JP2003060482A - Tuning fork crystal oscillating piece - Google Patents

Tuning fork crystal oscillating piece

Info

Publication number
JP2003060482A
JP2003060482A JP2001244186A JP2001244186A JP2003060482A JP 2003060482 A JP2003060482 A JP 2003060482A JP 2001244186 A JP2001244186 A JP 2001244186A JP 2001244186 A JP2001244186 A JP 2001244186A JP 2003060482 A JP2003060482 A JP 2003060482A
Authority
JP
Japan
Prior art keywords
vibrating piece
holes
crystal vibrating
arm
tuning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001244186A
Other languages
Japanese (ja)
Inventor
Hidenori Ashizawa
英紀 芦沢
Takashi Nishizuka
剛史 西塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
River Eletec Corp
Original Assignee
River Eletec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by River Eletec Corp filed Critical River Eletec Corp
Priority to JP2001244186A priority Critical patent/JP2003060482A/en
Publication of JP2003060482A publication Critical patent/JP2003060482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve compact size, without narrowing the width of a pair of arms made at a forked crystal oscillating piece. SOLUTION: In a tuning fork crystal oscillating piece 21 which is equipped with a base 22 and a pair of arms 23a and 23b, extending from this base 22, the spring constant is suppressed lower, by providing a plurality of through-holes 27a and 27b in the longitudinal direction, from the base end 22 of each arm 23a and 23b described above. Moreover, the electric field efficiency is raised, and equivalent resistance is suppressed low, by forming oscillating electrodes at the inner flanks of the above through holes 27a and 27b to coincide with the direction of polarization of a quartz crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水晶振動子を構成
する小型の音叉型水晶振動片に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small tuning-fork type crystal vibrating piece that constitutes a crystal unit.

【0002】[0002]

【従来の技術】水晶振動子には多種の振動モードがあ
り、使用目的や用途に応じて使い分けられているが、小
型化が容易な厚みすべり振動モード及び音叉屈曲振動モ
ードの2種類が大半を占めている。このうち、音叉屈曲
振動モードとして用いられる水晶振動子に実装されてい
る水晶振動片1は、図8及び図9(a)に示すように、
1枚の薄い水晶板で形成され、図示しないケーシングの
電極端子に支持される四角形状の基部2と、この基部2
から平行に延びる2本の腕部3a,3bとで略U字状に
形成され、全体がいわゆる音叉に似た形状をなしてい
る。このような音叉型の水晶振動片1を備えた水晶振動
子は振動周波数が低く、また、発振器に組み込んだ際の
消費電流も低く抑えられるので、腕時計用の時間基準と
して多用されている。
2. Description of the Related Art Crystal oscillators have various vibration modes, and they are used properly according to the purpose and purpose of use, but most of them are the thickness-shear vibration mode and the tuning-fork bending vibration mode, which are easy to miniaturize. is occupying. Among them, the crystal vibrating reed 1 mounted on the crystal resonator used as the tuning fork bending vibration mode is, as shown in FIG. 8 and FIG.
A rectangular base portion 2 formed of one thin crystal plate and supported by an electrode terminal of a casing (not shown), and the base portion 2
And two arms 3a and 3b extending in parallel with each other are formed in a substantially U shape, and the whole has a shape similar to a so-called tuning fork. A crystal resonator including such a tuning-fork type crystal vibrating piece 1 has a low vibration frequency and can also suppress current consumption when incorporated in an oscillator, and is therefore widely used as a time reference for wrist watches.

【0003】前記水晶振動片1は、水晶原石のZ板から
1°X軸回転させた角度でカットして形成されたもので
ある。この水晶振動片1は、例えば、32.768KH
zを基準の振動周波数として使用する場合は、腕部3
a,3bの長さL1=2.3mmに対して、各腕部3
a,3bの幅W1=0.22mmに設定される。また、
前記各腕部3a,3bの基端部4から各腕部3a,3b
の長手方向の沿ってそれぞれ極性の異なる励振電極5
a,5bが形成され、それぞれが基部2の両隅に設けら
れた電極端部6a,6bに導通接続されている。
The quartz crystal vibrating piece 1 is formed by cutting from a Z plate of a raw quartz stone at an angle of 1 ° X-axis rotation. This crystal vibrating piece 1 is, for example, 32.768 KH.
When using z as the reference vibration frequency, the arm 3
a, 3b length L1 = 2.3 mm, each arm 3
The width W1 of a and 3b is set to 0.22 mm. Also,
From the base end 4 of each arm 3a, 3b to each arm 3a, 3b
Excitation electrodes 5 having different polarities along the longitudinal direction of the
a and 5b are formed, and are respectively electrically connected to the electrode end portions 6a and 6b provided at both corners of the base portion 2.

【0004】このような水晶振動片1にあっては、前記
腕部3a,3bが振動するときの共振運動を励振電極5
a,5bによって電気信号に変換し、これを固有の振動
周波数としている。
In the crystal vibrating piece 1 as described above, a resonance motion when the arms 3a and 3b vibrate causes the exciting electrode 5 to move.
It is converted into an electric signal by a and 5b, and this is used as a natural vibration frequency.

【0005】上述したように、前記音叉型の水晶振動片
1は、腕部3a,3bの長さ及び幅のサイズによって固
有の振動周波数が設定され、以下の関係式(数式1)が
成り立つ。
As described above, in the tuning fork type crystal vibrating piece 1, a unique vibration frequency is set according to the length and width of the arms 3a and 3b, and the following relational expression (Equation 1) is established.

【0006】[0006]

【数1】 ここで、F:振動周波数(Hz) L:腕部の長さ(m) W:腕部の幅 (m) C´22:弾性スチフネス定数(N/m) ρ:水晶の密度(kg/m) である。[Equation 1] Here, F: oscillation frequency (Hz) L: length of the arm portion (m) W: the arm portion in the width (m) C'22: elastic stiffness constant (N / m 2) ρ: crystal density (kg / m 3 ).

