形状と深溝パターンを同時に作成する。  Next, in Step K, a photosensitive resist (positive type) is formed on both surfaces of the corrosion-resistant film, and after drying, exposure, development, drying (hereinafter patterning) and tuning fork are performed so that tuning fork-shaped Cr remains on both the front and back surfaces. Etching Cr other than the shape. At this time, the portion corresponding to the deep groove is simultaneously etched to expose the crystal surface 303a. As a result, a left portion Cr303 and a right portion Cr304 that determine the outer shape of the tuning fork shape remain on the front surface, and a tuning fork shape Cr302 remains on the rear surface. That is, in this process, a tuning fork shape and a deep groove pattern are created simultaneously.

次の工程Lでは前記表裏のCr上に図1にて記載した電極膜形状とはネガティブの関係を有する感光性レジスト(ポジ型)をパターン化する。それにより表面には左レジスト305と右レジスト306、裏面も同様に左下レジスト307と右下レジスト308が残る。この際用いる感光性レジストは2〜3ミクロンと比較的厚く形成する。  In the next step L, a photosensitive resist (positive type) having a negative relationship with the electrode film shape described in FIG. 1 is patterned on the front and back Cr. As a result, the left resist 305 and the right resist 306 remain on the front surface, and the lower left resist 307 and the lower right resist 308 remain on the back surface as well. The photosensitive resist used at this time is formed to a relatively large thickness of 2 to 3 microns.

次の工程Mで水晶のエッチング液としてフッ化水素酸、フッ化アンモニウムの混合液にを用意しエッチングする。このときに音叉形状の側面部分309は両面エッチングとなり貫通するが、深溝部310は片面エッチングのため貫通しない、もしくは貫通しないエッチング時間とする。  In the next step M, a mixed solution of hydrofluoric acid and ammonium fluoride is prepared and etched as a crystal etching solution. At this time, the tuning fork-shaped side surface portion 309 penetrates by double-sided etching, but the deep groove portion 310 does not penetrate or is not penetrated because of single-sided etching.

次の工程Nでは裏面に露出したCr302をエッチングし水晶表面311を得る。ついで工程Oにて全面に電極膜を形成する。この電極膜材料にはTi+Pd、Ti+AuNi+Pd、Ni+Auなどを用いるが、後に有するCrのエッチング液に溶解せず、電気特性が満足すれば他の材料でも良い。  In the next step N, Cr 302 exposed on the back surface is etched to obtain a crystal surface 311. Next, an electrode film is formed on the entire surface in step O. Ti + Pd, Ti + AuNi + Pd, Ni + Au, or the like is used as the electrode film material, but other materials may be used as long as they do not dissolve in the later etching solution of Cr and satisfy electrical characteristics.

次の工程Pでは表裏に形成した感光性レジストとその上に形成された電極膜を剥離する。これは感光性レジストを溶解する液に浸すことで容易に除去できる。しかし、その下部に有するCr304は残る。  In the next process P, the photosensitive resist formed on the front and back and the electrode film formed thereon are peeled off. This can be easily removed by immersing it in a solution for dissolving the photosensitive resist. However, Cr304 which has in the lower part remains.

次に工程Qで前記の残りであるCr304をエッチングする。このときに左側面電極306と右側面電極307、及び深溝内の電極膜305と裏面の電極膜308はCrのエッチング液に溶解しないためそのまま残る。ちなみに本発明で説明した一連の電極パターン形成プロセスはリフトオフ法を用いている。また、上記説明のCrエッチング液には硝酸第二セリウムアンモニウムと過塩素酸の混合液を使用した。  Next, in Step Q, the remaining Cr 304 is etched. At this time, the left side electrode 306 and the right side electrode 307, and the electrode film 305 and the back side electrode film 308 in the deep groove remain as they are not dissolved in the Cr etching solution. Incidentally, the series of electrode pattern forming processes described in the present invention uses a lift-off method. In addition, a mixed liquid of ceric ammonium nitrate and perchloric acid was used as the Cr etching liquid described above.

