JP3363457B2 - Torsional crystal oscillator - Google Patents

Torsional crystal oscillator

Info

Publication number
JP3363457B2
JP3363457B2 JP12148991A JP12148991A JP3363457B2 JP 3363457 B2 JP3363457 B2 JP 3363457B2 JP 12148991 A JP12148991 A JP 12148991A JP 12148991 A JP12148991 A JP 12148991A JP 3363457 B2 JP3363457 B2 JP 3363457B2
Authority
JP
Japan
Prior art keywords
torsional
quartz
axis
present
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12148991A
Other languages
Japanese (ja)
Other versions
JPH04348606A (en
Inventor
宏文 川島
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP12148991A priority Critical patent/JP3363457B2/en
Publication of JPH04348606A publication Critical patent/JPH04348606A/en
Application granted granted Critical
Publication of JP3363457B2 publication Critical patent/JP3363457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は捩り水晶振動子のカット
角と辺比Rzx(厚み/幅)に関する。特に、小型化、高
精度化、耐衝撃性、低廉化の要求の強い腕時計、ポケッ
トベル、ICカードや移動無線等の基準信号源として最
適な新カットと辺比の捩り水晶振動子に関する。 【0002】 【従来の技術】周波数が200kHz〜600kHzの水晶
振動子は、音叉形状した屈曲水晶振動子と縦水晶振動子
が用いられてきた。 【0003】 【発明が解決しようとする課題】しかしながら、従来か
ら使用されている音叉型屈曲水晶振動子は高調波モード
を使用するため、電極形成が複雑で、リード線等の支持
による振動エネルギー損失が多く、その結果、等価直列
抵抗R1 が上昇するなどの課題が残されていた。一方、
縦水晶振動子は、周波数が振動腕の長さに反比例するた
め、600kHz以下の振動子を実現しようとすると、お
のずから、サイズが大きくなり、小型化できないという
課題が残されていた。このようなことから、周波数が2
00kHz〜600kHzで、しかも、超小型で、零温度係
数を有し、化学的エッチング加工が容易な新カットの水
晶振動子が所望されていた。 【0004】 【課題を解決するための手段】本発明は以下の方法で従
来の課題を解決するものである。すなわち、捩り振動モ
ードで振動する水晶振動子で、大略Z板の水晶板から前
記捩り振動子を形成し、振動子の厚みz0 と幅x0 の比
zx(z0 /x0 )を大略1.10に、かつ、長さy0 はx
軸(電気軸)方向に大略一致するように設けることによ
って課題を解決している。 【0005】 【作用】このように、本発明は捩り水晶振動子で、しか
も、大略Z板の水晶板より、辺比Rzxが大略Rzx=1.1
0を有する振動子をエッチング法によって形成すること
により、零温度係数を持った捩り水晶振動子が得られ
る。 【0006】 【実施例】次に、本発明を実施例に基づいて具体的に述
べる。図1は、本発明の捩り水晶振動子1とその座標系
を示す。座標系は原点0、電気軸x、機械軸y、光軸z
からなり、0−xyzを構成している。厚みz0 、幅x
0 、長さy0 から成る捩り水晶振動子1は大略Z板の水
晶板から形成される。ここの大略Z板とは、z軸に垂直
な板を基に、x軸(φ度)、あるいはz軸(θ度)の回
りに約10゜以下の角度を有する水晶板を指す。この大略
Z板は化学的エッチング加工が極めて容易であるため
に、選択される。次に、大略Z板での1次温度係数αが
零となる辺比Rzx=(z0 /x0 )について説明する。 【0007】図2は、本発明の捩り水晶振動子の辺比R
zxをパラメータにしたときのカット角φと1次温度係数
αとの関係である。φ=0がZ板を示すが、辺比Rzx
1.10のとき、α=0となる。φの若干の変化に対してα
も変化するが、Rzxを変化させることにより、α=0に
することができる。例えば、φ=−10゜では Rzx=0.
905 で、一方、φ=10゜ではRzx=1.18であればよい。 【0008】図3は、本発明の捩り水晶振動子の辺比R
zxをパラメータにしたときのカット角θと1次温度係数
αとの関係である。θ=0がZ板を示すが、Rzx=1.10
のとき、α=0となる。θの変化に対してαも変化する
が、φと同様にRzxを変化させることにより、α=0を
得ることができる。例えば、θ=−10゜では Rzx=1.
13で、一方、θ=10゜ではRzx=1.16であればよい。こ
のように、大略Z板の水晶板から捩り水晶振動子を形成
したときには、振動子の辺比Rzxとの関係を十分によく
把握することにより、α=0となる振動子を得ることが
できる。 【0009】なお、ここで辺比Rzxが大略1.10というこ
とは、図2、図3で示したように、Rzxは約0.905 〜1.
18の値をもつことを意味している。図4は、本発明のZ
板水晶板から形成された捩り水晶振動子の周波数温度特
性の一実施例を示す。常温でα=0となり、そのときの
2次温度係数βは約−3.2×10-8/℃2 と屈曲水晶振動
子と同程度の周波数温度特性が得られた。 【0010】図5は、本発明の大略Z板(φ=6.5、θ
=0゜) の水晶板から形成された捩り水晶振動子の周波
数温度特性の他の実施例を示す。図4と同様に優れた周
波数温度特性が得られる。次に、本発明の捩り水晶振動
子を効率よく励振する電極構成について述べる。図6
は、本発明の捩り水晶振動子の電極構成で、音叉形状
(a)とその断面図(b)を示す。音叉型捩り水晶振動
子2の一方の表面には電極3、4が異極になるように配
置されている。また、他方の裏面には電極5、6が配置
され、同じように異極となるように配置されている。そ
して、表裏面の電極は電極3、6が同極となり端子A1
に、電極4、5が同極となり端子B1 に接続されてい
る。端子A1 とB1 の間に交番電圧を印加することによ
り容易に捩り振動を引き起こすことができる。 【0011】図7は、本発明の捩り水晶振動子の電極構
成で、棒形状(a)とその断面図(b)を示す。棒状捩
り水晶振動子7の一方の表面には電極8、9が、他方の
裏面には電極10、11が配置され、電極8、11と電極9、
10は異極となるように配置され、それぞれ電極端子
2 、B2 に接続されている。励振原理は図6と全く同
じである。 【0012】次に、振動子を小型化にできる理由につい
て説明する。本発明の捩り水晶振動子は大略Z板の水晶
板から形成されるので、そのときの周波数定数(f・y
0)はα=0となる音叉形状の場合約83kHz・cm、棒
形状の場合、約170kHz・cmの値なる。この数値は
音叉型屈曲水晶振動子の7.9kHz・cmより大きく、
縦水晶振動子の270kHz・cmより小さく、屈曲振動
と縦振動の間にあり、本発明の捩り水晶振動子は周波数
が200kHz〜600kHz位の範囲で特に効力を発揮す
ることになる。 【0013】 【発明の効果】以上述べたように、本発明の捩り水晶振
動子は次の著しい効果を有する。 (1)大略Z板の水晶板から形成される本捩り水晶振動
子は、辺比Rzxが大略1.10との組み合わせにより、1次
温度係数αが零となるので、優れた周波数温度特性を示
す。 (2)大略Z板の水晶板は、化学的エッチング法によっ
て容易に形成できるので、小型化、薄型化ができる。同
時に、耐衝撃性に優れた振動子が得られる。 (3)1枚の水晶ウェハ上に多数個の振動子を一度にバ
ッチ処理できるので、低廉化が可能である。 (4)周波数定数が基本波の音叉型屈曲水晶振動子と縦
水晶振動子の間にあるので、周波数が200kHz〜600
kHzで特に効力を発揮する。同時に、超小型化が可能
である。 (5)振動子の表裏面に励振電極を配置することによ
り、等価直列抵抗R1の小さい、Q値の高い捩り水晶振
動子が得られる。 (6)音叉形状と棒状形状では周波数定数が異なるため
に、200kHz位の低周波数には音叉形状を、また600
kHz位のより高い周波数には棒状形状を選択すること