【0007】従って、前記図9(a)の水晶振動片1を
要求仕様に基づいて設計変更等する場合は前記(数式
1)の下で各パラメータが決定される。それ故、図9
(b)に示したように、前記水晶振動片1の振動周波数
32.768KHzは固定のままにして水晶振動片11
のように小型化した場合には、例えば腕部13a,13
bの長さL2を1.9mm程度に短縮すると、腕部13
a,13bの幅W2は0.15mmと極めて幅狭いもの
となる。
Therefore, when the design of the crystal vibrating reed 1 shown in FIG. 9 (a) is changed based on the required specifications, each parameter is determined under the above (Formula 1). Therefore, FIG.
As shown in (b), the vibration frequency 32.768 KHz of the crystal vibrating piece 1 remains fixed and the crystal vibrating piece 11 is kept.
When the size is reduced as shown in FIG.
When the length L2 of b is shortened to about 1.9 mm, the arm 13
The width W2 of a and 13b is 0.15 mm, which is extremely narrow.

【0008】図10は、前記図9(a)の水晶振動片1
をE−E線に沿って切断したときの断面形状を示したも
のである。図に示したように、腕部3a,3bの表面に
形成した励振電極5a,5bの電界の向きとX軸方向に
向かう水晶結晶の分極方向が略直交して作用している。
FIG. 10 shows the crystal vibrating piece 1 of FIG. 9 (a).
2 shows a cross-sectional shape when the is cut along the line EE. As shown in the figure, the directions of the electric fields of the excitation electrodes 5a and 5b formed on the surfaces of the arms 3a and 3b and the polarization direction of the quartz crystal acting in the X-axis direction act substantially orthogonally.

【0009】[0009]

【発明が解決しようとする課題】上述したように、上記
水晶振動片1と水晶振動片11との関係の如く、振動周
波数はそのままで、サイズのみ小型化するためには、上
記(数式1)からも明らかなように、腕部3a,3bの
長さL1の縮小比に対して幅W1を2乗で縮小しなけれ
ばならないことになる。例えば、L1=3mmからL2
=2mmに縮小する場合は、W1=250μmからW2
=111μmにしなければならない。しかしながら、こ
の腕部の幅Wは、水晶振動子としての品質を保つために
は最低でも200μm以上が必要とされており、200
μm以下になってしまうと、励振電極5a,5bの形成
幅も一緒に狭くなることから電界効率が低下してしま
い、それによって等価抵抗(R1)が高くなって、最終
製品となる水晶振動子の品質を悪化させる要因ともなっ
ていた。加えて、腕部13a,13bの幅W2を狭く形
成するための加工精度の維持や加工された腕部の十分な
強度を確保するのが困難であることから、結果的に水晶
振動片を小型化することに限界があった。
As described above, in order to downsize only the size while keeping the vibration frequency as in the relationship between the crystal vibrating piece 1 and the crystal vibrating piece 11, the above (Formula 1) is used. As is clear from the above, the width W1 must be reduced by the square of the reduction ratio of the length L1 of the arms 3a and 3b. For example, L1 = 3 mm to L2
= 2 mm, W1 = 250 μm to W2
= 111 μm. However, the width W of the arm is required to be 200 μm or more at least in order to maintain the quality as a crystal unit.
When the thickness is less than μm, the formation widths of the excitation electrodes 5a and 5b are also narrowed, so that the electric field efficiency is lowered, and the equivalent resistance (R1) is increased by that, and the crystal oscillator as the final product is obtained. Was also a factor that deteriorates the quality of. In addition, since it is difficult to maintain the processing accuracy for forming the width W2 of the arm portions 13a and 13b narrow and to secure sufficient strength of the processed arm portion, as a result, the crystal vibrating piece is downsized. There was a limit to the change.

【0010】そこで、本発明の目的は、腕部の幅を狭く
することなく小型化を達成することのできる音叉型水晶
振動片を提供することにある。
Therefore, an object of the present invention is to provide a tuning-fork type crystal vibrating piece which can be miniaturized without narrowing the width of the arm portion.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る音叉型水晶振動片は、基部
と、この基部から延びる一対の腕部とを備えた音叉型水
晶振動片において、前記各腕部に貫通孔が設けられてい
ることを特徴とする。
In order to solve the above-mentioned problems, a tuning-fork type crystal vibrating piece according to claim 1 of the present invention comprises a tuning-fork type quartz crystal having a base and a pair of arms extending from the base. In the vibrating piece, a through hole is provided in each of the arm portions.

【0012】この発明によれば、励振電極が形成された
各腕部に貫通孔を設けたことによって、腕部のバネ定数
を小さくすることができる。そのために、水晶振動片の
腕部の幅を狭くすること無く腕部の長さを縮小するだけ
で所定の振動周波数が得られることになり、水晶振動片
全体の小型化が達成される。また、腕部の幅を狭くしな
くても良いので、励振電極の形成面が広くなり等価抵抗
(R1)を低く抑えることができると共に、腕部の加工
精度の維持や強度を確保することができる。
According to the present invention, the spring constant of the arm portion can be reduced by providing the through hole in each arm portion on which the excitation electrode is formed. Therefore, a predetermined vibration frequency can be obtained only by reducing the length of the arm portion of the crystal vibrating piece without narrowing the width of the arm portion of the crystal vibrating piece, and the crystal vibrating piece as a whole can be miniaturized. Further, since it is not necessary to reduce the width of the arm portion, the surface on which the excitation electrode is formed can be widened, the equivalent resistance (R1) can be suppressed low, and the processing accuracy and strength of the arm portion can be maintained. it can.

【0013】本発明の請求項2に係る音叉型水晶振動片
は、基部と、この基部から延びる一対の腕部とを備えた
音叉型水晶振動片において、前記各腕部に貫通孔を設け
ると共に、該貫通孔の内側面に励振電極を形成したこと
を特徴とする。
A tuning fork type crystal vibrating piece according to a second aspect of the present invention is a tuning fork type crystal vibrating piece having a base portion and a pair of arm portions extending from the base portion, and a through hole is provided in each of the arm portions. An excitation electrode is formed on the inner surface of the through hole.

【0014】この発明によれば、貫通孔の内側面に励振
電極を形成したことによって、水晶結晶の分極方向(X
軸方向)と平行に電界が作用するので、電界効率が上が
り、等価抵抗(R1)が低く抑えられる。また、振動に
よる歪みが集中する貫通孔に励振電極が形成されている
ので、R1をさらに低減させることができる。
According to the present invention, since the excitation electrode is formed on the inner surface of the through hole, the polarization direction (X
Since the electric field acts parallel to the (axial direction), the electric field efficiency is increased and the equivalent resistance (R1) is suppressed low. Further, since the excitation electrode is formed in the through hole where the strain due to vibration is concentrated, R1 can be further reduced.