本発明の他の実施例で図6−Bのように裏面に電極膜を形成しない場合は、本製造工程の工程Lにて裏面の感光性レジストを307、308のように光分離せず、音叉形状のままとすれば、裏面に電極膜が付着することはない。  In the other embodiment of the present invention, when the electrode film is not formed on the back surface as shown in FIG. 6B, the photosensitive resist on the back surface is not separated into light like 307 and 308 in the process L of this manufacturing process. If the tuning fork shape is maintained, the electrode film does not adhere to the back surface.

本発明の実施例は32.768KHZにて説明してきたが、200KHZ前後まで応用は可能である。尚、本発明による製造方法は振動腕の上下面に溝を有する音叉型屈曲水晶振動片に用いたが、振動腕の深溝部を貫通させる振動片にも適用できることは言うまでも無い。また、音叉という2本腕であるが、3本を有する三叉型屈曲水晶振動片にも適用が可能であるしジャイロセンサーもその範囲に含む。  Although the embodiment of the present invention has been described in 32.768 KHZ, it can be applied up to around 200 KHZ. The manufacturing method according to the present invention is used for a tuning-fork type bending crystal vibrating piece having grooves on the upper and lower surfaces of the vibrating arm, but it goes without saying that the manufacturing method can also be applied to a vibrating piece penetrating the deep groove portion of the vibrating arm. Further, although it has two arms called a tuning fork, it can also be applied to a three-pronged bending crystal vibrating piece having three, and a gyro sensor is also included in the range.

以上述べたように、本発明によれば、振動片において、音叉の深溝の深さが厚みの50%を超えることで急激にCI値が低下し箱型の超小型サイズ3.2×1.5×0.7の容器に実装し真空気密封止した結果は43KΩと極めて良好であった。従来の両面溝を有する製品と比べ同等以上である。深溝が50%の場合は70KΩであったことから厚み中央の50%を越えると急激にCI値が更に低下し80%では前記43KΩが携帯電話や電波時計などの小型携帯機器の低消費電流化に大きく貢献する。  As described above, according to the present invention, in the resonator element, when the depth of the deep groove of the tuning fork exceeds 50% of the thickness, the CI value suddenly decreases, and the box-type ultra-small size 3.2 × 1. The result of mounting in a 5 × 0.7 container and vacuum-sealing was very good at 43 KΩ. Compared with products with conventional double-sided grooves, it is equivalent or better. When the deep groove is 50%, it was 70KΩ, so when it exceeds 50% at the center of the thickness, the CI value suddenly further decreases, and at 80%, the 43KΩ reduces the current consumption of small portable devices such as mobile phones and radio clocks. Greatly contribute to

ちなみに小型化するとCI値は上昇傾向にあるが、発振回路の発振マージンを考慮すれば50KΩ以下が理想である。70KΩでは機動性も悪く、不発振となることもあるため本発明の効果は大きい。  Incidentally, the CI value tends to increase as the size is reduced, but 50 KΩ or less is ideal in consideration of the oscillation margin of the oscillation circuit. The effect of the present invention is great because the mobility is poor at 70 KΩ, and non-oscillation may occur.

一方、図6−Bに示す裏面に電極膜が無い場合の効果では、周波数調整法にて従来より振動片がウェハーに連結されている状態で発振させながら周波数を検出し、あるいは事前計測データを用いて目的の周波数まで、金属皮膜19をレーザー法やイオンエッチング法で除去するが、その際に金属皮膜、例えばAuが電極膜飛散することがあり、ショートあるいはシート抵抗が上昇するなどの問題があったが、電極膜がない面に金属皮膜19を形成することで不具合が大幅に低下する。  On the other hand, in the case where there is no electrode film on the back surface shown in FIG. 6B, the frequency is detected while oscillating while the resonator element is connected to the wafer by the frequency adjustment method, or the pre-measurement data is obtained. The metal film 19 is removed by laser or ion etching until the desired frequency is used. At that time, the metal film, for example, Au may be scattered, which causes a problem such as short circuit or increased sheet resistance. However, the formation of the metal film 19 on the surface without the electrode film greatly reduces the problem.