により、小型化と同時にR1 の小さい振動子が得られ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cut angle and a side ratio R zx (thickness / width) of a torsional quartz crystal resonator. In particular, the present invention relates to a new cut and side ratio torsional crystal resonator which is optimal as a reference signal source for a wristwatch, a pager, an IC card, a mobile radio, and the like, which are required to be miniaturized, highly accurate, shock resistant, and inexpensive. 2. Description of the Related Art As a quartz oscillator having a frequency of 200 kHz to 600 kHz, a bent quartz oscillator having a tuning fork shape and a vertical quartz oscillator have been used. [0003] However, the tuning fork-type bent quartz crystal resonator conventionally used uses a harmonic mode, so that the formation of electrodes is complicated and vibration energy loss due to the support of a lead wire or the like. many, as a result, problems such equivalent series resistance R 1 increases had been left. on the other hand,
Since the frequency of the vertical crystal resonator is inversely proportional to the length of the vibrating arm, there has been a problem that the size of the vertical crystal resonator is naturally increased to realize a resonator of 600 kHz or less and the size cannot be reduced. Because of this, the frequency is 2
There has been a demand for a new-cut quartz resonator having a frequency of 00 kHz to 600 kHz, a very small size, a zero temperature coefficient, and easy chemical etching. The present invention solves the conventional problems by the following method. That is, the torsional vibrator is formed from a substantially Z-plate quartz crystal vibrating in a torsional vibration mode, and the ratio R zx (z 0 / x 0 ) between the thickness z 0 and the width x 0 of the vibrator is determined. Approximately 1.10 and length y 0 is x
The problem is solved by providing the shaft so as to substantially coincide with the axis (electric axis) direction. As described above, the present invention is a torsional quartz oscillator, and the side ratio R zx is approximately R zx = 1.1 more than the Z plate.
By forming a vibrator having zero by an etching method, a torsional crystal vibrator having a zero temperature coefficient can be obtained. Next, the present invention will be specifically described based on examples. FIG. 1 shows a torsional crystal resonator 1 of the present invention and its coordinate system. Coordinate system is origin 0, electric axis x, mechanical axis y, optical axis z
To form 0-xyz. Thickness z 0 , width x
The torsional quartz oscillator 1 having a length of 0 and a length of y 0 is generally formed of a Z-plate quartz plate. Here, the substantially Z plate refers to a quartz plate having an angle of about 10 ° or less around the x axis (φ degrees) or the z axis (θ degrees) based on a plate perpendicular to the z axis. This Z plate is generally selected because it is very easy to perform chemical etching. Next, a description will be given of the side ratio R zx = (z 0 / x 0 ) at which the first-order temperature coefficient α in the Z plate becomes substantially zero. FIG. 2 shows a side ratio R of the torsional quartz resonator according to the present invention.
This is the relationship between the cut angle φ and the primary temperature coefficient α when zx is used as a parameter. φ = 0 indicates the Z plate, and the side ratio R zx =
In the case of 1.10, α = 0. α for a small change in φ
Α = 0 by changing R zx . For example, when φ = −10 °, R zx = 0.
905 On the other hand, when φ = 10 °, R zx = 1.18 is sufficient. FIG. 3 shows a side ratio R of the torsional quartz resonator according to the present invention.
This is the relationship between the cut angle θ and the primary temperature coefficient α when zx is used as a parameter. θ = 0 indicates the Z plate, but R zx = 1.10
At this time, α = 0. Although α changes with the change of θ, α = 0 can be obtained by changing R zx similarly to φ. For example, when θ = −10 °, R zx = 1.
On the other hand, when θ = 10 °, R zx = 1.16 may be used. As described above, when a torsional crystal resonator is formed from a substantially Z-plate crystal plate, it is possible to obtain a resonator having α = 0 by sufficiently understanding the relationship between the resonator and the side ratio R zx. it can. Here, the fact that the side ratio R zx is approximately 1.10 means that R zx is approximately 0.905 to 1.10 as shown in FIGS.
It has a value of 18. FIG. 4 shows the Z of the present invention.