【0015】本発明の請求項3に係る発明は、請求項1
又は2記載の音叉型水晶振動片において、前記貫通孔
が、各腕部の基端部近傍に形成されたことを特徴とす
る。
The invention according to claim 3 of the present invention is claim 1
Alternatively, in the tuning-fork type crystal vibrating piece described in 2, the through hole is formed in the vicinity of the base end portion of each arm portion.

【0016】この発明によれば、振動時の歪みが最大と
なる腕部の基端部に貫通孔を設けたことによって、振動
周波数を最も効果的に低下させることができる。このた
め、少ない貫通孔で水晶振動片の小型化を図ることがで
きる。
According to the present invention, the vibration frequency can be reduced most effectively by providing the through hole at the base end of the arm that maximizes the strain during vibration. Therefore, the crystal vibrating piece can be downsized with a small number of through holes.

【0017】本発明の請求項4に係る発明は、請求項1
又は2記載の音叉型水晶振動片において、前記貫通孔
が、腕部の基端部から各腕部の長手方向に沿って複数形
成されたことを特徴とする。
The invention according to claim 4 of the present invention is claim 1
Alternatively, in the tuning-fork type crystal vibrating piece described in 2, a plurality of the through holes are formed from the base end portion of the arm portion along the longitudinal direction of each arm portion.

【0018】この発明によれば、腕部の基端部から長手
方向に沿って複数の貫通孔を設けたことで、バネ定数を
より小さくすることができる。
According to the present invention, the spring constant can be further reduced by providing the plurality of through holes along the longitudinal direction from the base end portion of the arm portion.

【0019】本発明の請求項5に係る発明は、請求項1
乃至3のいずれかに記載の音叉型水晶振動片において、
前記貫通孔が、円形状又は多角形状であることを特徴と
する。
The invention according to claim 5 of the present invention is claim 1
In the tuning fork type quartz vibrating piece according to any one of 1 to 3,
The through hole has a circular shape or a polygonal shape.

【0020】この発明によれば、前記貫通孔の形状を円
形に設定する場合は、比較的容易に孔あけ加工を行うこ
とができ、四角形等の角形状にした場合は、内部に設け
る励振電極を形成する向きを水晶結晶の分極方向に合わ
せることができるので、電界効率を有効に高めることが
できる。
According to the present invention, when the shape of the through hole is set to be circular, the boring process can be performed relatively easily, and when the shape of the through hole is set to be rectangular such as a square, the excitation electrode provided inside is formed. Since the direction of forming the crystal can be matched with the polarization direction of the quartz crystal, the electric field efficiency can be effectively increased.

【0021】[0021]

【発明の実施の形態】以下、添付図面に基づいて本発明
に係る音叉型水晶振動片の実施形態を詳細に説明する。
図1は本発明の第1実施形態における水晶振動片の斜視
図、図2(a)は前記水晶振動片のZ軸平面図、図2
(b)は前記水晶振動片をA−A線に沿って切断した断
面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a tuning fork type crystal vibrating piece according to the present invention will be described below in detail with reference to the accompanying drawings.
1 is a perspective view of a crystal vibrating piece according to the first embodiment of the present invention, FIG. 2A is a Z-axis plan view of the crystal vibrating piece, and FIG.
(B) is sectional drawing which cut | disconnected the said quartz-crystal vibrating piece along the AA line.

【0022】図1及び図2に示したように、第1実施形
態に係る水晶振動片21は、電気軸をX軸、機械軸をY
軸、光軸をZ軸とした水晶原石の直交座標系において、
Z軸平面から1°X軸方向に回転させたカット角で板状
に切り出され、音叉形に加工された水晶板である。この
水晶振動片21は、基本的には従来例と同様、図示しな
いケーシング内の電極端子に支持される四角形状の基部
22と、この基部22から平行に延びる一対の腕部23
a,23bとで略U字状に形成され、全体が音叉形状を
なしている。前記基部22は、一対の電極端部26a,
26bを備え、この電極端部26a,26bがケース
(図示せず)の電極端子に接続されると共に、この基部
22で水晶振動片21を片持支持する構造である。
As shown in FIGS. 1 and 2, in the crystal vibrating piece 21 according to the first embodiment, the electric axis is the X axis and the mechanical axis is the Y axis.
In the orthogonal coordinate system of the rough crystal with the axis and the optical axis as the Z axis,
It is a crystal plate that is cut into a plate shape at a cut angle rotated by 1 ° from the Z-axis plane in the X-axis direction and processed into a tuning fork shape. This quartz crystal vibrating piece 21 is basically similar to the conventional example, and a rectangular base portion 22 supported by an electrode terminal in a casing (not shown) and a pair of arm portions 23 extending in parallel from the base portion 22.
a and 23b are formed in a substantially U-shape, and the entire shape is a tuning fork. The base portion 22 includes a pair of electrode end portions 26a,
26b, the electrode ends 26a and 26b are connected to the electrode terminals of the case (not shown), and the base 22 supports the crystal vibrating piece 21 in a cantilever manner.

【0023】前記腕部23a,23bは、基部22から
一定の隙間を空けて平行に延び、各腕部23a,23b
の表面及び裏面には極性の異なる励振電極25a,25
bが形成されている。この励振電極25a,25bは、
腕部23a,23bの基端部24から長手方向に沿って
中央部付近まで形成されるが、この励振電極25a,2
5bを貫通するようにして、略正方形の貫通孔27a,
27bが4つずつ並設されている。これらの貫通孔27
a,27bは、腕部23a,23bが振動するときのバ
ネ定数を小さくする目的で形成されるもので、歪み率が
最大となる基端部24付近から前記各腕部23a,23
bの長手方向に沿って等間隔に形成され、長手方向に4
つが均等配置される。各貫通孔27a,27bの大きさ
はいずれも同一であり、また左右の貫通孔27a,27
bの開設位置も同じである。本実施形態では、一定の動
作仕様を満たすために、後述する設計条件を元にシミュ
レーションによって各部のサイズを求めた。
The arm portions 23a, 23b extend in parallel from the base portion 22 with a certain gap therebetween, and each arm portion 23a, 23b is extended.
The excitation electrodes 25a, 25 having different polarities on the front and back surfaces of the
b is formed. The excitation electrodes 25a and 25b are
The excitation electrodes 25a, 2 are formed from the base end portions 24 of the arm portions 23a, 23b to the vicinity of the central portion along the longitudinal direction.
5b so as to penetrate the through hole 27a having a substantially square shape,
Four 27b are arranged side by side. These through holes 27
The a and 27b are formed for the purpose of reducing the spring constant when the arm portions 23a and 23b vibrate, and the arm portions 23a and 23b are provided from the vicinity of the base end portion 24 where the strain rate is maximum.
formed at equal intervals along the longitudinal direction of b, and
One is evenly distributed. The through holes 27a and 27b have the same size, and the left and right through holes 27a and 27b are the same.
The opening position of b is also the same. In the present embodiment, in order to satisfy a certain operation specification, the size of each part was obtained by simulation based on design conditions described later.