更に本発明の製造方法によれば、音叉外形と深溝パターンに用いるCr膜エッチングが同時であること、露光で用いるフォトマスクには音叉外形と深溝パターンが1枚のマスク基板に描写されているため音叉外形と深溝の合わせ誤差がなく、左振動腕部と右振動腕部のバランスが良いためにCI値が安定して低い。更に本発明では音叉外形を抜いた後に電極膜を形成し全面に感光性レジストをコーティングする必要がなく、水晶を抜く前の状態で薄板水晶基板両面に一連のフォトリソプロセスが行えるため、露光装置は安価なコンタクト方式やプロキシミティ方式が採用できる。ちなみに露光回数は従来3回であったものを2回に短縮化できた。また、最初のCrエッチング時に深溝部もエッチングするため、その時間は60secほど要するため、すなわち電池腐食現象が少ないためエッチング速度が遅く深溝内にCrエッチング残りがない、深溝内も凹凸がなく極めて欠陥が少ない。  Further, according to the manufacturing method of the present invention, the etching of the Cr film used for the tuning fork outline and the deep groove pattern is simultaneous, and the tuning fork outline and the deep groove pattern are depicted on one mask substrate in the photomask used for exposure. The CI value is stable and low because there is no alignment error between the tuning fork outline and the deep groove and the balance between the left vibrating arm and the right vibrating arm is good. Furthermore, in the present invention, there is no need to form an electrode film after extracting the tuning fork outline and coat the entire surface with a photosensitive resist, and a series of photolithography processes can be performed on both surfaces of the thin quartz substrate before the crystal is extracted. Inexpensive contact method and proximity method can be adopted. By the way, the number of exposures can be shortened to 2 times, which was 3 times. In addition, since the deep groove portion is also etched at the time of the first Cr etching, it takes about 60 seconds, that is, the battery corrosion phenomenon is small, so the etching rate is slow and there is no Cr etching residue in the deep groove, the deep groove has no irregularities and is extremely defective Less is.

本製造方法により従来法によればウェハーから多数得られた32.768KHZの周波数バラツキは従来ウェハー内で500KHZ強あったものが、150KHZ以下と激減しその効果は大であった。その結果、先端に形成する周波数調整用Auの量も従来の1/3以下となった。  According to the present manufacturing method, the frequency variation of 32.768 KHZ obtained from a large number of wafers according to the conventional method was over 500 KHZ in the conventional wafer, but it was drastically reduced to 150 KHZ or less, and the effect was great. As a result, the amount of frequency adjusting Au formed at the tip is also も or less of the conventional one.

本発明は音叉型屈曲水晶振動子の片面深溝構造と新規製造方法の組み合わせにより、性能向上、低い投資、高歩留まりを達成したものであり、本音叉型屈曲水晶振動片を用いれば、それを使用する容器などは箱型、シンリダ型、またそれを樹脂モールドした水晶振動子が容易に作成でき、ジャイロセンサーへの適用や半導体と組み合わせて水晶発振器にすることは十分可能であり、本小型振動片の性能はその応用製品の小型化、高性能化、安価に多大な貢献をもたらすものであって発明の効果は大である。  The present invention achieves performance improvement, low investment, and high yield by combining a single-sided deep groove structure of a tuning fork type quartz crystal unit and a new manufacturing method. If this tuning fork type quartz crystal resonator piece is used, it is used. The container to be used is a box type, thin lid type, or a resin-molded crystal unit that can be easily created. It can be applied to a gyro sensor or combined with a semiconductor to make a crystal oscillator. This performance greatly contributes to the miniaturization, high performance, and low cost of the applied product, and the effect of the invention is great.

