JPS6110197Y2 - - Google Patents

Info

Publication number
JPS6110197Y2
JPS6110197Y2 JP7613381U JP7613381U JPS6110197Y2 JP S6110197 Y2 JPS6110197 Y2 JP S6110197Y2 JP 7613381 U JP7613381 U JP 7613381U JP 7613381 U JP7613381 U JP 7613381U JP S6110197 Y2 JPS6110197 Y2 JP S6110197Y2
Authority
JP
Japan
Prior art keywords
strain
vibrator
strain gauge
gauge
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7613381U
Other languages
Japanese (ja)
Other versions
JPS57188108U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7613381U priority Critical patent/JPS6110197Y2/ja
Publication of JPS57188108U publication Critical patent/JPS57188108U/ja
Application granted granted Critical
Publication of JPS6110197Y2 publication Critical patent/JPS6110197Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、加えられた歪に対応して変化するゲ
ージの固有振動数を検出し、該ゲージに作用して
いる歪量を測定する水晶歪ゲージに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal strain gauge that detects the natural frequency of a gauge that changes in response to applied strain and measures the amount of strain acting on the gauge.

第1図は、このような水晶歪ゲージを使用した
従来例の構成説明図であり、図中、1は支持体、
2は被測定圧の導入口、3は導入された圧力に応
じて伸縮するベロー、4は中央部に所定に凹部を
有し例えば板バネでなる起歪体、5は該起歪体の
略中央部に接着された水晶歪ゲージ、6,6′は
起歪体5の両端を夫々支持体1およびベロー3へ
の締結させる例えばネジでなる締結体、7,7′
は水晶歪ゲージ5を起歪体4に接着させる接着体
である。また、第2図および第3図は、上記水晶
歪ゲージ5周辺の拡大図であり、夫々水晶歪ゲー
ジ5に歪が作用していない状態と作用している状
態を示している。第2図および第3図において、
第1図と同一記号は同一意味をもたせて使用しこ
こでの説明は省略する。また、5a,5bは水晶
歪ゲージ5の中心軸に対して対称的に設けられた
長尺状に形成されている振動部、5c,5dは該
振動部5a,5bの両端を夫々結合させている結
合部であり、該結合部5c,5dと上記振動部5
a,5bがロの字形に結合されて水晶ゲージ5を
構成している。
FIG. 1 is an explanatory diagram of the configuration of a conventional example using such a crystal strain gauge, and in the figure, 1 is a support;
2 is an inlet for the pressure to be measured; 3 is a bellows that expands and contracts according to the introduced pressure; 4 is a strain-generating body having a predetermined recess in the center and made of a plate spring, for example; and 5 is an abbreviation of the strain-generating body. Crystal strain gauges 6 and 6' glued to the central part are fasteners 7 and 7', for example screws, for fastening both ends of the strain body 5 to the support 1 and the bellows 3, respectively.
is an adhesive body that adheres the crystal strain gauge 5 to the strain body 4. Further, FIGS. 2 and 3 are enlarged views of the area around the crystal strain gauge 5, showing a state where no strain is acting on the crystal strain gauge 5 and a state where strain is acting, respectively. In Figures 2 and 3,
The same symbols as in FIG. 1 are used with the same meaning, and the explanation here will be omitted. Furthermore, 5a and 5b are long vibrating parts that are symmetrically provided with respect to the central axis of the crystal strain gauge 5, and 5c and 5d are vibrating parts that are connected at both ends of the vibrating parts 5a and 5b, respectively. The connecting portions 5c and 5d and the vibrating portion 5
a and 5b are combined in a square shape to form a crystal gauge 5.

