JPS6210371B2 - - Google Patents

Info

Publication number
JPS6210371B2
JPS6210371B2 JP11650579A JP11650579A JPS6210371B2 JP S6210371 B2 JPS6210371 B2 JP S6210371B2 JP 11650579 A JP11650579 A JP 11650579A JP 11650579 A JP11650579 A JP 11650579A JP S6210371 B2 JPS6210371 B2 JP S6210371B2
Authority
JP
Japan
Prior art keywords
pressure
sensitive
sensitive diaphragm
axis
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11650579A
Other languages
Japanese (ja)
Other versions
JPS5640727A (en
Inventor
Kyuji Sase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denpa Co Ltd
Original Assignee
Tokyo Denpa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denpa Co Ltd filed Critical Tokyo Denpa Co Ltd
Priority to JP11650579A priority Critical patent/JPS5640727A/en
Publication of JPS5640727A publication Critical patent/JPS5640727A/en
Publication of JPS6210371B2 publication Critical patent/JPS6210371B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、水晶振動板を応力検出用の感圧振動
素子として使用した場合の感圧振動板の保持台に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a holder for a pressure-sensitive diaphragm when the quartz crystal diaphragm is used as a pressure-sensitive oscillation element for detecting stress.

近年、応力および温度等の検出センサは、測定
対象の拡大、精度の向上等、特に工業計測の分野
で質,量ともに著しい発展を呈してきた。
In recent years, sensors for detecting stress, temperature, etc. have shown remarkable progress in both quality and quantity, particularly in the field of industrial measurement, such as expanding the range of measurement targets and improving accuracy.

しかし、従来品においては応力や温度といつた
機械的および物理的諸量を電気信号に変換する過
程においてアナログ的に処理するものが多く、こ
のため高い精度を得るには多くの複雑な補正手段
を用いねばならなかつた。
However, in many conventional products, mechanical and physical quantities such as stress and temperature are processed analogously in the process of converting them into electrical signals, and therefore many complex correction methods are required to achieve high accuracy. had to be used.

これに対し、水晶振動板は古くから安定な周波
数を提供する振動体として、無線通信や計時手段
等に広く使用されており、周波数をデイジタル量
として処理することにより、容易に高精度測定を
行なうことができる。
On the other hand, crystal diaphragms have long been widely used in wireless communications and timekeeping as a vibrating body that provides stable frequencies, and by processing frequency as a digital quantity, it is easy to perform high-precision measurements. be able to.

一方、安定な周波数で振動する水晶振動板は、
板面に平行な外部応力を印加することにより、振
動周波数を可変することができる。この応力一周
波数特性を用い、周波数をデイジタル的に処理す
る、いわゆるデイジタル形の応力検出用のセンサ
が実用に供されるようになつてから、伝送路線,
増幅器の特性の変化および電源電圧の変動等によ
る誤差が非常に小さい、高精度の力センサが着目
されるに至つた。
On the other hand, a crystal diaphragm that vibrates at a stable frequency,
The vibration frequency can be varied by applying external stress parallel to the plate surface. Since so-called digital stress detection sensors that digitally process frequencies using this stress-frequency characteristic have been put into practical use, transmission lines,
High-precision force sensors that have very small errors due to changes in amplifier characteristics, fluctuations in power supply voltage, etc. have attracted attention.

しかし、水晶振動板を力センサ、例えば水晶感
圧トランスジユーサとして応用する場合、その性
能の優秀さにもかかわらず、振動板に外部応力を
印加するための応力伝達機構、ならびにその保持
手段が困難なため、上記感圧トランスジユーサの
実用化をを妨げていた。
However, when applying a quartz diaphragm as a force sensor, such as a quartz crystal pressure-sensitive transducer, despite its excellent performance, a stress transmission mechanism for applying external stress to the diaphragm and its holding means are required. This difficulty has hindered the practical application of the pressure-sensitive transducer.

その主な理由は、感圧素子に用いる結晶体とし
ての水晶が異方性でかつ脆性材料のため、水晶振
動板の線熱膨張係数が方向によつて異なり、金属
材料を用いた応力伝達機構との接合が容易でな
く、かつ線熱膨張係数の差による誤差が生じ、ま
た穿孔,研削等の加工性が悪く、塑性変形加工が
不可能などによるものであつた。
The main reason for this is that the crystal used in pressure-sensitive elements is an anisotropic and brittle material, so the coefficient of linear thermal expansion of the crystal diaphragm differs depending on the direction, and the stress transmission mechanism using metal materials This was because it was not easy to join with the metal, errors occurred due to differences in linear thermal expansion coefficients, and the workability of drilling, grinding, etc. was poor, and plastic deformation was impossible.