An example of the frequency-temperature characteristics of a torsional quartz oscillator formed from a sheet quartz plate will be described. Α = 0 at room temperature, and the secondary temperature coefficient β at that time was about −3.2 × 10 −8 / ° C. 2 , which was the same frequency-temperature characteristic as that of the bent quartz resonator. FIG. 5 shows a schematic Z plate (φ = 6.5, θ) of the present invention.
= 0.degree.) Shows another embodiment of the frequency-temperature characteristics of the torsional quartz resonator formed from the quartz plate (= 0.degree.). Excellent frequency temperature characteristics can be obtained as in FIG. Next, an electrode configuration for efficiently exciting the torsional crystal resonator of the present invention will be described. FIG.
Fig. 2 shows an electrode configuration of the torsional quartz crystal resonator according to the present invention, and shows a tuning fork shape (a) and a sectional view (b) thereof. The electrodes 3 and 4 are arranged on one surface of the tuning fork type torsional quartz crystal resonator 2 so as to have different polarities. Further, electrodes 5 and 6 are arranged on the other back surface, and are similarly arranged to have different polarities. In the electrodes on the front and back surfaces, the electrodes 3 and 6 have the same polarity and the terminal A 1
, The electrodes 4 and 5 are connected to the terminal B 1 becomes the same polarity. Can cause easily torsional vibration by applying an alternating voltage between the terminals A 1 and B 1. FIG. 7 shows a rod shape (a) and a sectional view (b) of the electrode configuration of the torsional crystal resonator of the present invention. Electrodes 8 and 9 are arranged on one surface of the rod-shaped torsional quartz oscillator 7 and electrodes 10 and 11 are arranged on the other back surface.
Reference numerals 10 are arranged so as to have different polarities, and are connected to the electrode terminals A 2 and B 2 , respectively. The excitation principle is exactly the same as in FIG. Next, the reason why the size of the vibrator can be reduced will be described. Since the torsional quartz resonator according to the present invention is generally formed of a Z-plate quartz plate, the frequency constant (fy
0 ) is about 83 kHz · cm in the case of a tuning fork where α = 0, and about 170 kHz · cm in the case of a rod shape. This value is larger than 7.9 kHz · cm of the tuning fork type bent quartz oscillator,
It is smaller than 270 kHz · cm of the vertical crystal oscillator, and lies between the bending vibration and the vertical vibration. The torsional crystal oscillator of the present invention is particularly effective when the frequency is in the range of about 200 kHz to 600 kHz. As described above, the torsional quartz resonator according to the present invention has the following remarkable effects. (1) The torsional quartz resonator formed substantially from a Z-plate quartz plate exhibits excellent frequency-temperature characteristics because the primary temperature coefficient α becomes zero when the side ratio R zx is approximately 1.10. . (2) Since the quartz plate, which is roughly a Z plate, can be easily formed by a chemical etching method, the size and thickness can be reduced. At the same time, a vibrator having excellent impact resistance can be obtained. (3) Since a large number of vibrators can be batch-processed on one crystal wafer at a time, the cost can be reduced. (4) Since the frequency constant is between the tuning-fork type bent crystal resonator of the fundamental wave and the vertical crystal resonator, the frequency is from 200 kHz to 600 kHz.
Especially effective at kHz. At the same time, miniaturization is possible. (5) by placing the excitation electrode on the front and back surfaces of the transducer, a small equivalent series resistance R 1, high torsional quartz crystal resonator Q value is obtained. (6) Since the frequency constant is different between the tuning fork shape and the rod-like shape, the tuning fork shape is used at a low frequency of about 200 kHz,
By the higher frequency kHz position selecting a rod shape, a small vibrator of R 1 can be obtained simultaneously with the miniaturization.