上記構成からなる従来の実施例において、導入
口2から被測定圧が導入されていない場合、ベロ
ー3は収縮状態になつており、起歪体4はほぼ水
平状態を保ち水晶歪ゲージ5の周辺は第2図のよ
うになつている。また、導入口2から被測定圧が
導入されると、ベロー3は該被測定圧の圧力に応
じて伸張し、起歪体4へ歪を与える。起歪体4の
歪は、接着体7,7′を介して水晶歪ゲージ5へ
伝達され、該水晶歪ゲージを第2図の状態から第
3図の状態に変移せしめる。第3図において、水
晶歪ゲージ5の起歪体4への固定端部には、振動
部5a,5bと結合部5c,5dとの接続点にお
いて発生する反力R、モーメントMが互いに逆方
向に等しい大きさで作用するため、水晶歪ゲージ
5と起歪体4の結合が理想的でない場合でも、水
晶歪ゲージ5から外部へエネルギーが消費されて
出るようなことはない。而して、起歪体4から水
晶歪ゲージ5へ伝達された歪量は、水晶歪ゲージ
5によつて正確に検出され、該歪量から所定の演
算処理(図示せず)を経て前記被測定圧が測定さ
れる。
In the conventional embodiment having the above configuration, when the pressure to be measured is not introduced from the inlet 2, the bellows 3 is in a contracted state, and the strain body 4 is kept in a substantially horizontal state and moved around the crystal strain gauge 5. is as shown in Figure 2. Furthermore, when a pressure to be measured is introduced from the inlet 2, the bellows 3 expands in response to the pressure to be measured, thereby applying strain to the strain body 4. The strain of the flexure element 4 is transmitted to the crystal strain gauge 5 via the adhesive bodies 7, 7', causing the crystal strain gauge to change from the state shown in FIG. 2 to the state shown in FIG. 3. In FIG. 3, at the fixed end of the crystal strain gauge 5 to the strain body 4, a reaction force R and a moment M generated at the connection points between the vibrating parts 5a, 5b and the coupling parts 5c, 5d are in opposite directions. Therefore, even if the coupling between the crystal strain gauge 5 and the strain body 4 is not ideal, energy will not be consumed and released from the crystal strain gauge 5 to the outside. The amount of strain transmitted from the flexure element 4 to the crystal strain gauge 5 is accurately detected by the crystal strain gauge 5, and is calculated from the strain amount through predetermined calculation processing (not shown). A measurement pressure is measured.

然し乍ら、上記従来例においては、水晶歪ゲー
ジ5が接着体7,7′を用いて起動体4へ接着さ
れており、ベロー3へ導入された被測定圧が起歪
体4を介して水晶歪ゲージ5で間接的に検出され
る構成であるために、水晶歪ゲージ5と起歪体4
との熱膨脹係数の差が原因となつて零点が温度特
性を示して変動したり、水晶歪ゲージ5の水晶自
身がもつ周波数温度特性が上記温度特性に重畳し
たり、更に周囲ふんい気による誤差が加わつたり
する欠点があつた。
However, in the above conventional example, the crystal strain gauge 5 is bonded to the starting body 4 using the adhesive bodies 7 and 7', and the pressure to be measured introduced into the bellows 3 is transmitted through the strain body 4 to cause the crystal strain. Since it is configured to be indirectly detected by the gauge 5, the crystal strain gauge 5 and the strain body 4 are connected to each other.
The zero point may exhibit temperature characteristics and fluctuate due to the difference in thermal expansion coefficient between There were some drawbacks, such as:

本考案は、かかる欠点に鑑みてなされたもので
あり、その目的は、上記欠点が除去され、零点の
温度特性が改善された水晶歪ゲージを提供するに
ある。
The present invention has been devised in view of these drawbacks, and its purpose is to provide a quartz crystal strain gauge in which the above-mentioned drawbacks are eliminated and the temperature characteristics at the zero point are improved.

本考案の特徴は、加えられた歪に対応して変化
するゲージの固有振動数を測定し、該ゲージに作
用している歪を求める水晶歪ゲージ5において、
1個の内側振動子と2個の外側振動子を有する複
合形ゲージを用い、上記外側振動子の1個と上記
内側振動子の夫々の周波数の差を検出して上記歪
を求めることにある。
The feature of the present invention is that the crystal strain gauge 5 measures the natural frequency of the gauge, which changes in response to the applied strain, and determines the strain acting on the gauge.
The purpose is to use a composite gauge having one inner vibrator and two outer vibrators to detect the difference in frequency between one of the outer vibrators and the inner vibrator to obtain the distortion. .

