JPS5850733A - Mass-production apparatus of thin film for solar cell - Google Patents

Mass-production apparatus of thin film for solar cell

Info

Publication number
JPS5850733A
JPS5850733A JP56149045A JP14904581A JPS5850733A JP S5850733 A JPS5850733 A JP S5850733A JP 56149045 A JP56149045 A JP 56149045A JP 14904581 A JP14904581 A JP 14904581A JP S5850733 A JPS5850733 A JP S5850733A
Authority
JP
Japan
Prior art keywords
chamber
room
substrate
door
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56149045A
Other languages
Japanese (ja)
Inventor
Masakazu Ueno
正和 上野
Shinji Nishiura
西浦 真治
Ryoichi Tozono
東園 良一
Hirobumi Fujisawa
藤沢 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56149045A priority Critical patent/JPS5850733A/en
Publication of JPS5850733A publication Critical patent/JPS5850733A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make possible the automatic flow production for thin film by forming a laminated semiconductor thin film on a substrate supplied intermittently from a stocking room and moved continuously and sending intermittently a finished substrate to a rear room for extraction. CONSTITUTION:An intermediate room 13 has the degree of vacuum higher than those of reaction rooms 1, 2, 3. Even if a substrate 10 with a p-layer formed thereupon is moved from the reaction room 1 to the reaction room 2, an atmosphere containing diborane or secons products in the room 1 does not move with the substrate or a conveyor to the room 2 because a reverse air flow at the entrance from the intermediate room 13 to the room 2 prevents it from entering the room 2. With a door 8 closed, material substrates are brought into a fabrication room 15 through an insertion door 9, and with the door 9 closed the room 15 is made vacuous. Then, with the door 8 open the substrate 10 is sent to a front room 4. The finished substrate 10 in a rear room 5 is transferred to an extraction room 16 where, after being returned to normal pressure, it is extracted by opening an airtight door 12.

Description

【発明の詳細な説明】 本発明は太陽電池のための半導体薄膜を連、絖して自動
的に量産する生成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a production apparatus for automatically mass-producing semiconductor thin films for solar cells in series.

例えばアモルファスシリコン(以下a−81と記−f)
を基材とした薄膜太陽電池は太陽エネルギーの利用、あ
るいは照明光の電気への変換のために注目さガ、量−に
よる低価格化が望まれている。薄膜太陽電池の内部電昇
層成にpn接合を利用する場合には、同一基板上に半導
体薄膜のp層、1層または1層を積層しなげねばならな
い。このような各層の生成を順次行う装置として第1図
に示1ものが提案されている。すなわちそわぞt%p層
、1層、n層の生成を行う反応室112.3とその前後
に配置された前室4および後室5よりなる。反応室1,
2゜3を排気管6より真空排気された後、ガス導入管7
より所定の真空度まで反応ガスとしてのシランガスを導
入する。p層の生成を行5反応室1への導入ガスにはシ
ランガスのほかに生成膜の所望の不純物濃度に応じてジ
ボランガスが添加さ11Svs層の生成を行う反応室3
への導入ガスにはシランガスのほかに同様に適量の7オ
スフインガスが添加される。反応室1との間を扉8によ
り気密にしゃ断したのち前室4に挿入扉9より太陽電池
基板10をそう人し、挿入扉を閉じて排気管6より反応
室1と同じ真空度の真空にしまた反応室1内におけると
同じ温度まで基板10を加熱する。次いで基板10をコ
ンベヤ11の作動1′によって反応室l内に送り込む。
For example, amorphous silicon (hereinafter referred to as a-81 and -f)
Thin-film solar cells based on these materials are attracting attention for their use in utilizing solar energy or converting illumination light into electricity, and are desired to be reduced in price depending on volume. When using a pn junction for internal electrophoresis layer formation in a thin film solar cell, a p layer, one layer, or one layer of semiconductor thin films must be laminated on the same substrate. An apparatus shown in FIG. 1 has been proposed as an apparatus that sequentially generates each layer. That is, it consists of a reaction chamber 112.3 in which the p-layer, 1-layer, and n-layer are formed, and a front chamber 4 and a rear chamber 5 arranged before and after the reaction chamber 112.3. reaction chamber 1,
After 2゜3 is evacuated from the exhaust pipe 6, the gas introduction pipe 7
Silane gas as a reaction gas is introduced to a predetermined degree of vacuum. In addition to silane gas, diborane gas is added to the gas introduced into reaction chamber 1, which generates a p-layer, in accordance with the desired impurity concentration of the produced film.
In addition to silane gas, an appropriate amount of 7-osfin gas is added to the gas introduced into the tank. After airtightly shutting off the space between the reaction chamber 1 and the reaction chamber 1 through the door 8, the solar cell substrate 10 is inserted into the front chamber 4 through the insertion door 9, the insertion door is closed, and a vacuum with the same degree of vacuum as the reaction chamber 1 is introduced through the exhaust pipe 6. The substrate 10 is then heated to the same temperature as in the reaction chamber 1. The substrate 10 is then fed into the reaction chamber 1 by actuation 1' of the conveyor 11.