【0024】以下、振動周波数=32.768KHzと
したときの設計例による各パラメータの値を示す。 腕部(23a,23b)の長さ L3=1.9mm、 幅 W3=0.22mm、 貫通孔(27a,27b)の個数 各4個 口径 =160μm、 間隔 =30μm なお、水晶振動片21の厚みは振動周波数に関係しない
ので、50〜200μm程度の範囲に設定される。
The value of each parameter according to the design example when the vibration frequency = 32.768 KHz is shown below. Length of arm portions (23a, 23b) L3 = 1.9 mm, width W3 = 0.22 mm, number of through holes (27a, 27b) 4 each Diameter = 160 μm, Interval = 30 μm Thickness of crystal vibrating piece 21 Is not related to the vibration frequency, so is set in the range of about 50 to 200 μm.

【0025】この結果、図9(a)に示した従来の水晶
振動片1では腕部3a,3bの長さがL1=2.3mm
であったものが、図1及び図2に示した本発明の水晶振
動片21ではL3=1.9mmになり、腕部23a,2
3bの長さを約0.4mm短縮することができた。な
お、腕部23a,23bの幅W3は、従来の水晶振動片
1の腕部3a,3bの幅W1と変わらずに0.22mm
のままであり、その他の振動周波数等の特性値にも変更
はない。また、腕部23a,23bの幅W3を十分に広
く確保できたことで、等価抵抗(R1)の増加も抑えら
れることになる。
As a result, in the conventional crystal vibrating piece 1 shown in FIG. 9A, the lengths of the arms 3a and 3b are L1 = 2.3 mm.
In the crystal vibrating piece 21 of the present invention shown in FIGS. 1 and 2, L3 = 1.9 mm, and the arm portions 23a, 2
It was possible to reduce the length of 3b by about 0.4 mm. The width W3 of the arms 23a and 23b is 0.22 mm, which is the same as the width W1 of the arms 3a and 3b of the conventional crystal vibrating piece 1.
No change is made to other characteristic values such as the vibration frequency. In addition, since the width W3 of the arms 23a and 23b can be sufficiently widened, the increase in the equivalent resistance (R1) can be suppressed.

【0026】図3は水晶振動片21に設ける貫通孔27
a,27bの個数と振動周波数との関係を有限要素法の
シミュレータ(ANSYS ED 5.6)を用いて計
算したグラフである。グラフの横軸に示した孔の数は、
それぞれの腕部23a,23bの基端部24の近傍から
腕部23a,23bの長手方向に一列に順に増加させた
ものである。また、貫通孔27a,27bの口径は全て
一辺が160μmの正方形状とし、均等な間隔で形成す
るものとした。このシミュレーション結果で見ると、孔
の数が増えるのにしたがって振動周波数が減少し、4,
5個の所で32.768KHzに近づくことが確認でき
る。ただし、6個以上設けた場合は、逆に振動周波数が
なだらかに上昇している。これは、腕部23a,23b
の先端付近は重りとなって振動周波数を下げる効果があ
るが、この近辺にまで貫通孔27a,27bを設ける
と、重りとして効果が薄れ、バネ定数が逆に大きくなる
ためである。したがって、水晶振動片21の振動周波数
は、腕部23a,23bの基端部24から長手方向の略
中間にかけて4,5個の貫通孔27a,27bを形成し
たときが最も低くなる。
FIG. 3 shows a through hole 27 provided in the crystal vibrating piece 21.
It is the graph which calculated the relationship between the number of a and 27b and the vibration frequency using the simulator (ANSYS ED 5.6) of the finite element method. The number of holes shown on the horizontal axis of the graph is
The number of arms 23a and 23b is increased in the order from the vicinity of the base end 24 to the lengthwise direction of the arms 23a and 23b. In addition, the diameters of the through holes 27a and 27b are all square shapes with one side of 160 μm, and are formed at equal intervals. According to this simulation result, the vibration frequency decreases as the number of holes increases.
It can be confirmed that it approaches 32.768 KHz at 5 points. However, when six or more are provided, on the contrary, the vibration frequency gently increases. This is the arm 23a, 23b
This is because the vicinity of the tip becomes a weight and has the effect of lowering the vibration frequency, but if the through holes 27a and 27b are provided even in the vicinity of this, the effect as a weight becomes weaker and the spring constant increases conversely. Therefore, the vibration frequency of the crystal vibrating piece 21 is lowest when the four or five through holes 27a and 27b are formed from the base end portion 24 of the arm portions 23a and 23b to approximately the middle in the longitudinal direction.