本発明の音叉型屈曲水晶振動片を示す平面図である。  It is a top view which shows the tuning fork type bending quartz crystal vibrating piece of this invention. 本発明の音叉型屈曲水晶振動片を示す断面図である。  It is sectional drawing which shows the tuning fork type bending quartz crystal vibrating piece of this invention. 従来の音叉型屈曲水晶振動片を示す平面図である。  It is a top view which shows the conventional tuning fork type bending quartz crystal vibrating piece. 従来の音叉型屈曲振動片を示す断面図である。  It is sectional drawing which shows the conventional tuning fork type bending vibration piece. 従来の音叉型屈曲水晶振動片の製造方法を示す断面図である。  It is sectional drawing which shows the manufacturing method of the conventional tuning fork type bending quartz crystal vibrating piece. 本発明による他の音叉型屈曲水晶振動片を示す平面図である。  It is a top view which shows the other tuning fork type bending quartz crystal vibrating piece by this invention. 本発明による他の音叉型屈曲水晶振動片を示す断面図である。  It is sectional drawing which shows the other tuning fork type bending crystal vibrating piece by this invention. 本発明による音叉型屈曲水晶振動片の製造方法を示す断面図である。  It is sectional drawing which shows the manufacturing method of the tuning fork type bending quartz crystal vibrating piece by this invention. 本発明による他の音叉型屈曲水晶振動片を示す断面図である。  It is sectional drawing which shows the other tuning fork type bending crystal vibrating piece by this invention. 本発明による他の音叉型屈曲水晶振動片を示す断面図である。  It is sectional drawing which shows the other tuning fork type bending crystal vibrating piece by this invention.

符号の説明Explanation of symbols

1、100 音叉型水晶振動片
1a 基部
2、101 左振動腕部
3、102 右振動腕部
4、110 左端子部
5、109 右端子部
6、7、103、104、155、310 深溝
6a、7a 深溝内電極
8、106a、107a、306 左側面電極
10、106b、107b、307 右側面電極
14 表配線電極
15 裏配線電極
106 先端部
16 バンド部
17a 平面電極
18 土手部
19 金属皮膜
103a、104a、158a 表主面電極
103b、104b、158b 裏主面電極
105、108 配線膜
111 矢印
150,300 薄板水晶基板
151,302,303,304 Cr
151a、154、303a、311 水晶面
152 Au
153 外形パターン
153a、157 感光性レジスト
156,305,308 電極膜
155b、155c 段差
301 耐食膜
305 左レジスト
306 右レジスト
307 左下レジスト
308 右下レジスト
309 側面部
DESCRIPTION OF SYMBOLS 1,100 Tuning fork type crystal vibrating piece 1a Base 2, 101 Left vibration arm 3, 103 Right vibration arm 4, 110 Left terminal 5, 109 Right terminal 6, 7, 103, 104, 155, 310 Deep groove 6a, 7a Deep groove inner electrode 8, 106a, 107a, 306 Left side electrode 10, 106b, 107b, 307 Right side electrode 14 Front wiring electrode 15 Back wiring electrode 106 Tip 16 Band portion 17a Planar electrode 18 Bank 19 Metal coating 103a, 104a 158a Front main surface electrodes 103b, 104b, 158b Back main surface electrodes 105, 108 Wiring film 111 Arrow 150, 300 Thin crystal substrate 151, 302, 303, 304 Cr
151a, 154, 303a, 311 quartz surface 152 Au
153 Outline pattern 153a, 157 Photosensitive resist 156, 305, 308 Electrode film 155b, 155c Step 301 Corrosion resistant film 305 Left resist 306 Right resist 307 Left lower resist 308 Right lower resist 309 Side surface

Claims (5)