この反応室1内で図示しない電極間に生ずるグロー放電
によるシランガスの分解によってa−81のp層が生成
された基板lOはつづいて反応室2内に送り込まわる。
The substrate 1O, on which the a-81 p layer is generated by decomposition of silane gas due to glow discharge generated between electrodes (not shown) in the reaction chamber 1, is then sent into the reaction chamber 2.

図示の例では反応j11の2倍の広さのある反応室2内
でp層の上に1層が積層された基板10の半数が同時に
反応室3内に送り込まわる。反応室3内でさらKn層が
積層さflp−1−!l構造の*−81薄膜を備えた基
板は同時に後室5に送り込まれる。このような各室間の
基板10の移動の際には各室間の扉8は少なくとも一部
開か4、移動終了後扉8を閉じて各室間のガスの混合を
防ぐ。後室5内に入りた出来上りの基板は冷却後真空を
破って取出し扉12から取り出される。
In the illustrated example, half of the substrates 10, in which one layer is laminated on the p layer, are fed into the reaction chamber 3 at the same time in the reaction chamber 2, which is twice as wide as the reaction j11. A further Kn layer is laminated in the reaction chamber 3 flp-1-! The substrate with the *-81 thin film of l structure is sent into the rear chamber 5 at the same time. When the substrate 10 is moved between the chambers, the doors 8 between the chambers are at least partially opened 4, and after the movement is completed, the doors 8 are closed to prevent gases from mixing between the chambers. The finished substrate that has entered the rear chamber 5 is cooled, breaks the vacuum, and is taken out through the takeout door 12.

a−8i薄膜の生成はコンベヤ11を一定時間停止して
行わわる。第1図の例では反応室2における各基板10
の停止時間、すなわち薄膜生成時間は他の2室1.3に
おけるそ幻の倍であり、従って他の反応條件が同じと′
thば1層の厚さはp層あるいはn層のほぼ2倍である
The production of the a-8i thin film is performed by stopping the conveyor 11 for a certain period of time. In the example of FIG. 1, each substrate 10 in the reaction chamber 2
The stopping time, that is, the thin film formation time, is twice that in the other two chambers 1.3, and therefore, assuming other reaction conditions are the same.
The thickness of the first layer is approximately twice that of the p layer or n layer.