【0027】図4(a)は本発明の第2実施形態の水晶
振動片31のZ軸平面図、同じく図4(b)は前記水晶
振動片31をB−B線に沿って切断した断面図である。
本例の水晶振動片31は、前記水晶振動片21と同様
に、四角形状の基部32と、この基部32から平行に延
びる一対の腕部33a,33bとで略U字状に形成さ
れ、この腕部33a,33bの表裏面に形成された励振
電極35a,35bを貫通するようにして、複数の貫通
孔37a,37bが形成されるが、これらの貫通孔37
a,37bの形状は円形のものである。この円形の貫通
孔37a,37bも前記実施形態と同様、歪み率が最大
となる基端部34付近から前記各腕部33a,33bの
長手方向に沿って等間隔に形成され、長手方向に4つが
均等配置される。各貫通孔37a,37bの大きさはい
ずれも同一であり、また左右の貫通孔37a,37bの
開設位置も同じである。
FIG. 4A is a Z-axis plan view of the crystal vibrating piece 31 of the second embodiment of the present invention, and FIG. 4B is a sectional view of the crystal vibrating piece 31 taken along the line BB. It is a figure.
Like the crystal vibrating piece 21, the crystal vibrating piece 31 of the present example is formed in a substantially U-shape with a square base 32 and a pair of arms 33a and 33b extending in parallel from the base 32. A plurality of through holes 37a and 37b are formed so as to penetrate the excitation electrodes 35a and 35b formed on the front and back surfaces of the arm portions 33a and 33b.
The shapes of a and 37b are circular. The circular through-holes 37a and 37b are also formed at equal intervals along the longitudinal direction of the arm portions 33a and 33b from the vicinity of the base end portion 34 where the strain rate is maximum, as in the above-described embodiment, and the circular through holes 37a and 37b are 4 One is evenly distributed. The through holes 37a and 37b have the same size, and the left and right through holes 37a and 37b have the same opening position.

【0028】この実施形態における水晶振動片31につ
いて、前記第1実施形態の水晶振動片21と等価な特性
を得るために、前記貫通孔37a,37bの個数及び大
きさをシミュレーションによって求めた。その結果、貫
通孔37a,37bの直径は180μm、基端部34か
ら各腕部33a,33bの長手方向に沿って約20μm
間隔で4つを等間隔に設けることによって前記水晶振動
片21と等価な特性が得られることが確認できた。な
お、貫通孔37a,37b以外の腕部33a,33bの
長さL4及び幅W4の形状及び大きさは前記第1実施形
態の水晶振動片21と同じである。
With respect to the crystal vibrating piece 31 in this embodiment, the number and size of the through holes 37a and 37b were obtained by simulation in order to obtain characteristics equivalent to those of the crystal vibrating piece 21 in the first embodiment. As a result, the diameters of the through holes 37a and 37b are 180 μm, and about 20 μm from the base end portion 34 along the longitudinal direction of the arm portions 33a and 33b.
It has been confirmed that by equipping four at equal intervals, characteristics equivalent to those of the crystal vibrating piece 21 can be obtained. The shape and size of the length L4 and the width W4 of the arm portions 33a and 33b other than the through holes 37a and 37b are the same as those of the quartz crystal vibrating piece 21 of the first embodiment.

【0029】上記第1実施形態及び第2実施形態におけ
る貫通孔27a,27b及び37a,37bの大きさに
よる周波数変化のシミュレーションの結果を図5に示
す。正方形の貫通孔27a,27b及び円形の貫通孔3
7a,37bは、内径寸法が100μm近辺では両者と
も振動周波数が約46KHzで変わらない。また、内径
寸法が大きくなるにしたがって両者とも徐々に振動周波
数が下降し始めるが、正方形の貫通孔27a,27bの
方が急勾配で下がる一方、円形の貫通孔37a,37b
の方は下降曲線がなだらかである。小型化を優先する場
合には振動周波数が下がりやすい四角形の貫通孔27
a,27bの方が適しているが,微細加工の容易さでは
円形の貫通孔37a,37bが適している。このため、
貫通孔の形状は設計時点で必要とされる水晶振動片のサ
イズと周波数精度に応じて適宜に選択される。
FIG. 5 shows the result of the simulation of the frequency change depending on the size of the through holes 27a, 27b and 37a, 37b in the first and second embodiments. Square through holes 27a and 27b and circular through hole 3
The vibration frequencies of 7a and 37b are about 46 KHz and do not change when the inner diameter is around 100 μm. Further, as the inner diameter increases, the vibration frequencies of both of them gradually start to drop, but the square through holes 27a and 27b drop steeperly, while the circular through holes 37a and 37b.
The descending curve is gentler for. When the miniaturization is prioritized, the rectangular through hole 27 where the vibration frequency is likely to decrease
Although a and 27b are more suitable, circular through holes 37a and 37b are more suitable in terms of ease of fine processing. For this reason,
The shape of the through hole is appropriately selected according to the size and frequency accuracy of the quartz crystal resonator element required at the time of designing.