本発明は上記の問題を解決し、水晶結晶体より
截出し加工して製作した保持台により水晶振動板
を保持し、かつ上記保持台の截出し方向を該振動
板の感圧軸方向と一致させるようにし、さらに上
記保持台の厚さ方向の線熱膨張係数を、保持台取
付部の金属材料と等しくしたものである。
The present invention solves the above problems and holds a quartz diaphragm with a holder manufactured by cutting out a quartz crystal, and the direction of the holder is aligned with the direction of the pressure-sensitive axis of the diaphragm. Furthermore, the coefficient of linear thermal expansion of the holder in the thickness direction is made equal to that of the metal material of the holder mounting portion.

以下、図面によつて詳細に説明する。 A detailed explanation will be given below with reference to the drawings.

第1図は水晶結晶体の結晶軸と、これから截出
される感圧振動板の截出角との関係を示し、矩形
板状の感圧振動板1は、1辺(A辺)をX軸方向
に、これと直角方向の他辺(B辺)をX軸を中心
に角度θでけ回転した方向に截に出される。ここ
で、2は感圧振動板の表,裏に設けた電極、F,
F′は力センサとして測定すべき、(この場合は一
例として圧縮方向の)外部応力を示す。
Figure 1 shows the relationship between the crystal axis of a quartz crystal and the cutting angle of a pressure-sensitive diaphragm cut out from it. direction, and the other side (side B) perpendicular to this is cut in a direction rotated by an angle θ around the X axis. Here, 2 is the electrode provided on the front and back of the pressure-sensitive diaphragm, F,
F′ indicates the external stress (in this case, for example, in the compressive direction) to be measured by the force sensor.

すなわち、このようにして構成された感圧振動
板に外力F,F′を加えるときは、その振動周波
数は外力F,F′の大きさに対応して変化する。
That is, when external forces F and F' are applied to the pressure-sensitive diaphragm constructed in this way, the vibration frequency changes in accordance with the magnitude of the external forces F and F'.

第2図は、この感圧振動板を2個用いて差動的
に動作するようにした感圧トランスジユーサの一
例を示し、3,4は感圧振動板、5は保持台であ
る。この場合、感圧振動板3,4は第1図に示し
た応力F,F′を印加されるべき部分C,Dを保
持台5に適当な手段で接着,固定されている(接
着部分は第2図には上側の感圧振動板3のみに示
す)。
FIG. 2 shows an example of a pressure-sensitive transducer that uses two pressure-sensitive diaphragms to operate differentially, where 3 and 4 are pressure-sensitive diaphragms, and 5 is a holding stand. In this case, the pressure-sensitive diaphragms 3 and 4 are bonded and fixed to the holding table 5 by appropriate means at the parts C and D to which the stresses F and F' shown in FIG. In FIG. 2, only the upper pressure-sensitive diaphragm 3 is shown).

保持台5は1端5Aを外部に固定され、他端5
Bに外力Fpが加えられると、保持台5は外力Fp
によりきわめて微少ではあるが自由端5Bが下方
に屈撓されるため、図示の上側の感圧振動板3に
は矢印Eのように伸長方向,下側の感圧振動板4
には矢印Gのように圧縮方向の応力が加わり、こ
れぞれ振動周波数が反対方向に変化する。すなわ
ち、保持台5は感圧振動板を保持すると共に応力
伝達機構として作用し、感圧振動板3,4は差動
的に動作して振動周波数はそれぞれ正,負方向に
反対に変化するため、両周波数の差周波数をとれ
ば、外部応力に比例した信号出力が得られ、高感
度の感圧トランスジユーサとして作用する。
The holding stand 5 has one end 5A fixed to the outside, and the other end 5A.
When an external force F p is applied to B, the holding table 5 receives the external force F p
As a result, the free end 5B is bent downward, albeit very slightly, so that the upper pressure-sensitive diaphragm 3 shown in the drawing is bent in the extending direction as shown by the arrow E, and the lower pressure-sensitive diaphragm 4
A stress is applied in the compressive direction as shown by arrow G, and the vibration frequencies change in opposite directions. That is, the holding table 5 holds the pressure-sensitive diaphragm and acts as a stress transmission mechanism, and the pressure-sensitive diaphragms 3 and 4 operate differentially, and the vibration frequencies change in opposite directions in the positive and negative directions, respectively. , by taking the difference frequency between the two frequencies, a signal output proportional to the external stress can be obtained, and it acts as a highly sensitive pressure-sensitive transducer.