以下、本考案について図を用いて詳細に説明す
る。第4図は、本考案実施例の構成説明図であ
り、図中、第1図と同一記号は同一意味をもたせ
て使用しここでの説明は省略する。また、8は3
個の振動子81〜83が結合部84で結合されて
なる複合形水晶歪ゲージ、9は複合形水晶歪ゲー
ジ8の下端部(振動子81〜83の下端部)を起
歪体4に接着させる接着体、10,10′はリー
ド線、11,11′は発振回路、12は周波数差
検出回路、13はカウンタ、14はリニアライザ
である。更に、第5図は複合形水晶歪ゲージ8周
辺の拡大図であり、図中、第4図と同一記号は同
一意味をもたせて使用しここでの説明は省略す
る。また、振動子81(若しくは82,83)は
振動部81a,81b(若しくは82a,82
b,83a,83b)と小結合部81c,81d
(若しくは82c,82d,83c,83d)か
ら構成されるとともに、上記振動部は上記振動子
の夫々の中心軸に対して夫々対称的に設けられた
2個の長尺状部材で形成されている。更に、上記
小結合部81c,81d(若しくは82c,82
d,83c,83d)はその両端が上記振動部の
夫々の一端と結合されており、上記振動子81
(若しくは82,83)は夫々上記振動部と小結
合部によつてロの字形に構成されている。
Hereinafter, the present invention will be explained in detail using figures. FIG. 4 is an explanatory diagram of the configuration of an embodiment of the present invention. In the figure, the same symbols as in FIG. 1 are used with the same meanings, and the explanation here will be omitted. Also, 8 is 3
9 is a composite crystal strain gauge in which multiple oscillators 81 to 83 are connected by a coupling part 84, and 9 is a composite crystal strain gauge 8 whose lower end (the lower end of the oscillators 81 to 83) is bonded to the strain body 4. 10 and 10' are lead wires, 11 and 11' are oscillation circuits, 12 is a frequency difference detection circuit, 13 is a counter, and 14 is a linearizer. Furthermore, FIG. 5 is an enlarged view of the vicinity of the composite crystal strain gauge 8, and in the figure, the same symbols as in FIG. 4 are used with the same meanings, and the explanation here will be omitted. In addition, the vibrator 81 (or 82, 83) has the vibrating parts 81a, 81b (or 82a, 82
b, 83a, 83b) and small joint parts 81c, 81d
(or 82c, 82d, 83c, 83d), and the vibrating section is formed of two elongated members provided symmetrically with respect to the central axis of each of the vibrators. . Furthermore, the small coupling portions 81c, 81d (or 82c, 82
d, 83c, 83d) have both ends coupled to one end of each of the vibrating parts, and the vibrator 81
(or 82, 83) are each formed into a square shape by the vibrating portion and the small coupling portion.

上記構成からなる本考案の動作について以下説
明する。第4図において、導入口2から被測定圧
が導入されていない場合、ベロー3は収縮状態に
なつており、起歪体4はほぼ水平状態を保ち複合
形水晶歪ゲージ5の各振動子81〜83には同一
の力Foが起歪体4から加えられている。而し
て、各振動子81〜83は同一の歪を受け、各固
有振動数f1〜f3で振動している。また、導入口2
から被測定圧が導入されると、ベロー3は該被測
定圧の圧力に対応して伸張し、起歪体4へ歪を与
える。該歪は、接着体9を介して複合形水晶歪ゲ
ージ8の振動子81〜83へ伝達され、第5図に
示すように振動子81,83には夫々圧縮力
F1,F3を与え振動子82には引張力F2を与え
る。このため、振動子82,83は夫々引張力
F2および圧縮力F3に夫々対応した歪を受けて、
その固有振動数がf2,F3から夫々f2′,f3′(例えば
f2<f2′,f3>f3′となる)への変化する。該固有振
動数f3′,f2′は夫々発振回路11,11′を経由し
たのち、周波数差検出回路12で(f3′−f2′)な
る演算処理が施こされ、その後、周波数読み取り
回路であるカウンタ13およびリニアライズ演算
回路であるリニアライザ14を経て出力Eoとな
つて出力される。而して、該出力Eoから、ベロ
ー3へ導入された前記被測定圧が測定される。
The operation of the present invention having the above configuration will be explained below. In FIG. 4, when the pressure to be measured is not introduced from the inlet 2, the bellows 3 is in a contracted state, and the strain body 4 is kept in a substantially horizontal state, and each vibrator 81 of the composite crystal strain gauge 5 is in a contracted state. The same force Fo is applied from the strain body 4 to 83. Thus, each of the vibrators 81 to 83 receives the same strain and vibrates at each natural frequency f1 to f3 . In addition, inlet 2
When a pressure to be measured is introduced from the bellows 3, the bellows 3 expands in response to the pressure to be measured, thereby applying strain to the strain body 4. The strain is transmitted to the vibrators 81 to 83 of the composite crystal strain gauge 8 via the adhesive 9, and compressive force is applied to the vibrators 81 and 83, respectively, as shown in FIG.
F 1 and F 3 are applied, and a tensile force F 2 is applied to the vibrator 82. Therefore, the vibrators 82 and 83 each have a tensile force.
Under strain corresponding to F 2 and compressive force F 3 , respectively,
The natural frequencies of f 2 and F 3 are f 2 ′ and f 3 ′, respectively (for example,
f 2 < f 2 ′, f 3 > f 3 ′). The natural frequencies f 3 ′ and f 2 ′ pass through oscillation circuits 11 and 11 ′, respectively, and then are subjected to arithmetic processing (f 3 ′−f 2 ′) in the frequency difference detection circuit 12, and then the frequency The signal is output as an output Eo through a counter 13 which is a reading circuit and a linearizer 14 which is a linearization calculation circuit. Thus, the pressure to be measured introduced into the bellows 3 is measured from the output Eo.