【0030】図6(a)は本発明の第3実施形態の水晶
振動片41のZ軸平面図、同じく図6(b)は前記水晶
振動片41をC−C線に沿って切断した断面図である。
この実施形態に係る水晶振動片41は、前記第1実施形
態の水晶振動片21と同様に、基端部44の近傍から各
腕部43a,43bの長手方向に沿って、それぞれ4つ
ずつの正方形の貫通孔47a,47bが設けられている
が、これら貫通孔47a,47bの内側面にも励振電極
48a,48bが形成された構成となっている。これら
孔内の励振電極48a,48bは、各腕部43a,43
bの表面側に形成されている励振電極45a,45bか
らそれぞれ連続して延びており、且つ電極端部46a,
46bとも導通している。このように、貫通孔47a,
47bの内側面にまで励振電極48a,48bを形成し
たことによって、図7に示すようなX軸方向に沿った真
直ぐな電界(矢線で示す)が発生することになる。即
ち、図7に示したように、水晶振動片41の貫通孔47
a,47bを断面形状で見た場合、貫通孔47a,47
b内の励振電極48a,48bによって発生した電界の
向き(矢線で示す)と、水晶結晶の分極方向であるX軸
とが平行になっている。これに対して、前記図8及び図
9で示したように、貫通孔を設けずに腕部3a,3bの
表面にのみ励振電極5a,5bを形成した従来の水晶振
動片1では、励振電極5a,5bの電界の向きとX軸方
向に向かう水晶結晶の分極方向が直交している。このこ
とから、貫通孔47a,47bの内側面に励振電極48
a,48bを形成した水晶振動片41の方が電界効率の
点で良好な特性が得られる。また、振動時においては、
歪みが貫通孔47a,47bの周辺に集中するため、さ
らに電界効率が高くなって等価抵抗(R1)の低減化が
図られる。なお、前記第2実施形態で示したような、円
形の貫通孔37a,37bの内部に励振電極を設けても
同様な効果が得られるものである。
FIG. 6A is a Z-axis plan view of a crystal vibrating piece 41 according to a third embodiment of the present invention, and FIG. 6B is a sectional view of the crystal vibrating piece 41 taken along line CC. It is a figure.
The crystal vibrating piece 41 according to this embodiment includes four crystal vibrating pieces 41 in the same manner as the crystal vibrating piece 21 of the first embodiment, from the vicinity of the base end portion 44 along the longitudinal direction of the arm portions 43a and 43b. Although the square through holes 47a and 47b are provided, the excitation electrodes 48a and 48b are also formed on the inner side surfaces of the through holes 47a and 47b. The excitation electrodes 48a and 48b in these holes are provided in the respective arm portions 43a and 43b.
the excitation electrodes 45a and 45b formed on the front surface side of b, respectively, and continuously extending from the excitation electrodes 45a and 45b.
It is also conductive with 46b. In this way, the through holes 47a,
By forming the excitation electrodes 48a and 48b even on the inner surface of 47b, a straight electric field (indicated by an arrow) along the X-axis direction as shown in FIG. 7 is generated. That is, as shown in FIG. 7, the through hole 47 of the crystal vibrating piece 41 is used.
When a and 47b are viewed in cross section, the through holes 47a and 47b
The direction of the electric field (indicated by the arrow) generated by the excitation electrodes 48a and 48b in b is parallel to the X axis that is the polarization direction of the quartz crystal. On the other hand, as shown in FIGS. 8 and 9, in the conventional quartz resonator blank 1 in which the excitation electrodes 5a and 5b are formed only on the surfaces of the arms 3a and 3b without providing the through holes, The directions of the electric fields of 5a and 5b and the polarization direction of the crystal in the X-axis direction are orthogonal to each other. From this, the excitation electrode 48 is formed on the inner surface of the through holes 47a and 47b.
The crystal vibrating piece 41 formed with a and 48b has better characteristics in terms of electric field efficiency. Also, during vibration,
Since the strain is concentrated around the through holes 47a and 47b, the electric field efficiency is further increased and the equivalent resistance (R1) is reduced. The same effect can be obtained by providing the excitation electrodes inside the circular through holes 37a and 37b as shown in the second embodiment.

【0031】上記第1乃至第3実施形態における水晶振
動片21,31,41は、水晶原石から切り出された水
晶板を音叉型に打抜き加工する際に、腕部の貫通孔も同
時に形成することができる。特に隣接する貫通孔の間隔
を狭めて開設したり、貫通孔の大きさを揃えて形成する
必要があることから、パウダービーム加工やエッチング
による抜き加工等の微細加工技術を利用するのが望まし
い。また、第3実施形態のように、腕部43a,43b
に形成された貫通孔47a,47bの内側面に励振電極
48a,48bを形成するには加熱蒸着法やスパッタ法
等によって金属電極膜を形成することができる。
In the crystal vibrating pieces 21, 31, 41 of the first to third embodiments, the through hole of the arm is also formed at the same time when the crystal plate cut out from the crystal rough is punched into a tuning fork shape. You can In particular, it is desirable to use a fine processing technique such as powder beam processing or punching processing by etching, since it is necessary to open the adjacent through holes with a narrow interval or to form the through holes with the same size. In addition, as in the third embodiment, the arm portions 43a and 43b
In order to form the excitation electrodes 48a and 48b on the inner surfaces of the through holes 47a and 47b formed in, the metal electrode film can be formed by a heating vapor deposition method, a sputtering method, or the like.

【0032】なお、上述した実施形態では水晶振動片2
1,41に正方形の貫通孔27a,27b及び47a,
47bを形成した場合について説明したが、設計上規定
される面積比であれば、正方形以外にも長方形や六角
形、八角形のような様々な形状の多角形の貫通孔を形成
することができる。同様に、円形の貫通孔37a,37
bの場合にも真円形以外に様々な形状の楕円形の貫通孔
を形成することができる。ただし、音叉型の水晶振動子
にあっては、双方の腕部23a,23bあるいは33
a,33bの共振現象によって安定した振動を行わせて
いるので、双方のバランスを考慮しなければならない。
このため、腕部23a,23bあるいは33a,33b
に形成する貫通孔は左右均等に配設するのが好ましい。
In the above embodiment, the crystal vibrating piece 2 is used.
1, 41 have square through holes 27a, 27b and 47a,
Although the case where 47b is formed has been described, polygonal through-holes of various shapes such as rectangle, hexagon, octagon, etc. other than square can be formed as long as the area ratio is designed. . Similarly, the circular through holes 37a, 37
Also in the case of b, elliptical through holes of various shapes other than the perfect circle can be formed. However, in the tuning fork type crystal unit, both arm portions 23a, 23b or 33
Since the stable vibration is generated by the resonance phenomenon of a and 33b, it is necessary to consider the balance between the two.
Therefore, the arms 23a, 23b or 33a, 33b
It is preferable that the through-holes formed in 2 are evenly arranged on the left and right.

【0033】[0033]

【発明の効果】以上説明したように、本発明の音叉型水
晶振動片によれば、励振電極が形成された各腕部に貫通
孔を設けたので、腕部のバネ定数を小さくすることがで
きた。そのために、水晶振動片の腕部の幅を狭くするこ
と無く腕部の長さを縮小するだけで所定の振動周波数が
得られることになり、水晶振動片全体の小型化が達成さ
れた。また、腕部の幅を狭くしなくても良いので、励振
電極の面積が広くなり等価抵抗(R1)を低く抑えるこ
とができると共に、腕部の加工精度の維持や強度を確保
することができた。
As described above, according to the tuning-fork type crystal vibrating piece of the present invention, since the through-holes are provided in each arm portion where the excitation electrode is formed, the spring constant of the arm portion can be reduced. did it. Therefore, a predetermined vibration frequency can be obtained only by reducing the length of the arm portion of the crystal vibrating piece without narrowing the width of the arm portion of the crystal vibrating piece, and the miniaturization of the entire crystal vibrating piece is achieved. Further, since it is not necessary to narrow the width of the arm portion, the area of the excitation electrode is widened, the equivalent resistance (R1) can be suppressed low, and the machining accuracy of the arm portion can be maintained and the strength can be secured. It was

【0034】また、貫通孔の内側面に励振電極を形成し
た場合には、水晶結晶の分極方向(X軸方向)と平行に
電界が掛かるので、電界効率が上がり、等価抵抗(R
1)が低く抑えられる。また、振動による歪みが集中す
る貫通孔に励振電極が形成されているので、R1をさら
に低減することができる。
Further, when the excitation electrode is formed on the inner surface of the through hole, an electric field is applied in parallel with the polarization direction (X-axis direction) of the quartz crystal, so that the electric field efficiency is increased and the equivalent resistance (R
1) can be kept low. Further, since the excitation electrode is formed in the through hole where the strain due to vibration is concentrated, R1 can be further reduced.

