JPS5850734A - Mass production apparatus for laminated thin film - Google Patents

Mass production apparatus for laminated thin film

Info

Publication number
JPS5850734A
JPS5850734A JP14904681A JP14904681A JPS5850734A JP S5850734 A JPS5850734 A JP S5850734A JP 14904681 A JP14904681 A JP 14904681A JP 14904681 A JP14904681 A JP 14904681A JP S5850734 A JPS5850734 A JP S5850734A
Authority
JP
Japan
Prior art keywords
room
reaction
substrate
reaction chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14904681A
Other languages
Japanese (ja)
Inventor
Masakazu Ueno
正和 上野
Shinji Nishiura
西浦 真治
Ryoichi Tozono
東園 良一
Hirobumi Fujisawa
藤沢 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14904681A priority Critical patent/JPS5850734A/en
Publication of JPS5850734A publication Critical patent/JPS5850734A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To always form a laminated thin film under a specified reaction condition by preparing an intermediate pumping room between reaction rooms to prevent the mixture of adjacent reaction room atmospheres. CONSTITUTION:Reaction rooms 1, 2, 3 and an intermediate room 14 are made vacuous with a pumping pipe 6. Since reaction gases are introduced into the reaction rooms 1, 2, 3 through each gas introducing pipe 7, the degree of vacuum of the intermediate room 14 is higher than that of each reaction room. Even if a substrate 10 with a p-layer formed thereupon is moved from the reaction room 1 to the reaction room 2, an atmosphere containing diborane or second products in the room 1 does not move with the substrate or a conveyor 11 into the room 2, because in the spaces between a wall 15 and the conveyor the flow of air exists from the reaction room to the intermediate room, thereby preventing the atmosphere from entering the room 2 from the room 14. Thus, the atmosphere in the room 2 can be maintained at a specified purity. The same is also true for the substrate movement from the reaction room 2 to a reaction room 3, i.e., an atmosphere in the room 3 can be maintained at a specified phosphine concentration.

Description

【発明の詳細な説明】 本発明は、太陽電池用のpn接合を有する半導体薄膜の
ように積層さt1?:異なる性質の薄膜を異なるふん囲
気を有する一連の複数の室において連続して生成する積
層薄膜量産装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for stacking layers such as semiconductor thin films having a pn junction for solar cells. :Relates to a laminated thin film mass production device that continuously produces thin films of different properties in a series of multiple chambers having different ambient atmospheres.