【図面の簡単な説明】 【図1】本発明の捩り水晶振動子とその座標系を示す。 【図2】本発明の捩り水晶振動子の辺比Rzxをパラメー
タにしたときのカット角φと1次温度係数αとの関係で
ある。 【図3】本発明の捩り水晶振動子の辺比Rzxをパラメー
タにしたときのカット角θと1次温度係数αとの関係で
ある。 【図4】本発明の捩り水晶振動子の周波数温度特性の一
実施例を示す。 【図5】本発明の捩り水晶振動子の周波数温度特性の他
の実施例を示す。 【図6】本発明の捩り水晶振動子の電極構成で、音叉形
状(a)とその断面図(b)を示す。 【図7】本発明の捩り水晶振動子の電極構成で、棒形状
(a)とその断面図(b)を示す。 【符号の説明】 1 捩り水晶振動子 2 音叉型捩り水晶振動子 3〜6 励振電極 7 棒状捩り水晶振動子 8〜11 励振電極 A1,1 電極端子 A2,2 電極端子 x0 振動部の幅 y0 振動部の長さ z0 振動子の厚み φ,θ カット角 x 電気軸 y 機械軸 z 光軸
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a torsional crystal resonator of the present invention and its coordinate system. FIG. 2 shows the relationship between the cut angle φ and the primary temperature coefficient α when the side ratio R zx of the torsional quartz crystal resonator of the present invention is used as a parameter. FIG. 3 shows the relationship between the cut angle θ and the primary temperature coefficient α when the side ratio R zx of the torsional crystal resonator of the present invention is used as a parameter. FIG. 4 shows an embodiment of the frequency-temperature characteristic of the torsional crystal resonator of the present invention. FIG. 5 shows another embodiment of the frequency-temperature characteristics of the torsional crystal resonator of the present invention. FIG. 6 shows a tuning fork shape (a) and a cross-sectional view (b) of the electrode configuration of the torsional crystal resonator of the present invention. FIG. 7 shows a rod shape (a) and a cross-sectional view (b) of the electrode configuration of the torsional crystal resonator of the present invention. [EXPLANATION OF SYMBOLS] 1 torsional quartz resonator 2 tuning fork type torsional quartz crystal resonator 3-6 excitation electrodes 7 bar-shaped torsional quartz crystal resonator 8-11 excitation electrodes A 1, B 1 electrode terminals A 2, B 2 electrode terminals x 0 vibrations Part width y 0 vibrating part length z 0 vibrator thickness φ, θ cut angle x electric axis y mechanical axis z optical axis