【0035】さらに、振動時の歪みが最大となる腕部の
基端部に貫通孔を設けたことによって、振動周波数を最
も効果的に低下させることができる。このため、少ない
貫通孔で水晶振動片の小型化を図ることができる。ま
た、腕部の基端部から長手方向に沿って複数の貫通孔を
一定間隔ごとに設けたので、バネ定数をより小さくする
ことができた。
Furthermore, the vibration frequency can be most effectively reduced by providing the through hole at the base end portion of the arm portion that maximizes the strain during vibration. Therefore, the crystal vibrating piece can be downsized with a small number of through holes. Further, since the plurality of through holes are provided at regular intervals along the longitudinal direction from the base end portion of the arm portion, the spring constant can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る音叉型水晶振動片の第1実施形態
を示す斜視図である。
FIG. 1 is a perspective view showing a first embodiment of a tuning-fork type crystal vibrating piece according to the present invention.

【図2】上記音叉型水晶振動片の平面図及び断面図であ
る。
FIG. 2 is a plan view and a cross-sectional view of the tuning fork type crystal vibrating piece.

【図3】上記音叉型水晶振動片に設ける貫通孔の個数と
振動周波数との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the number of through holes provided in the tuning fork type quartz vibrating piece and the vibration frequency.

【図4】本発明に係る音叉型水晶振動片の第2実施形態
を示す平面図及び断面図である。
FIG. 4 is a plan view and a cross-sectional view showing a second embodiment of a tuning fork type crystal vibrating piece according to the present invention.

【図5】貫通孔の形状及び内径寸法と振動周波数との関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between the shape and inner diameter of the through hole and the vibration frequency.

【図6】本発明に係る音叉型水晶振動片の第3実施形態
を示す平面図及び断面図である。
6A and 6B are a plan view and a cross-sectional view showing a third embodiment of a tuning-fork type crystal vibrating piece according to the invention.

【図7】上記図6の音叉型水晶振動片のD−D線に沿っ
た断面図である。
7 is a cross-sectional view of the tuning-fork type crystal vibrating piece of FIG. 6 taken along the line D-D.

【図8】従来の音叉型水晶振動片の一例を示す斜視図で
ある。
FIG. 8 is a perspective view showing an example of a conventional tuning-fork type crystal vibrating piece.

【図9】上記音叉型水晶振動片とこれを縮小した音叉型
振動片の平面図である。
FIG. 9 is a plan view of the tuning fork type quartz vibrating piece and a reduced version of the tuning fork type vibrating piece.

【図10】上記図9の音叉型水晶振動片をE−E線に沿
って切断した断面図である。
10 is a cross-sectional view of the tuning-fork type crystal vibrating piece of FIG. 9 taken along line EE.

【符号の説明】[Explanation of symbols]

21,31,41 水晶振動片 22,32,42 基部 23a,23b 腕部 33a,33b 腕部 43a,43b 腕部 24,34,44 基端部 25a,25b 励振電極 35a,35b 励振電極 45a,45b 励振電極 27a,27b 貫通孔 37a,37b 貫通孔 47a,47b 貫通孔 48a,48b 孔内の励振電極 21, 31, 41 Crystal resonator element 22, 32, 42 base 23a, 23b arm 33a, 33b arms 43a, 43b arms 24, 34, 44 Base end 25a, 25b excitation electrodes 35a, 35b excitation electrodes 45a, 45b Excitation electrodes 27a, 27b Through hole 37a, 37b through hole 47a, 47b through holes Excitation electrodes in holes 48a, 48b

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基部と、この基部から延びる一対の腕部
とを備えた音叉型水晶振動片において、 前記各腕部に貫通孔が設けられていることを特徴とする
音叉型水晶振動片。
1. A tuning fork type quartz vibrating piece comprising a base portion and a pair of arm portions extending from the base portion, wherein each arm portion is provided with a through hole.
【請求項2】 基部と、この基部から延びる一対の腕部
とを備えた音叉型水晶振動片において、 前記各腕部に貫通孔を設けると共に、該貫通孔の内側面
に励振電極を形成したことを特徴とする音叉型水晶振動
片。
2. A tuning-fork type crystal vibrating piece comprising a base portion and a pair of arm portions extending from the base portion, wherein each of the arm portions is provided with a through hole, and an excitation electrode is formed on an inner surface of the through hole. A tuning-fork type crystal vibrating piece that is characterized.
【請求項3】 前記貫通孔が、各腕部の基端部近傍に形
成されたことを特徴とする請求項1又は2記載の音叉型
水晶振動片。
3. The tuning-fork type crystal vibrating piece according to claim 1, wherein the through hole is formed in the vicinity of the base end of each arm.
【請求項4】 前記貫通孔が、腕部の基端部から各腕部
の長手方向に沿って複数形成されたことを特徴とする請
求項1又は2記載の音叉型水晶振動片。
4. The tuning-fork type quartz vibrating piece according to claim 1, wherein a plurality of the through holes are formed from a base end portion of the arm portion along a longitudinal direction of each arm portion.
【請求項5】 前記貫通孔が、円形状又は多角形状であ
ることを特徴とする請求項1乃至4のいずれかに記載の
音叉型水晶振動片。
5. The tuning-fork type quartz vibrating piece according to claim 1, wherein the through hole has a circular shape or a polygonal shape.
JP2001244186A 2001-08-10 2001-08-10 Tuning fork crystal oscillating piece Pending JP2003060482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001244186A JP2003060482A (en) 2001-08-10 2001-08-10 Tuning fork crystal oscillating piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244186A JP2003060482A (en) 2001-08-10 2001-08-10 Tuning fork crystal oscillating piece

Publications (1)