第3図は、第2図に示した感圧トランスジユー
サを圧力差測定装置として用いた場合の原理説明
図を示し、6は感圧コトランスジユーサ、7,8
はそれぞれ圧力PA,PBなる気体または液体を加
えられたベロー、9は感圧トランスジユーサ6お
よびベロー7,8を取付けるためのフレームであ
る。
FIG. 3 shows a principle explanatory diagram when the pressure-sensitive transducer shown in FIG. 2 is used as a pressure difference measuring device, where 6 is a pressure-sensitive co-transducer, 7,
9 is a frame to which the pressure sensitive transducer 6 and the bellows 7 , 8 are mounted.

この場合、ベロー7,8が全く同一形状のもの
とすれば感圧トランスジユーサ6にはベロー7,
8を通じて加えられた圧力差(PA〜PB)に対応
した応力が作用し、感圧振動板3,4に伸長,圧
縮の各方向の応力が伝達され、各振動周波数の
正,負方向の変化として表われる。
In this case, if the bellows 7 and 8 are of exactly the same shape, the pressure sensitive transducer 6 has the bellows 7 and 8.
Stress corresponding to the pressure difference (P A - P B ) applied through 8 acts, and stress in each direction of expansion and compression is transmitted to the pressure-sensitive diaphragms 3 and 4, and the stress in the positive and negative directions of each vibration frequency is transmitted to the pressure-sensitive diaphragms 3 and 4. It appears as a change in

ここで、感圧トランスジユーサ6に加わる応力
は圧力差であるためきわめて微小なものであり、
これを検出するには、感圧振動板3,4は動作が
安定なことが必要である。従来は感圧トランスジ
ユーサの保持台5には各種の材質のものが用いら
れていたが、いずれもその熱膨張係数が使用温度
範囲で感圧振動板と一致せず、このため周囲温度
のわずかな変化によつて誤差を生じ、動作がきわ
めて不安定なことが避けられなかつた。
Here, the stress applied to the pressure sensitive transducer 6 is extremely small because it is a pressure difference.
To detect this, it is necessary that the pressure-sensitive diaphragms 3 and 4 operate stably. Conventionally, various materials have been used for the holding base 5 of the pressure-sensitive transducer, but the coefficient of thermal expansion of these materials does not match that of the pressure-sensitive diaphragm in the operating temperature range, and therefore It was inevitable that slight changes would cause errors and extremely unstable operation.

本発明においては、従来の感圧トランスジユー
サの動作の不安定なことは、上記のように感圧振
動板と保持台との熱膨張の差に基づくものである
ことを解明し、この欠点を解消するため、感圧ト
ランスジユーサの保持台の熱膨張係数を使用温度
範囲において感圧振動板と同一に保たれるように
したものである。これは、保持台を感圧振動板と
同様に水晶結晶体より截出すと共に、その截出角
を適当にすることにより達成することができる。
In the present invention, we have clarified that the unstable operation of conventional pressure-sensitive transducers is due to the difference in thermal expansion between the pressure-sensitive diaphragm and the holder as described above, and we have solved this drawback. In order to solve this problem, the coefficient of thermal expansion of the holder of the pressure-sensitive transducer is kept the same as that of the pressure-sensitive diaphragm within the operating temperature range. This can be achieved by cutting out the holder from a quartz crystal in the same way as the pressure-sensitive diaphragm and by making the cutting angle appropriate.

すなわち第1図および第2図に明らかなよう
に、 (1) 感圧振動板の外部応力を加えられるA辺方向
と、保持台の感圧振動板保持方向(第2図にお
けるH方向)との熱膨張係数が等しく、 (2) 第3図に示すように、保持台の固定端すなわ
ちフレーム9により保持される保持台端部の厚
さ方向の熱膨張係数が、フレーム9を構成する
鉄材等の線熱膨張係数と等しい。
In other words, as is clear from Figs. 1 and 2, (1) the A side direction of the pressure-sensitive diaphragm to which external stress is applied, and the direction in which the holder holds the pressure-sensitive diaphragm (H direction in Fig. 2); (2) As shown in FIG. 3, the coefficient of thermal expansion in the thickness direction of the fixed end of the holder, that is, the end of the holder held by the frame 9, is the same as that of the iron material, etc. that constitutes the frame 9. is equal to the linear thermal expansion coefficient of