薄板水晶基板からフォトエッチング技術により複数個を同時に作成する音叉型屈曲水晶振動片であって、前記音叉型屈曲水晶振動片は幅方向がX軸、長手方向がY軸、厚み方向がZ軸であって、Y軸はX軸を中心にカット角θが−10°〜+10°回転させた範囲によるZ´板の薄板水晶基板からなり、前記音叉型屈曲水晶振動片は左振動腕部と右振動腕部が基部と一体をなし、左振動腕部と右振動腕部の表裏のいずれか一方の面には少なくとも一本の逆台形もしくは略V字状からなる深溝を有し、前記深溝の深さは音叉型屈曲水晶振動片の厚みに対して50%から90%の深さからなり、左振動腕部の深溝を有する内部とその反対面に形成された電極膜は右振動腕部の両側面電極と結線されて一端子をなし、左振動腕部の両側面電極は右振動腕部の深溝を有する内部とその反対面に形成された電極膜と結線されて一端子とし、その二端子間に交番電圧を印加することで屈曲振動することを特徴とする音叉型屈曲水晶振動片。  A tuning fork-type bending quartz crystal vibrating piece that is simultaneously produced by a photoetching technique from a thin quartz substrate, wherein the tuning-fork type bending quartz crystal vibrating piece has an X axis in the width direction, a Y axis in the longitudinal direction, and a Z axis in the thickness direction. The Y-axis is composed of a Z′-plate thin quartz substrate with a cut angle θ rotated about −10 ° to + 10 ° around the X-axis. The vibrating arm portion is integrally formed with the base portion, and has at least one inverted trapezoidal or substantially V-shaped deep groove on one of the front and back surfaces of the left vibrating arm portion and the right vibrating arm portion. The depth is 50% to 90% of the thickness of the tuning fork-type bent quartz crystal vibrating piece, and the electrode film formed on the inside of the left vibrating arm portion having the deep groove and on the opposite surface thereof is the right vibrating arm portion. Connected to both side electrodes to form one terminal, both side electrodes of the left vibrating arm vibrate to the right A tuning-fork type quartz crystal vibrating piece characterized in that it is bent and vibrated by applying an alternating voltage between the two terminals connected to an electrode film formed on the opposite side and the inside having a deep groove in the part . 薄板水晶基板からフォトエッチング技術により複数個を同時に作成する音叉型屈曲水晶振動片であって、前記音叉型屈曲水晶振動片は幅方向がX軸、長手方向がY軸、厚み方向がZ軸であって、Y軸はX軸を中心にカット角θが−10°〜+10°回転させた範囲によるZ´板の薄板水晶基板からなり、前記音叉型屈曲水晶振動片は左振動腕部と右振動腕部が基部と一体をなし、左振動腕部と右振動腕部の表裏のいずれか一方の面には少なくとも一本の逆台形もしくは略V字状からなる深溝を有し、前記深溝の深さは音叉型屈曲水晶振動片の厚みに対して50%から90%の深さからなり、左振動腕部の深溝を有する内部に形成された電極膜は右振動腕部の両側面電極と結線されて一端子をなし、左振動腕部の両側面電極は右振動腕部の深溝を有する内部に形成された電極膜と結線されて一端子とし、その二端子間に交番電圧を印加することで屈曲振動することを特徴とする音叉型屈曲水晶振動片。  A tuning fork-type bending quartz crystal vibrating piece that is simultaneously produced by a photoetching technique from a thin quartz substrate, wherein the tuning-fork type bending quartz crystal vibrating piece has an X axis in the width direction, a Y axis in the longitudinal direction, and a Z axis in the thickness direction. The Y-axis is composed of a Z′-plate thin quartz substrate with a cut angle θ rotated about −10 ° to + 10 ° around the X-axis. The vibrating arm portion is integrally formed with the base portion, and has at least one inverted trapezoidal or substantially V-shaped deep groove on one of the front and back surfaces of the left vibrating arm portion and the right vibrating arm portion. The depth is 50% to 90% with respect to the thickness of the tuning fork-type bent quartz crystal vibrating piece, and the electrode film formed in the inside having the deep groove of the left vibrating arm portion is formed on both side electrodes of the right vibrating arm portion. Connected to form one terminal, the left side arm of the left vibrating arm has a deep groove in the right vibrating arm. Inside is formed electrode film and connected to the one terminal, the tuning fork type flexural quartz crystal resonator element, characterized in that bending vibration by applying an alternating voltage between the two terminals to be. 