Claims (1)

(57)【特許請求の範囲】 【請求項1】 捩り振動モードで振動する水晶振動子で
あって、 光軸であるz軸に垂直な板を基に、電気軸であるx軸
(φ度)、または、前記光軸であるz軸(θ度)の回り
に、実質的に0°である大略Z板の水晶板からなり、前記水晶 振動子の厚みz0と幅x0の比Rzx(z0/x0)
は、実質的に1.10であり、 前記水晶振動子の長さ方向y0は、電気軸であるx軸方
向に大略一致するように設けたことを特徴とする捩り水
晶振動子。
(57) [Claims 1] A quartz crystal vibrating in a torsional vibration mode
Then , based on a plate perpendicular to the z-axis as the optical axis, substantially 0 ° around the x-axis (φ degrees) as the electric axis or the z-axis (θ degrees) as the optical axis . And a ratio Rzx (z0 / x0) between the thickness z0 and the width x0 of the quartz oscillator.
Is substantially 1.10, and a length direction y0 of the crystal resonator is provided so as to substantially coincide with an x-axis direction which is an electric axis.
JP12148991A 1991-05-27 1991-05-27 Torsional crystal oscillator Expired - Lifetime JP3363457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12148991A JP3363457B2 (en) 1991-05-27 1991-05-27 Torsional crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12148991A JP3363457B2 (en) 1991-05-27 1991-05-27 Torsional crystal oscillator

Publications (2)

Publication Number Publication Date
JPH04348606A JPH04348606A (en) 1992-12-03
JP3363457B2 true JP3363457B2 (en) 2003-01-08

Family

ID=14812433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12148991A Expired - Lifetime JP3363457B2 (en) 1991-05-27 1991-05-27 Torsional crystal oscillator

Country Status (1)

Country Link
JP (1) JP3363457B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193399A (en) 2010-03-16 2011-09-29 Seiko Epson Corp Resonator element, resonator and piezoelectric device
JP2015080013A (en) 2013-10-15 2015-04-23 セイコーエプソン株式会社 Vibrator, oscillator, electronic apparatus and movable body

Also Published As

Publication number Publication date
JPH04348606A (en) 1992-12-03

Similar Documents

Publication Publication Date Title
JP5651822B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
US5311096A (en) KT cut width-extensional mode quartz crystal resonator
JPH06112760A (en) Tortion crystal vibrator
KR20020038462A (en) Lame mode quartz crystal resonator
JP3363457B2 (en) Torsional crystal oscillator
JPS5851687B2 (en) Tuning fork crystal oscillator
US4234812A (en) Thickness-width shear quartz crystal vibrator
JPH05129875A (en) Torsional crystal vibrator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP3749917B2 (en) Manufacturing method of crystal oscillator
JP3135279B2 (en) Torsional crystal oscillator
JP3135286B2 (en) Torsional crystal oscillator
JP3135307B2 (en) Torsional crystal oscillator
JP3176642B2 (en) KT cut crystal unit
JPH0537285A (en) Twist crystal resonator
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof
SU683478A1 (en) Torsional oscillation quartz microresonator
JPH0590877A (en) Tortional crystal resonator
EP0516400A1 (en) Torsional quartz crystal resonator
JP2001237670A (en) Piezoelectric vibrator
JPH05121998A (en) Torsional crystal vibrator
JP4697196B2 (en) Crystal unit and crystal oscillator manufacturing method
JP4697190B2 (en) Manufacturing methods for crystal units and crystal units
JPH05199064A (en) Torsional crystal vibrator
JPH05129873A (en) Breadthwise longitudinal crystal vibrator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9