しかしこのような生成装置においては、反応室間で基板
の移動する際、前の反応室のふんい気あるいはその室に
おける生成副産物が基板と共に移動する可能性が太き(
,6富の反応ガス中の不純物の制御が難しい。°この解
決手段として反応室間をし中断後導入管7よりのガス導
入と排気管6よりの真空排気を繰返してガス置換を完全
に行う方法が考えらねるが、放電を発生させないときは
ガス分圧を下げて1−81の成長が全くない状態に保つ
必要があるのでそ□の点からこの方法は望ましくない。
However, in such a generation device, when the substrate is moved between reaction chambers, there is a high possibility that the air from the previous reaction chamber or the production byproducts in that chamber will move with the substrate (
, 6-rich, it is difficult to control impurities in the reaction gas. °As a solution to this problem, I cannot think of a method to completely replace the gas by repeatedly introducing gas from the inlet pipe 7 and evacuation from the exhaust pipe 6 after the reaction chamber is interrupted. Since it is necessary to lower the partial pressure to maintain a state in which there is no growth of 1-81, this method is undesirable from this point of view.

そのほか層厚さの調整のため反応室内の基板の滞留時間
を変えようとしても、他の反応室内の滞留時間の整数倍
にしなげわばならない。
In addition, even if it is attempted to change the residence time of the substrate in the reaction chamber in order to adjust the layer thickness, the residence time must be set to an integral multiple of the residence time in other reaction chambers.

本発明はこのような断続的な移動でなく連続して移動す
る基板上に順次所望の導電形および不純物濃度を有する
半導体薄膜を高い生産効率の下で自動的に生成できる太
陽電池用薄膜□量産装置を提供することを目的とする。
The present invention is a method for mass production of thin films for solar cells that can automatically generate semiconductor thin films having a desired conductivity type and impurity concentration on a substrate that moves continuously, rather than intermittently, with high production efficiency. The purpose is to provide equipment.

この目的は量産装置が、相互間に中間真空排気室を介し
て隣接配置さtそわぞi所定の反応ガスが導入されて真
空において基板上に所定の導電形と不純物員度を有する
半導体薄膜を生成可能の複斂の反応室からなる反応室列
と、その反応室列の一端に隣接し真空排気可能の前室と
、前室に気密にしゃ断可能の扉を介して隣接し基板挿入
のための気密扉を有する真空排気可能の仕込み室と、前
記反応室列の他端に隣接し真空排気可能の後室と、後室
に気密にし中断可能の扉を介して隣接し半導体薄膜が積
層さ七た基板の取り出しのための気密扉を有する真空排
気可能の取り出し室と、前室から各反応室および中間真
空排気室を通じてvk富まで基板を連続的KIR送する
搬送手段と、仕込室から前室へ複数の基板を一括して断
続的に搬送する搬送手段と、後室から取出し室へ複数の
半導体薄膜が積゛層された基板を一括して断続的に搬送
する搬送手段とを備えることによって達成される。
The purpose of this is to arrange mass production equipment adjacent to each other with an intermediate vacuum evacuation chamber between them. A predetermined reaction gas is introduced into the substrate in vacuum to form a semiconductor thin film having a predetermined conductivity type and impurity concentration on the substrate. A reaction chamber row consisting of a multi-contact reaction chamber capable of generating a reaction chamber, a front chamber adjacent to one end of the reaction chamber row that can be evacuated, and a front chamber adjacent to the front chamber through a door that can be hermetically shut off for substrate insertion. a preparation chamber that can be evacuated and has an airtight door, a rear chamber that is adjacent to the other end of the reaction chamber row and that can be evacuated, and a semiconductor thin film that is adjacent to the rear chamber through a door that is airtight and that can be interrupted. A take-out chamber that can be evacuated and has an airtight door for taking out seven substrates, a transport means for continuously KIR-feeding substrates from the front chamber through each reaction chamber and an intermediate vacuum evacuation chamber, and a The present invention includes a transport means for intermittently transporting a plurality of substrates at once to a chamber, and a transport means for intermittently transporting a plurality of substrates on which a plurality of semiconductor thin films are laminated from a rear chamber to a take-out chamber at once. achieved by.