薄板水晶基板の表裏に耐食性膜を形成する工程と前記耐食性膜をフォトエッチング技術により表裏の一方の面には耐食性膜が音叉外形形状として残るように、他方の面には耐食性膜が音叉外形形状として残るようにかつ左右の振動腕部に有する深溝の部分は耐食性膜が残らないように処理する工程と、前記工程のフォトエッチング技術で用いた感光性レジストを除去する工程と、新たに表裏に有する耐食性膜上に感光性レジストをコートし電極膜形成に必要なパターンを作成する工程と、耐食性膜を有しない露出した水晶面を両面よりエッチングして音叉外形を得る工程と、表裏のいずれか一方に有する露出した深溝部分の水晶面をハーフエッチングする処理を同時処理する工程と、表裏に有する耐食性膜を除去する工程と、電極膜を真空蒸着法により形成する工程と、前記感光性レジストとその上に形成された電極膜を剥離する工程と、耐食膜をエッチングする工程とを有することを特徴とする音叉型屈曲水晶振動片の製造方法。  A process for forming a corrosion-resistant film on the front and back surfaces of a thin quartz substrate and the corrosion-resistant film remain on one surface of the front and back surfaces as a tuning fork outline shape by photo-etching technology, and a corrosion-resistant film is formed on the other surface as a tuning fork outline shape. And a process of processing the deep groove portions of the left and right vibrating arms so as not to leave a corrosion-resistant film, a process of removing the photosensitive resist used in the photo-etching technique of the above process, and newly on the front and back A process for creating a pattern necessary for electrode film formation by coating a photosensitive resist on a corrosion-resistant film, a process for obtaining a tuning fork outline by etching the exposed quartz surface that does not have a corrosion-resistant film from both sides, and either of the front and back sides The process of half-etching the crystal surface of the exposed deep groove portion on one side, the process of removing the corrosion-resistant film on the front and back, and the vacuum evaporation of the electrode film Forming by law, the photosensitive resist and the step of removing the formed electrode film thereon, the manufacturing method of the tuning fork type flexural quartz crystal resonator element, characterized in that a step of etching the corrosion resistant film. 前記音叉型屈曲振動片の深溝を有する面の反対面側の両腕先端部には、音叉型屈曲振動片の共振周波数を調整する金属皮膜を形成し、この金属皮膜を除去することで所望の周波数に合わせ込む請求項1,又は請求項2に記載の音叉型屈曲水晶振動片。  A metal film for adjusting the resonance frequency of the tuning fork type bending vibration piece is formed on the tip of both arms on the opposite side of the surface having the deep groove of the tuning fork type bending vibration piece. The tuning-fork-type bent quartz crystal vibrating piece according to claim 1 or 2 matched with a frequency. 前記音叉型屈曲振動片の共振周波数が、32KHz〜200KHzの範囲である請求項1又は請求項2に記載の音叉型屈曲水晶振動片。  The tuning fork type bending crystal vibrating piece according to claim 1 or 2, wherein a resonance frequency of the tuning fork type bending vibration piece is in a range of 32 KHz to 200 KHz.
JP2006187214A 2006-06-09 2006-06-09 Tuning-fork type bending crystal oscillator piece and manufacturing method therefor Pending JP2007329879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006187214A JP2007329879A (en) 2006-06-09 2006-06-09 Tuning-fork type bending crystal oscillator piece and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006187214A JP2007329879A (en) 2006-06-09 2006-06-09 Tuning-fork type bending crystal oscillator piece and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007329879A true JP2007329879A (en) 2007-12-20