以上、詳しく説明したような本考案の実施例に
よれば、複合形水晶歪ゲージ8の振動子81〜8
3の下端部が起歪体4に接着体9によつて接着さ
れている構成であるために、複合形水晶歪ゲージ
8と起歪体4の熱線膨脹係数が異なつている場合
でも、上記振動子81〜83の長手方向には温度
変化に伴なう力が作用するようなことはなく、前
記従来例に比して優れた零点温度特性を示すとい
う利点を有する。また、上記振動子82の固有振
動数と上記振動子83の固有振動数の差を検出す
るような構成であるために、該振動子82と振動
子83へ起歪体4から互いに逆向きの力F2,F3
が作用することと相まつて、前記従来例の場合に
比し2倍の検出感度を有するという利点もある。
更に、上記振動子82の固有振動数と上記振動子
83の固有振動数の差を検出しているために、リ
ニアライザ14におけるリニアライズ演算は一次
の近似式で0.5%の精度を達成できるという利点
も有する。
According to the embodiment of the present invention as described above in detail, the oscillators 81 to 8 of the composite crystal strain gauge 8
Since the lower end of the strain gauge 3 is bonded to the strain body 4 by the adhesive 9, even if the thermal expansion coefficients of the composite crystal strain gauge 8 and the strain body 4 are different, the above-mentioned vibration No force due to temperature change acts in the longitudinal direction of the elements 81 to 83, and this has the advantage of exhibiting superior zero point temperature characteristics compared to the conventional example. Furthermore, since the structure is configured to detect the difference between the natural frequency of the vibrator 82 and the natural frequency of the vibrator 83, the strain body 4 is directed to the vibrator 82 and the vibrator 83 in opposite directions. Force F 2 , F 3
In addition to this, there is also the advantage that the detection sensitivity is twice as high as that of the conventional example.
Furthermore, since the difference between the natural frequency of the vibrator 82 and the natural frequency of the vibrator 83 is detected, the linearization calculation in the linearizer 14 has the advantage that an accuracy of 0.5% can be achieved using a first-order approximation formula. It also has