以下図を引用して本発明の実施例について説明する。各
図の第1図と共通の部分には同一の符号が付されている
。第2図に示1よ5にp層、ill、n層の生成のため
の反応室1,2.3の間にそ4ぞわ小さい中間室13が
設けら4ている。中間室13は排気管6によりの真空排
気により反応室1,2.3より高い真空度に保持さ名て
いる。反応* 1,2.3と中間m 13との間ならび
に反応室1と前*4、反応室3と後室50間は壁14で
仕切られているが、気密にしゃ断されてはおらず、その
下を常時コンベヤ11によって移動する基板10が通過
することができ、その付近において反応室1,2.3か
ら中間室13へ、 −ならびに前室4、後室5への気流
が常に存在して−・る。このため反応室1においてp層
が被着した基板IOが反応室2に向け【移動しても、中
間室13から反応m2へ入る際には逆気流に当たるため
、反応室1内のジポラン、あるいは剛生成物を含むふん
囲気が基板あるいはコンベヤとともに反応室2に入るこ
とはなく、反応室2内のふん囲気&1所定の純度に保た
ねる。反応室2から反応室3への移動の際も同様で、反
応i13内のふん囲気を所定のフォスフイン濃度に保つ
ことができる。このようにして前室4から後室5まで基
板はコンベヤ11 Kよっ【連続的に動き、常に所定の
條件でその上に、p層、1層、n層のa−8層gを一層
できる。生成される層厚さは反応室の長さを変えること
だけKよって任意に選定できる。
Embodiments of the present invention will be described below with reference to the drawings. The same parts in each figure as in FIG. 1 are given the same reference numerals. As shown in FIG. 2, a slightly smaller intermediate chamber 13 is provided between the reaction chambers 1 and 2.3 for forming the p-layer, ill-layer, and n-layer. The intermediate chamber 13 is maintained at a higher degree of vacuum than the reaction chambers 1, 2.3 by evacuation through the exhaust pipe 6. Although the walls 14 are used to partition the reaction chambers 1 and 2.3 and the intermediate m 13, the reaction chamber 1 and the front chamber 4, and the reaction chamber 3 and the rear chamber 50, they are not airtightly separated. A substrate 10, which is constantly moved by a conveyor 11 underneath, can pass, in the vicinity of which there is always an air flow from the reaction chambers 1, 2.3 to the intermediate chamber 13 - as well as to the front chamber 4 and the rear chamber 5. -・ru. Therefore, even if the substrate IO on which the p-layer is deposited in the reaction chamber 1 moves toward the reaction chamber 2, when it enters the reaction m2 from the intermediate chamber 13, it will encounter a reverse airflow, so the diporan in the reaction chamber 1 or The ambient air containing rigid products does not enter the reaction chamber 2 together with the substrate or the conveyor, and the ambient air within the reaction chamber 2 is maintained at a predetermined purity. The same goes for the movement from the reaction chamber 2 to the reaction chamber 3, and the atmosphere in the reaction i13 can be maintained at a predetermined phosphine concentration. In this way, the substrates are moved continuously from the front chamber 4 to the rear chamber 5 by the conveyor 11K, and layers A-8G of the p layer, layer 1, and layer n can be layered on top of the substrate under the specified conditions. . The layer thickness produced can be selected arbitrarily by K simply by varying the length of the reaction chamber.

前室より反応室を経て後室に至る基板の移動は前述のよ
うに本発明によって連続的に行うことができるが、前室
への原料基板の仕込み、あるいは後室からの出来上り基
板の取出しのためのコンベヤを停止することがあっては
ならない。本発明はこのために前室の前に仕込み室15
、後室の後に取出し室16を設けている。仕込み室15
と前室の間には気密にしゃ断可能の扉8を有している。
As described above, the movement of the substrate from the front chamber to the rear chamber through the reaction chamber can be carried out continuously according to the present invention. The conveyor shall not be stopped for any reason. For this purpose, the present invention provides a preparation chamber 15 in front of the front chamber.
, a take-out chamber 16 is provided after the rear chamber. Preparation room 15
A door 8 that can be shut off airtight is provided between the front chamber and the front chamber.