例えばアモルファスシリコン(以下a−8lトY1)を
基材とした薄膜太陽電池は太陽エネルギーの利用、ある
いは照BA光の電気への変換のために注目さ4、量産に
よる低価格化が望まわている。薄膜太陽電池の内部電界
形成にpn接合を利用する場合には、同一基板上に半導
体薄膜のp層、n層または1層を積層しなけわぼたらな
い。このような各層の生成な順次行5装置として第1図
に示すものが提案されている。1なわちそ4ぞゎp層、
1層、n層の生成を行う反応室1,2.3とその前後に
配−さt′l?−前室4および後室5よりなる。反応室
1,2゜3を排気管6より真空排気さt′Iた後、ガス
導入管7より所定の真空度まで反応ガスとしてのシラン
ガスを導入する。p層の生成を行う反応i11への導入
ガスにはシランガスのはかに生成膜の所望の不純物濃度
に応じてジポランガスが添加さワ、一層の生成を行う反
応室3への導入ガスにはシランガスのほかに同様に適量
の2オスフインガスが添加される。反応室1との間を扉
8により気密にしゃ断したのち前室4に挿入扉9より太
陽電池基板10をそう人し、挿入扉を閉じて排気管6よ
り反応室1と同じ真空度の真空にし、また反応室1内に
おけると同じ温度まで基板10を加熱する。次いで基板
10をコンベヤ11によって反応室1内に送り込む。反
応室1内では図示しない電極間に生ずるグルー放電によ
るシランガスの分解によって基板lOの上にa−8iの
p層が被着する。つづいてp層が被着した基板10をフ
ンベヤ11の作動によって反応室2内に送り込む。図示
の例では反応室1の2倍の広さのある反応*2内でp層
の上にシランガスのグー−放電分解による1層が積層さ
4た基板1oの半数が同時に反応室3内に送り込まれる
。反応室3内でさらK11層が積層さ4てp”i−n構
造のa−8i薄属を備えた基板は同時に後室5に送り込
まれる・後室s内に入った出来上りの基板は冷却後真空
を破って取出し扉12から堆り出される。a−81薄膜
の生成はコンベヤ11を一定時間停止して行わゎる。
For example, thin-film solar cells based on amorphous silicon (hereinafter referred to as A-8L and Y1) are attracting attention for their use in utilizing solar energy or converting BA light into electricity. There is. When using a pn junction to form an internal electric field in a thin film solar cell, it is essential to stack a p layer, an n layer, or one layer of semiconductor thin films on the same substrate. The one shown in FIG. 1 has been proposed as such a sequential row 5 device that generates each layer. 1 so 4 p layer,
Reaction chambers 1 and 2.3 in which the 1st and nth layers are formed, and t'l? - Consists of a front chamber 4 and a rear chamber 5. After the reaction chambers 1 and 2.degree. 3 are evacuated through the exhaust pipe 6, silane gas as a reaction gas is introduced through the gas introduction pipe 7 to a predetermined degree of vacuum. Diporane gas is added to the gas introduced into the reaction i11 where the p-layer is formed, depending on the desired impurity concentration of the formed film, and silane gas is added to the gas introduced into the reaction chamber 3 where the p-layer is formed. In addition to this, an appropriate amount of 2-osfin gas is added as well. After airtightly shutting off the space between the reaction chamber 1 and the reaction chamber 1 through the door 8, the solar cell substrate 10 is inserted into the front chamber 4 through the insertion door 9, the insertion door is closed, and a vacuum with the same degree of vacuum as the reaction chamber 1 is introduced through the exhaust pipe 6. and heat the substrate 10 to the same temperature as in the reaction chamber 1. Next, the substrate 10 is sent into the reaction chamber 1 by the conveyor 11. In the reaction chamber 1, a p-layer of a-8i is deposited on the substrate IO by decomposition of silane gas due to glue discharge occurring between electrodes (not shown). Subsequently, the substrate 10 with the p-layer deposited thereon is sent into the reaction chamber 2 by the operation of the conveyor 11. In the illustrated example, half of the substrates 1o, in which one layer of silane gas produced by goo-discharge decomposition is laminated on the p-layer in a reaction*2 which is twice the size of reaction chamber 1, are simultaneously placed in reaction chamber 3. sent. A further K11 layer is laminated in the reaction chamber 3, and the substrate with the a-8i thin layer of p"i-n structure is simultaneously fed into the rear chamber 5. The finished substrate that has entered the rear chamber s is cooled. After that, the vacuum is broken and the material is ejected from the take-out door 12. The a-81 thin film is produced by stopping the conveyor 11 for a certain period of time.

第1図の例では、反応室2における各基板1oの停止時
間、1なわち薄膜成長時間は他の2室1,3におけるそ
4の倍であり、従って他の反応條件が同じであると仮定
−ft′lば、量層の厚さはp層あるいはn層のほぼ2
倍である。
In the example of FIG. 1, the stopping time of each substrate 1o in reaction chamber 2, ie, the thin film growth time, is twice as long as that of 4 in the other two chambers 1 and 3, and therefore other reaction conditions are the same. Assuming -ft'l, the thickness of the mass layer is approximately 2 times that of the p layer or the n layer.
It's double.

このような生成装置においては、各反応室間におけるふ
ん囲気の混合を避、けするため、各室間を気密扉13で
し中断するとしても、基板10の移動時にはその扉13
を少なくとも多少開かなければならない。その際−m−
する両反応室のふん囲気の相互拡散、混合、あるいは移
動する基板にともなって前の反応室゛のふん囲気あるい
は前の反応室での生成副産物が後の反応室内へ移動する
可能性が犬ぎい。
In such a generation apparatus, in order to avoid mixing of ambient air between each reaction chamber, even if each chamber is separated by an airtight door 13, the door 13 is closed when the substrate 10 is moved.
must be opened at least somewhat. At that time -m-
There is a high possibility that the ambient air of the previous reaction chamber or by-products generated in the previous reaction chamber may move into the subsequent reaction chamber due to interdiffusion or mixing of the ambient air in both reaction chambers, or due to the moving substrate. .