Family

ID=38930026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187214A Pending JP2007329879A (en) 2006-06-09 2006-06-09 Tuning-fork type bending crystal oscillator piece and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007329879A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047115A1 (en) * 2008-10-24 2010-04-29 セイコーエプソン株式会社 Bending vibration piece, bending vibrator, and piezoelectric device
JP2010193133A (en) * 2009-02-18 2010-09-02 Epson Toyocom Corp Bending vibrator piece and bending vibrator
JP2011097562A (en) * 2009-10-01 2011-05-12 Seiko Epson Corp Vibrating piece, vibrator, oscillator, and electronic apparatus
JP2011139233A (en) * 2009-12-28 2011-07-14 Kyocera Kinseki Corp Tuning-fork type flexural crystal oscillation element
JP2011217041A (en) * 2010-03-31 2011-10-27 Kyocera Kinseki Corp Method for manufacturing tuning fork type crystal piece
JP2015076724A (en) * 2013-10-09 2015-04-20 京セラクリスタルデバイス株式会社 Method for manufacturing piezoelectric element
JP2015087256A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Vibration piece, angular velocity sensor, electronic apparatus and movable body
JP2016118499A (en) * 2014-12-22 2016-06-30 京セラクリスタルデバイス株式会社 Sensor element, angular velocity sensor and production method of sensor element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261557A (en) * 2001-02-28 2002-09-13 Seiko Epson Corp Method of manufacturing piezoelectric vibrating reed
JP2003204240A (en) * 2001-10-31 2003-07-18 Piedekku Gijutsu Kenkyusho:Kk Crystal unit and production method therefor
JP2003273703A (en) * 2002-01-11 2003-09-26 Piedekku Gijutsu Kenkyusho:Kk Quartz vibrator and its manufacturing method
JP2004260593A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Crystal oscillation reed, its manufacturing method, crystal device using crystal oscillation reed, portable telephone system using crystal device, and electronic equipment using crystal device
JP2005016976A (en) * 2003-06-23 2005-01-20 Seiko Epson Corp Manufacturing method of vibrating reed, oscillator, gyroscope sensor, and electronic equipment
WO2005008888A1 (en) * 2003-07-22 2005-01-27 Daishinku Corporation Tuning fork type vibrating reed, tuning fork type vibrator, and method for making tuning fork type vibrator
JP2005039768A (en) * 2003-06-30 2005-02-10 Piedekku Gijutsu Kenkyusho:Kk Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator
JP2006222522A (en) * 2005-02-08 2006-08-24 Seiko Instruments Inc Piezoelectric vibrator, oscillator, and electronic equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261557A (en) * 2001-02-28 2002-09-13 Seiko Epson Corp Method of manufacturing piezoelectric vibrating reed
JP2003204240A (en) * 2001-10-31 2003-07-18 Piedekku Gijutsu Kenkyusho:Kk Crystal unit and production method therefor
JP2003273703A (en) * 2002-01-11 2003-09-26 Piedekku Gijutsu Kenkyusho:Kk Quartz vibrator and its manufacturing method
JP2004260593A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Crystal oscillation reed, its manufacturing method, crystal device using crystal oscillation reed, portable telephone system using crystal device, and electronic equipment using crystal device
JP2005016976A (en) * 2003-06-23 2005-01-20 Seiko Epson Corp Manufacturing method of vibrating reed, oscillator, gyroscope sensor, and electronic equipment
JP2005039768A (en) * 2003-06-30 2005-02-10 Piedekku Gijutsu Kenkyusho:Kk Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator
WO2005008888A1 (en) * 2003-07-22 2005-01-27 Daishinku Corporation Tuning fork type vibrating reed, tuning fork type vibrator, and method for making tuning fork type vibrator
JP2006222522A (en) * 2005-02-08 2006-08-24 Seiko Instruments Inc Piezoelectric vibrator, oscillator, and electronic equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047115A1 (en) * 2008-10-24 2010-04-29 セイコーエプソン株式会社 Bending vibration piece, bending vibrator, and piezoelectric device
JP5067486B2 (en) * 2008-10-24 2012-11-07 セイコーエプソン株式会社 Bending vibrator, bending vibrator, and piezoelectric device
CN102197592B (en) * 2008-10-24 2014-06-04 精工爱普生株式会社 Bending vibration piece, bending vibrator, and piezoelectric device
US8766515B2 (en) 2008-10-24 2014-07-01 Seiko Epson Corporation Flexural vibrating reed, flexural vibrator, and piezoelectric device
JP2010193133A (en) * 2009-02-18 2010-09-02 Epson Toyocom Corp Bending vibrator piece and bending vibrator
JP2011097562A (en) * 2009-10-01 2011-05-12 Seiko Epson Corp Vibrating piece, vibrator, oscillator, and electronic apparatus
JP2011139233A (en) * 2009-12-28 2011-07-14 Kyocera Kinseki Corp Tuning-fork type flexural crystal oscillation element
JP2011217041A (en) * 2010-03-31 2011-10-27 Kyocera Kinseki Corp Method for manufacturing tuning fork type crystal piece
JP2015076724A (en) * 2013-10-09 2015-04-20 京セラクリスタルデバイス株式会社 Method for manufacturing piezoelectric element
JP2015087256A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Vibration piece, angular velocity sensor, electronic apparatus and movable body
JP2016118499A (en) * 2014-12-22 2016-06-30 京セラクリスタルデバイス株式会社 Sensor element, angular velocity sensor and production method of sensor element