先ずこの扉8を閉じ、挿入扉9より例えばカセットに積
重ねた基板を仕込み室15に入れる。次いで挿入扉′9
を閉じて仕込み室15を気密圧し、排気管6より真空排
気して仕込みiii 15を真空にする◎その後扉8を
開いて、例えば押出し装置のような断続的な搬送機によ
り積重ねた基板10を真空にされている前室4内に送り
込み扉8を再びしゃ断する。前室4内では基板lOは図
示しない手段により自動的にコンベヤ11の上に平面状
に並べら1、所定の温度まで加熱されながらコンベヤ1
1 Kよって反応室方向に連続して送り込まわる。後室
5に入った仕上り基板10はある数量溜めて冷却された
後、真空排気さねている取り出し室16へその間の扉8
を開℃・て断続的な搬送機によって送り込む。次(・で
n層を閉じて後室5と取出し室160間を気密にし中断
し、取出し室16の圧力を常圧に戻した後取出し用の気
密扉12を開いて出来上り基板を取り出1゜その後次の
取出しのために取出し扉12を閉じて取出し室16を再
び真空にしておく。この場合、仕込み室あるいは取出し
室の気密閉鎖、真空排気に時間がかかるので、仕込みお
よび取出しの能率も高めるため、第3図に示1よ5に仕
込みiti tsある0曇ま取出し室16を複数設けて
交互に使用してもよ〜・。
First, the door 8 is closed, and the substrates stacked in a cassette, for example, are placed into the preparation chamber 15 through the insertion door 9. Next, insert door '9
◎Then, the door 8 is opened and the stacked substrates 10 are transported by an intermittent conveyor such as an extrusion device. The door 8 is shut off again by feeding into the evacuated front chamber 4. In the front chamber 4, the substrates 10 are automatically arranged in a plane on the conveyor 11 by means not shown, and are heated to a predetermined temperature while being placed on the conveyor 1.
1 K, it is continuously fed in the direction of the reaction chamber. The finished substrates 10 that have entered the rear chamber 5 are stored in a certain quantity and cooled down, and then transferred to the evacuation chamber 16 which is evacuated through the door 8 between them.
It is fed by an intermittent conveyor at an open temperature. Next, close the n layer with () to make the space between the rear chamber 5 and the take-out chamber 160 airtight, and after returning the pressure in the take-out chamber 16 to normal pressure, open the take-out airtight door 12 and take out the finished substrate 1.゜Then, the take-out door 12 is closed for the next take-out, and the take-out chamber 16 is evacuated again.In this case, it takes time to airtightly close the loading chamber or the take-out chamber and to evacuate it, which reduces the efficiency of loading and unloading. In order to increase the temperature, a plurality of loading and unloading chambers 16 shown in FIG. 3 may be provided and used alternately.

図の例では、両側の仕込み室15に積み込まねた基板は
矢印Aの示1よう(交互に前室4に送り込まね、矢印B
の示1工程を経て後室5に入った出来上り基板は矢印C
の示1ように交互に後室5の一方の側に溜めらね、その
側にある一方の取出し室16に送り出される。
In the example shown in the figure, the substrates that have not been loaded into the preparation chambers 15 on both sides are as shown by arrow A (they are not fed into the front chamber 4 alternately,
The finished substrate that has passed through the first step and entered the rear chamber 5 is indicated by arrow C.
As shown in Fig. 1, the liquid is alternately stored in one side of the rear chamber 5 and delivered to one extraction chamber 16 on that side.