ことが必要である。よつて第4図に示すように、
保持台5の截出方向を、その感圧振動板保持方向
(前記H方向)を感圧振動板と同様に、水晶結晶
体のX軸方向とすることにより、上記の条件(1)が
満足される。
It is necessary. Therefore, as shown in Figure 4,
The above condition (1) is satisfied by setting the extrusion direction of the holding base 5 so that the direction in which the pressure-sensitive diaphragm is held (the above-mentioned H direction) is the X-axis direction of the crystal, similar to the pressure-sensitive diaphragm. be done.

次に条件(2)について説明する。第4図における
X軸を中心とした回転角θ′を変化させた場合、
截出した保持台の厚さ方向の線熱膨張係数は次式
で表わされる。
Next, condition (2) will be explained. When the rotation angle θ' around the X-axis in Fig. 4 is changed,
The coefficient of linear thermal expansion in the thickness direction of the cut out holding base is expressed by the following equation.

αt=13.71−6.23sin2θ′(×10-6/℃) ……(1) すなわち上式より、保持台の厚さ方向の線熱膨
張係数は、θ′=0゜のときの7.48からθ′=90゜
のときの13.7(いずれも×10-6/℃)の範囲で変
化できることがわかる。
α t = 13.71−6.23 sin 2 θ′ (×10 -6 /℃) ...(1) In other words, from the above formula, the linear thermal expansion coefficient in the thickness direction of the holding table is 7.48 when θ′ = 0° It can be seen that it can vary within a range of 13.7 (×10 -6 /°C in both cases) when θ′ = 90°.

これに対し、フレームを構成する金属材料の線
熱膨張係数は、 鉄:11.7×10-6/℃ ニツケル:12.8×10-6/℃ であり、その合金類も同等の範囲にある。よつ
て、保持台の厚さ方向の線熱膨張係数を上記の鉄
と一致させるX軸の回転角θ′は、34゜36′とな
る。この回転角は、保持台の厚み方向であるとこ
ろのY′軸上の線熱膨張係数である。従つて第3
図の実施例に示したように、鉄で構成されたフレ
ームで締付けた場合、保持台の締付方向におい
て、両部材の線熱膨張係数を一致させる回転角で
ある。鉄以外の材料においても(1)式により、保持
台を截出す場合の回転角θ′を可変することによ
り、7.48〜13.7×10-6/℃の範囲で、該保持台の
線熱膨張係数を締付部材の該係数に一致させるこ
とができる。
On the other hand, the linear thermal expansion coefficients of the metal materials that make up the frame are iron: 11.7×10 -6 /°C and nickel: 12.8×10 -6 /°C, and their alloys are also in the same range. Therefore, the rotation angle θ' of the X-axis that makes the coefficient of linear thermal expansion in the thickness direction of the holder match that of the above-mentioned iron is 34°36'. This rotation angle is the linear thermal expansion coefficient on the Y' axis, which is the thickness direction of the holding table. Therefore, the third
As shown in the illustrated embodiment, when the frame is made of iron and is tightened, the rotation angle is such that the linear thermal expansion coefficients of both members match in the tightening direction of the holder. Even for materials other than iron, by varying the rotation angle θ' when cutting out the holder using equation (1), the linear thermal expansion coefficient of the holder can be adjusted within the range of 7.48 to 13.7×10 -6 /°C. can be matched to the coefficient of the tightening member.

一方、感圧振動板の保持方向(又は感圧方向)
であるX軸方向の線熱膨張係数は、上記の回転角
θ′には関係なく一定である。
On the other hand, the holding direction (or pressure-sensitive direction) of the pressure-sensitive diaphragm
The coefficient of linear thermal expansion in the X-axis direction is constant regardless of the rotation angle θ'.

次に、水晶結晶体の線熱膨張係数による熱歪の
様相を、数値例でもつて具体的に説明する。
Next, the aspect of thermal strain caused by the coefficient of linear thermal expansion of a quartz crystal will be specifically explained using numerical examples.

水晶結晶体の3軸方向における各線膨張係数α
は次の通りである。
Each linear expansion coefficient α in the three axial directions of the quartz crystal
is as follows.