Publication Number Publication Date
JP2003060482A true JP2003060482A (en) 2003-02-28

Family

ID=19074162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244186A Pending JP2003060482A (en) 2001-08-10 2001-08-10 Tuning fork crystal oscillating piece

Country Status (1)

Country Link
JP (1) JP2003060482A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270335A (en) * 2005-03-23 2006-10-05 River Eletec Kk Tuning fork type flexural vibrator
JP2010103805A (en) * 2008-10-24 2010-05-06 Seiko Epson Corp Bending vibration piece, bending vibrator, and piezoelectric device
JP2012070451A (en) * 2011-12-26 2012-04-05 Seiko Epson Corp Vibration piece and device
WO2014002892A1 (en) * 2012-06-27 2014-01-03 株式会社村田製作所 Tuning-fork-type crystal oscillator
JP2014003711A (en) * 2008-12-27 2014-01-09 Seiko Epson Corp Vibration piece, vibrator, sensor and electronic component
JP2014027480A (en) * 2012-07-26 2014-02-06 Sii Crystal Technology Inc Piezoelectric vibrating piece, piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled timepiece
WO2014119106A1 (en) * 2013-01-29 2014-08-07 株式会社村田製作所 Tuning-fork-type quartz vibrator
WO2014122837A1 (en) * 2013-02-08 2014-08-14 株式会社村田製作所 Tuning-fork-type crystal oscillator
JP2014150422A (en) * 2013-02-01 2014-08-21 Murata Mfg Co Ltd Tuning-fork type crystal vibrator and manufacturing method thereof
JP2015179933A (en) * 2014-03-19 2015-10-08 セイコーエプソン株式会社 Vibration element, gyro sensor element, electronic device, electronic apparatus and moving body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252597A (en) * 1975-10-27 1977-04-27 Citizen Watch Co Ltd Bend type piezoelectric vibrator
JPS55138916A (en) * 1979-04-18 1980-10-30 Seiko Instr & Electronics Ltd Composite crystal resonator
WO2000044092A1 (en) * 1999-01-20 2000-07-27 Seiko Epson Corporation Vibrator and electronic device with vibrator
JP2002261576A (en) * 2001-03-02 2002-09-13 Seiko Epson Corp Vibrating reed, vibrator, oscillator and portable telephone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252597A (en) * 1975-10-27 1977-04-27 Citizen Watch Co Ltd Bend type piezoelectric vibrator
JPS55138916A (en) * 1979-04-18 1980-10-30 Seiko Instr & Electronics Ltd Composite crystal resonator
WO2000044092A1 (en) * 1999-01-20 2000-07-27 Seiko Epson Corporation Vibrator and electronic device with vibrator
JP2002261576A (en) * 2001-03-02 2002-09-13 Seiko Epson Corp Vibrating reed, vibrator, oscillator and portable telephone

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638263B2 (en) * 2005-03-23 2011-02-23 リバーエレテック株式会社 Tuning fork type bending vibrator
JP2006270335A (en) * 2005-03-23 2006-10-05 River Eletec Kk Tuning fork type flexural vibrator
JP2010103805A (en) * 2008-10-24 2010-05-06 Seiko Epson Corp Bending vibration piece, bending vibrator, and piezoelectric device
JP2014003711A (en) * 2008-12-27 2014-01-09 Seiko Epson Corp Vibration piece, vibrator, sensor and electronic component
JP2012070451A (en) * 2011-12-26 2012-04-05 Seiko Epson Corp Vibration piece and device
JPWO2014002892A1 (en) * 2012-06-27 2016-05-30 株式会社村田製作所 Tuning fork crystal unit
WO2014002892A1 (en) * 2012-06-27 2014-01-03 株式会社村田製作所 Tuning-fork-type crystal oscillator
JP2014027480A (en) * 2012-07-26 2014-02-06 Sii Crystal Technology Inc Piezoelectric vibrating piece, piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled timepiece
US20150326201A1 (en) * 2013-01-29 2015-11-12 Murata Manufacturing Co., Ltd. Tuning-Fork Type Quartz Vibrator
WO2014119106A1 (en) * 2013-01-29 2014-08-07 株式会社村田製作所 Tuning-fork-type quartz vibrator
US9819328B2 (en) 2013-01-29 2017-11-14 Murata Manufacturing Co., Ltd. Tuning-fork type quartz vibrator
JP2014150422A (en) * 2013-02-01 2014-08-21 Murata Mfg Co Ltd Tuning-fork type crystal vibrator and manufacturing method thereof
WO2014122837A1 (en) * 2013-02-08 2014-08-14 株式会社村田製作所 Tuning-fork-type crystal oscillator
JP2015179933A (en) * 2014-03-19 2015-10-08 セイコーエプソン株式会社 Vibration element, gyro sensor element, electronic device, electronic apparatus and moving body

Similar Documents

Publication Publication Date Title
JP4026074B2 (en) Crystal unit, crystal unit and crystal oscillator
US5311096A (en) KT cut width-extensional mode quartz crystal resonator
US4410827A (en) Mode coupled notched tuning fork type quartz crystal resonator
JP4638263B2 (en) Tuning fork type bending vibrator
JP2003087090A (en) Oscillation piece, transducer, oscillator and electronic equipment
JP2003060482A (en) Tuning fork crystal oscillating piece
JPH06112760A (en) Tortion crystal vibrator
GB1560537A (en) Piezoelectric microresonator
US4716332A (en) Piezoelectric vibrator
KR20020038462A (en) Lame mode quartz crystal resonator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP4411494B2 (en) Crystal oscillator
JP2003273703A5 (en)
JPH07212171A (en) Thickness-shear crystal oscillator
EP0516400A1 (en) Torsional quartz crystal resonator
JP3363457B2 (en) Torsional crystal oscillator
JP2007202210A (en) Crystal unit having flexural mode quartz crystal resonator
US4525646A (en) Flexural mode vibrator formed of lithium tantalate
JP2004120802A (en) Vibration chip, vibrator, oscillator, and electronic device
JP2003273696A (en) Method for manufacturing crystal unit and method of manufacturing crystal oscillator
JPS644370B2 (en)
JP4411492B2 (en) Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment
JPH0810811B2 (en) Structure of piezoelectric resonator for overtone oscillation
JP4411492B6 (en) Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment
JPS644371B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608