以上述べたように、本発明による太陽電池用薄膜量産装
置は断続的に仕込み室から供給される基板を連続的に移
動させながらpn接合ある〜・蚤まpin接合を有する
積層半導体薄膜を基板上に生成し、その際各反応室間に
中間真空排気室を設けて各反応室ふん囲気の混合、汚染
を防止し、出来上り基板も断続的に後室に取出すもので
、これにより太陽電池製造の際の真空反応室内における
積層半導体薄膜の生成が、任意の膜厚比において自動的
流れ生産方式で可能となる。従って本発明は太陽電池の
量産による低価′格化に対して極めて大きな効果を有す
る。
As described above, the solar cell thin film mass production apparatus according to the present invention continuously moves the substrates supplied from the preparation chamber intermittently, and deposits the laminated semiconductor thin films having pn junctions and flea pin junctions on the substrates. During this process, an intermediate evacuation chamber is installed between each reaction chamber to prevent mixing and contamination of the air surrounding each reaction chamber, and the finished substrate is also intermittently taken out to the rear chamber, which allows for the production of solar cells. The production of laminated semiconductor thin films in a vacuum reaction chamber at any desired film thickness ratio is now possible using an automatic flow production method. Therefore, the present invention has an extremely large effect on cost reduction through mass production of solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の太陽電池用a−81膜自動生成装置の一
例の@面断面図、第2図は本発明の一実施例の側面断面
図、第3図は別の実施例の平面断面図である。
FIG. 1 is a sectional view of an example of a conventional A-81 film automatic generation device for solar cells, FIG. 2 is a side sectional view of one embodiment of the present invention, and FIG. 3 is a plane sectional view of another embodiment. It is a diagram.

Claims (1)

【特許請求の範囲】 1)相互間に中間真空排気型を介して隣接配置されそわ
そわ所定の反応ガスが導入さ刺て真空におい1基板上に
所定の導電形と不純物濃度を有する半導体薄膜を生成可
能の複数の反応室からなる反応室列と、皺反応室列の一
端に隣接し真空排気可能の前室と、腋前室に気・密にし
中断可能の扉を介して隣接し基板挿入のための気密扉を
有する真空排気可能の仕込み室と、前記反応室列の他1
1IIK隣接し真空排気可能の後室と該後室に気密和し
中断可能の扉を介して隣接し半導体薄膜が積層さtlを
基板の取り出しのための気密扉を有する真空排気可能の
取出し室と、前記前室から各反応室および中間真空−気
室を通じて後室まで基板を連続的に搬送する搬送手段と
、仕込み室から前室へ複、数の基板を一括して断続的に
搬送する搬送手段と、後室から取出し室へ複数の半導体
薄膜が積層された基板を一括し【断続的に搬送する搬送
手段とを備えたことを特徴とする太陽電池用薄膜量産装
置。 2、特許請求の範囲第1項記載の装置において、中間真
空排気*tり圧力が隣接反応室の圧力より低いことを特
徴とする太陽電池用薄膜量産装置。 3)特許請求の範囲第1項または第2項記載の装置にお
いて、前室に複数の仕込み富が隣接したことを特徴とす
る太陽電池用薄属量慮装置。 4)  ’l’i+許請求の範囲第1項ないし第3項の
いす4かに記載の装置において、後室に複数の取出し室
が隣接したことを特徴とする太陽電池用薄膜量産装置。
[Claims] 1) A semiconductor thin film having a predetermined conductivity type and impurity concentration is produced on one substrate in a vacuum by placing them adjacent to each other through an intermediate vacuum evacuation type and introducing a predetermined reactive gas therebetween. There is a reaction chamber row consisting of multiple reaction chambers, a front chamber adjacent to one end of the wrinkled reaction chamber row that can be evacuated, and an axillary front chamber that is airtight and adjacent through a door that can be interrupted for substrate insertion. A preparation chamber that can be evacuated and has an airtight door for
1IIK Adjacent to the rear chamber, which can be evacuated; and an evacuation chamber, which is adjacent to the rear chamber through a door that can be airtight and interrupted, on which a semiconductor thin film is laminated, and which has an airtight door for taking out the substrate; , a transport means for continuously transporting the substrates from the front chamber to the rear chamber through each reaction chamber and intermediate vacuum/air chamber, and transport means for intermittently transporting a plurality of substrates at once from the preparation chamber to the front chamber. 1. An apparatus for mass production of thin films for solar cells, characterized by comprising: a means for mass-producing thin films for solar cells; and a means for intermittently transporting substrates on which a plurality of semiconductor thin films are stacked in bulk from a rear chamber to a take-out chamber. 2. An apparatus for mass production of thin films for solar cells according to claim 1, characterized in that the intermediate evacuation pressure is lower than the pressure in the adjacent reaction chamber. 3) A thin metal weighing device for a solar cell according to claim 1 or 2, characterized in that the front chamber has a plurality of charging holes adjacent to each other. 4) An apparatus for mass production of thin films for solar cells according to any one of claims 1 to 3, characterized in that a plurality of extraction chambers are adjacent to the rear chamber.
JP56149045A 1981-09-21 1981-09-21 Mass-production apparatus of thin film for solar cell Pending JPS5850733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56149045A JPS5850733A (en) 1981-09-21 1981-09-21 Mass-production apparatus of thin film for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56149045A JPS5850733A (en) 1981-09-21 1981-09-21 Mass-production apparatus of thin film for solar cell