α11=α22=13.71×10-6/℃ α33=7.48×10-9/℃ ここで、α11はX軸,α22はY軸,α33はZ軸
の各方向の線膨張係数を示す。
α 11 = α 22 = 13.71×10 -6 /℃ α 33 = 7.48×10 -9 /℃ Here, α 11 is the coefficient of linear expansion in each direction of the X axis, α 22 is the Y axis, and α 33 is the coefficient of linear expansion in each direction of the Z axis. shows.

仮りに、保持台の長手方向をX軸でなくZ軸方
向とした場合、X,Z各軸方向の線熱膨張係数の
差は、6.23×10-6/℃である。保持台の感圧振動
板取付部の距離を10mmとし、100℃の温度変化が
生じたとすれば、保持台の取付部と感圧振動板と
の熱膨張の差は、 6.23×10-6×10(mm)×100(℃) =6.23×10-3mm すなわち、6.23μmもの大きな値となり、これは
水晶のX軸方向の破壊限界値400μST (×10-6)から算出した限界値4μmを越えるもの
で、感圧振動板を破壊することにもなる。よつ
て、保持台の材質を水晶とし水晶結晶体から截出
す場合、結晶軸方向および截出角度を正しくとる
ことが必要である。
If the longitudinal direction of the holding table is set not as the X-axis but in the Z-axis direction, the difference in linear thermal expansion coefficients in the X- and Z-axis directions is 6.23×10 -6 /°C. If the distance between the mounting part of the pressure-sensitive diaphragm on the holder is 10 mm and a temperature change of 100°C occurs, the difference in thermal expansion between the mounting part of the holder and the pressure-sensitive diaphragm is 6.23×10 -6 × 10 (mm) x 100 (℃) = 6.23 x 10 -3 mm In other words, it becomes a large value of 6.23 μm, which is the limit value of 4 μm calculated from the fracture limit value of 400 μST (×10 -6 ) in the X-axis direction of the crystal. If the pressure-sensitive diaphragm is exceeded, it may destroy the pressure-sensitive diaphragm. Therefore, when the holding table is made of quartz and is cut out from a quartz crystal, it is necessary to set the crystal axis direction and the cutting angle correctly.

また保持台は、以上の説明においては2個の感
圧振動板を差動動作させるものとしたが、本発明
は必ずしもこれに限ることなく、1個の感圧振動
板を動作させる場合の保持台にも適用することが
できる。
In addition, in the above explanation, the holding stand is one that differentially operates two pressure-sensitive diaphragms, but the present invention is not necessarily limited to this, and the holding stand is one that differentially operates two pressure-sensitive diaphragms. It can also be applied to tables.

以上詳述したように、感圧振動板の保持台を、
その感圧振動板取付方向を水晶結晶体のX軸方向
となるようにし、かつX軸を中心とした回転角を
選定して、保持台を取付けるフレームを構成する
金属材料と線熱膨張係数を等しくすることによ
り、温度変化による測定誤差を生じるおそれのな
い、高感度かつ動作の安定した感圧トランスジユ
ーサを得ることができる。
As detailed above, the pressure-sensitive diaphragm holding stand is
The mounting direction of the pressure-sensitive diaphragm should be the X-axis direction of the quartz crystal, and the rotation angle around the X-axis should be selected to match the linear thermal expansion coefficient of the metal material that makes up the frame to which the holder is attached. By making them equal, it is possible to obtain a pressure sensitive transducer with high sensitivity and stable operation without the risk of measurement errors due to temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水晶結晶体の結晶軸と感圧振動板の截
出角との関係を示す説明図、第2図は感圧トラン
スジユーサの外形を示す斜視図、第3図は感圧ト
ランスジユーサを圧力差測定装置に用いた状態を
示す説明図、第4図は本発明による水晶結晶体か
ら截出された保持台の截出角と結晶軸との関係を
示す説明図である。 3,4……感圧振動板、5……保持台、9……
保持台取付用フレーム。
Figure 1 is an explanatory diagram showing the relationship between the crystal axis of the quartz crystal and the cutout angle of the pressure-sensitive diaphragm, Figure 2 is a perspective view showing the external shape of the pressure-sensitive transducer, and Figure 3 is the pressure-sensitive transformer. FIG. 4 is an explanatory diagram showing a state in which the diucer is used in a pressure difference measuring device, and FIG. 4 is an explanatory diagram showing the relationship between the cutting angle and the crystal axis of the holding stand cut out from the quartz crystal according to the present invention. 3, 4...pressure-sensitive diaphragm, 5...holding stand, 9...
Frame for mounting the holding stand.