Similar Documents

Publication Publication Date Title
JP2008060952A (en) Tuning fork crystal oscillation board and method of manufacturing the same
JP2007329879A (en) Tuning-fork type bending crystal oscillator piece and manufacturing method therefor
JP4714770B2 (en) Tuning fork type piezoelectric vibrating piece and method for manufacturing tuning fork type piezoelectric vibrating piece
JP2009060478A (en) Manufacturing method of piezoelectric vibration chip, and tuning fork type piezoelectric vibration chip
JP4292825B2 (en) Method for manufacturing quartz vibrating piece
JP5520618B2 (en) Tuning fork type bending crystal resonator element
JP2009152988A (en) Piezoelectric vibration chip, piezoelectric device and manufacturing methods for them
JP5936438B2 (en) Method for manufacturing piezoelectric vibration device
JP4636170B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP2008085631A (en) Manufacturing method of vibration reed, vibration reed, and vibrator
JP5890271B2 (en) Tuning fork-type bending crystal resonator element and manufacturing method thereof
JP2009152989A (en) Piezoelectric vibration chip and piezoelectric device
JP2016174328A (en) Wafer manufacturing method and wafer
JP4895716B2 (en) Method for manufacturing piezoelectric device
JP2004173218A (en) Manufacturing method for quartz oscillator
JP6055273B2 (en) Method for manufacturing piezoelectric element
JP6163379B2 (en) Method for manufacturing crystal resonator element
JP2005210185A (en) Manufacturing method of piezoelectric vibrating piece and piezoelectric device
JP6043588B2 (en) Quartz vibrating element and method for manufacturing the same
KR100956235B1 (en) Method of manufacturing crystal unit
JP4692619B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP2010010955A (en) Method for manufacturing piezoelectric vibrator, and piezoelectric vibrator
JP6163404B2 (en) Method for manufacturing piezoelectric element
JP2000091866A (en) Piezoelectric vibrator and piezoelectric oscillator and manufacture of piezoelectric vibrating element used for the device
JP6279386B2 (en) Quartz vibrating element and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110622