Publications (1)

Publication Number Publication Date
JPS5850733A true JPS5850733A (en) 1983-03-25

Family

ID=15466439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56149045A Pending JPS5850733A (en) 1981-09-21 1981-09-21 Mass-production apparatus of thin film for solar cell

Country Status (1)

Country Link
JP (1) JPS5850733A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182578A (en) * 1983-03-31 1984-10-17 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS59201412A (en) * 1983-04-30 1984-11-15 Agency Of Ind Science & Technol Manufacturing equipment of amorphous semiconductor element
JPS62181032A (en) * 1986-02-06 1987-08-08 株式会社東芝 Top plate for laying patient

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578524A (en) * 1978-12-10 1980-06-13 Shunpei Yamazaki Manufacture of semiconductor device
JPS5678416A (en) * 1979-11-29 1981-06-27 Sumitomo Electric Ind Ltd Preparation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578524A (en) * 1978-12-10 1980-06-13 Shunpei Yamazaki Manufacture of semiconductor device
JPS5678416A (en) * 1979-11-29 1981-06-27 Sumitomo Electric Ind Ltd Preparation of thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182578A (en) * 1983-03-31 1984-10-17 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS59201412A (en) * 1983-04-30 1984-11-15 Agency Of Ind Science & Technol Manufacturing equipment of amorphous semiconductor element
JPS62181032A (en) * 1986-02-06 1987-08-08 株式会社東芝 Top plate for laying patient

Similar Documents

Publication Publication Date Title
US5016562A (en) Modular continuous vapor deposition system
JP2616760B2 (en) Plasma gas phase reactor
JPH09307128A (en) Manufacturing equipment and method of thin film photoelectric transducer
JPH11150249A (en) Forming method of uneven polysilicon layer and substrate treatment device used by the same and semiconductor memory device
JPS6257270B2 (en)
JPH0246670B2 (en)
JPS5850733A (en) Mass-production apparatus of thin film for solar cell
JPH0370367B2 (en)
JPH08195348A (en) Semiconductor device manufacturing equipment
JPS5850734A (en) Mass production apparatus for laminated thin film
JPS59167012A (en) Plasma cvd equipment
JPS6030182A (en) Manufacture of amorphous photovoltaic element
JPH0478137A (en) Heat treatment device system
JP3069682B2 (en) How to clean the reaction chamber
JP2562686B2 (en) Plasma processing device
JP2761579B2 (en) Substrate processing equipment
JPS6030124A (en) Multistage electrode type semiconductor thin-film forming device
JPS61110772A (en) Multi-layer thin film forming device
JPH0677139A (en) Plasma processing device
JP2626705B2 (en) Coating method
JPH09213636A (en) This film forming device
JP2003318425A (en) Method of manufacturing thin film solar battery
JP2656021B2 (en) Deposition film forming equipment
JPS59220918A (en) Vapor phase growing method
JPH05144735A (en) Forming apparatus for semiconductor film