Claims (1)

【特許請求の範囲】[Claims] 1 板面を水晶結晶体のX軸方向に截出され上記
X軸方向に外力が印加されたとき上記外力に応じ
て振動周波数を変化する感圧振動板を保持すると
共に、外部応力の上記感圧振動板への伝達機構と
して作用する保持台において、上記保持台は水晶
結晶体より截出され、かつその截出し時に、上記
保持台の上記感圧振動板保持方向を水晶結晶体の
X軸方向とすると共に、さらにその厚み方向の線
熱膨張係数が上記保持台を固定する外部取付機構
の線熱膨張係数と等しくなるように、上記感圧振
動板保持面となる截出面の水晶結晶体のX軸を中
心とした回転角を選定したことを特徴とする感圧
振動板保持台。
1 Holds a pressure-sensitive diaphragm whose plate surface is cut out in the X-axis direction of the quartz crystal body and changes the vibration frequency in accordance with the external force when an external force is applied in the X-axis direction, and also In the holding stand that acts as a transmission mechanism to the pressure-sensitive diaphragm, the holding stand is cut out from the quartz crystal, and when cutting out, the direction in which the holding stand holds the pressure-sensitive diaphragm is aligned with the X axis of the quartz crystal. The cut-out surface of the quartz crystal that will serve as the pressure-sensitive diaphragm holding surface is adjusted so that the linear thermal expansion coefficient in the thickness direction is equal to the linear thermal expansion coefficient of the external mounting mechanism that fixes the holding base. A pressure-sensitive diaphragm holding stand characterized by having a selected rotation angle around the X-axis.
JP11650579A 1979-09-11 1979-09-11 Holder for pressure sensing diaphpagm Granted JPS5640727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11650579A JPS5640727A (en) 1979-09-11 1979-09-11 Holder for pressure sensing diaphpagm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11650579A JPS5640727A (en) 1979-09-11 1979-09-11 Holder for pressure sensing diaphpagm

Publications (2)

Publication Number Publication Date
JPS5640727A JPS5640727A (en) 1981-04-17
JPS6210371B2 true JPS6210371B2 (en) 1987-03-05

Family

ID=14688793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11650579A Granted JPS5640727A (en) 1979-09-11 1979-09-11 Holder for pressure sensing diaphpagm

Country Status (1)

Country Link
JP (1) JPS5640727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296380A (en) * 1986-06-17 1987-12-23 出原 ツル Manufacture of circular multiposition plug with locking lever and die for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190301950A1 (en) * 2016-06-06 2019-10-03 National University Corporation Nagoya University Wide-range load sensor using quartz resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296380A (en) * 1986-06-17 1987-12-23 出原 ツル Manufacture of circular multiposition plug with locking lever and die for the same

Also Published As

Publication number Publication date
JPS5640727A (en) 1981-04-17

Similar Documents

Publication Publication Date Title
US4096740A (en) Surface acoustic wave strain detector and gage
US4838369A (en) Load cell having digital output
JP3326989B2 (en) Vibrator, adjustment method thereof, and angular velocity sensor
US4175243A (en) Temperature compensated oscillating crystal force transducer systems
US8307521B2 (en) Method for manufacturing acceleration sensing unit
JPS5856425B2 (en) force conversion mechanism
US4439705A (en) Oscillating crystal transducer systems with symmetrical temperature compensator
GB2087558A (en) Pressure transducer of vibrating element type
Smiths et al. Resonant diaphragm pressure measurement system with ZnO on Si excitation
US4258572A (en) Single axis crystal constrained temperature compensated digital accelerometer
JPS6210371B2 (en)
JPS5856428B2 (en) Pressure sensor using a crystal oscillator
US3600614A (en) Force transducer with elongate vibrating member
JPS60186725A (en) Pressure sensor
JPH10260091A (en) Load sensor free from force point
US2472714A (en) Piezoelectric sound pressure microphone
JPS59217374A (en) Semiconductor strain converter
JP2008076075A (en) Absolute pressure sensor
JPS6033056A (en) Acceleration sensor
JPS596370B2 (en) force conversion mechanism
JPS6333144Y2 (en)
JPS6110197Y2 (en)
JPS6333145Y2 (en)
JPS62211526A (en) Mechanism for receiving force or pressure having split leaf spring so that bending moment is not generated
JPS5856422B2 (en) force conversion mechanism