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構成説明図、第2図および第
3図は、第1図の水晶歪ゲージ周辺の拡大図、第
4図は本考案実施例の構成説明図、第5図は第4
図の複合形水晶歪ゲージ周辺の拡大図である。 1……支持体、2……導入口、3……ベロー、
4……起歪体、5……水晶歪ゲージ、5a,5b
……振動部、5c,5d……結合部、6,6′…
…締結体、7,7′,9……接着体、8……複合
形水晶歪ゲージ、10,10′……リード線、1
1,11′……発振回路、12……周波数差検出
回路、13……カウンタ、14……リニアライ
ザ、81,82,83……振動子、81a,81
b,82a,82b,83a,83b……振動
部、84,81c,81d,82c,82d,8
3c,83d……結合部。
FIG. 1 is an explanatory diagram of the configuration of the conventional example, FIGS. 2 and 3 are enlarged views of the vicinity of the crystal strain gauge in FIG. 1, FIG. 4 is an explanatory diagram of the configuration of the embodiment of the present invention, and FIG. 4
FIG. 2 is an enlarged view of the area around the composite type crystal strain gauge shown in the figure. 1... Support, 2... Inlet, 3... Bellows,
4... Strain body, 5... Crystal strain gauge, 5a, 5b
... Vibrating part, 5c, 5d... Coupling part, 6, 6'...
... Fastening body, 7, 7', 9... Adhesive body, 8... Composite crystal strain gauge, 10, 10'... Lead wire, 1
1, 11'... Oscillation circuit, 12... Frequency difference detection circuit, 13... Counter, 14... Linearizer, 81, 82, 83... Vibrator, 81a, 81
b, 82a, 82b, 83a, 83b... vibrating section, 84, 81c, 81d, 82c, 82d, 8
3c, 83d... joint portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 中心軸に対して対称的に設けられた長尺状の第
1、第2の振動部と該第1、第2の振動部の両端
を夫々結合する第1、第2の小結合部とが夫々ロ
の字形に形成されてなる第1〜第3の振動子と、
該第1〜第3の振動子の夫々の一端に結合される
とともに該第1および第3の振動子を外側に配設
させ第2の振動子を内側に配設させる結合部とを
具備し、前記第1若しくは第3の振動子の固有振
動数と前記第2の振動子の固有振動数の差から加
えられた歪量が測定されることを特徴とする複合
形水晶歪ゲージ。
First and second elongated vibrating parts provided symmetrically with respect to the central axis and first and second small coupling parts that respectively connect both ends of the first and second vibrating parts. first to third vibrators each formed in a square shape;
a coupling portion coupled to one end of each of the first to third vibrators, and disposing the first and third vibrators on the outside and disposing the second vibrator on the inside; . A composite crystal strain gauge, wherein the amount of strain applied is measured from the difference between the natural frequency of the first or third vibrator and the natural frequency of the second vibrator.
JP7613381U 1981-05-26 1981-05-26 Expired JPS6110197Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7613381U JPS6110197Y2 (en) 1981-05-26 1981-05-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7613381U JPS6110197Y2 (en) 1981-05-26 1981-05-26

Publications (2)

Publication Number Publication Date
JPS57188108U JPS57188108U (en) 1982-11-29
JPS6110197Y2 true JPS6110197Y2 (en) 1986-04-02

Family

ID=29871839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7613381U Expired JPS6110197Y2 (en) 1981-05-26 1981-05-26

Country Status (1)

Country Link
JP (1) JPS6110197Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137303A1 (en) * 2009-05-27 2010-12-02 パナソニック株式会社 Physical quantity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137303A1 (en) * 2009-05-27 2010-12-02 パナソニック株式会社 Physical quantity sensor

Also Published As

Publication number Publication date
JPS57188108U (en) 1982-11-29

Similar Documents

Publication Publication Date Title
JPS5856425B2 (en) force conversion mechanism
JP3416887B2 (en) Coupling force transducer and temperature sensor
CN104820113A (en) Quartz dual-beam force-frequency resonator integrated with temperature sensitive unit
JP3129120B2 (en) Acceleration sensor
JPH0640105B2 (en) Combined pair of force transducers
US5097172A (en) Mounting system for transducer
JP2012037415A (en) Pressure sensor
EP0777116B1 (en) Pressure sensor with rectangular layers and transverse transducer
JPS6110197Y2 (en)
JP2732287B2 (en) Acceleration sensor
JPS5856428B2 (en) Pressure sensor using a crystal oscillator
JP4586441B2 (en) Pressure sensor
JPS6333145Y2 (en)
JPS6333144Y2 (en)
Tilmans et al. A novel design of a highly sensitive low differential-pressure sensor using built-in resonant strain gauges
JPS6333146Y2 (en)
JPH02248866A (en) Beam construction for acceleration sensor
JP3277794B2 (en) Acceleration sensor
JPS6344181B2 (en)
JPS5856422B2 (en) force conversion mechanism
JPH067297Y2 (en) Angular velocity sensor
JPS5856406B2 (en) crystal transducer
JPS6342731B2 (en)
JPH0129550Y2 (en)
JPH05322670A (en) Load detector