従って各室の反応ガス中の不純物制御が峻しい。Therefore, it is difficult to control impurities in the reaction gas in each chamber.

本発明はこのような欠点を除き、隣接反応室間のふん囲
気の混合がなく、各反応室においてつねに所定の反応條
件で薄膜が生成され積層される積層薄膜量産装置を提供
することを目的とする。
An object of the present invention is to eliminate such drawbacks and provide a laminated thin film mass production apparatus in which thin films are always produced and laminated under predetermined reaction conditions in each reaction chamber without mixing of ambient air between adjacent reaction chambers. do.

この目的は同一基板上に複数の反応室において贋次真空
下で異なる性質の薄膜を生成、積層する装置において、
各反応室間に反応室内より高い真空度に排気される中間
排気室を設けることによって達成される。
This purpose is to create and laminate thin films with different properties on the same substrate in multiple reaction chambers under false vacuum.
This is achieved by providing an intermediate evacuation chamber between each reaction chamber that is evacuated to a higher degree of vacuum than the reaction chamber.

以下第2図を引用して本発明の実施例について説明する
。第2図において第1図と共通の部分には同一の符号が
付さねている。図示のようにp層、五層、n層の生感の
ための反応室X、2.aの間にそねぞわ小さい中間室1
4が設けらゎている。反応室1.2.3および中間室1
4は中間室14の排気管6により真空排気さね、反応室
1,2.3にはガス導入管7より反応ガスが導入される
ので、中間室14の真空度は各反応室の真空度より高い
。すなわち圧力が低い。反応室1,2.3と中間室14
との間は壁15によって仕切られているが、気密にし中
断さねではおらず、コンベヤ上の基板10はそのまま次
の反応室へ移動できる。基板10の通過ゴる壁15とコ
ンベヤ11との間隙には反応室から中間室への気流が存
在する。このため例えば反応室1においてp層が被着し
た基板10が反応室2に向けて移動しても、中間i11
4から反応室2に入る際には逆気流に当たるため、反応
室1内のジボラン、あるいは副生成物を含むふん囲気が
基板あるいはコンベヤとともに反応室2に入ることはな
く、反応室2内のふん囲気は所定の純度に保たわる。反
応室2から反応室3への移動の際も同様で、反応室2内
のふん囲気を所定の7オスフイン濃度に保つことができ
る。
Embodiments of the present invention will be described below with reference to FIG. In FIG. 2, parts common to those in FIG. 1 are designated by the same reference numerals. As shown in the figure, there is a reaction chamber X for the visualization of the p-layer, five-layer, and n-layer; 2. A small intermediate room 1 between a
4 is available. Reaction chamber 1.2.3 and intermediate chamber 1
4 is evacuated by the exhaust pipe 6 of the intermediate chamber 14, and the reaction gas is introduced into the reaction chambers 1, 2.3 from the gas introduction pipe 7, so the degree of vacuum in the intermediate chamber 14 is the same as that of each reaction chamber. taller than. In other words, the pressure is low. Reaction chambers 1, 2.3 and intermediate chamber 14
Although the chamber is partitioned by a wall 15, it is airtight and there is no interruption, and the substrate 10 on the conveyor can be moved as it is to the next reaction chamber. An air flow from the reaction chamber to the intermediate chamber exists in the gap between the wall 15 through which the substrate 10 passes and the conveyor 11. Therefore, for example, even if the substrate 10 on which the p-layer is deposited moves toward the reaction chamber 2 in the reaction chamber 1, the intermediate i11
When entering the reaction chamber 2 from the reaction chamber 4, there is a reverse air flow, so the feces containing diborane or by-products in the reaction chamber 1 do not enter the reaction chamber 2 together with the substrate or conveyor, and the feces in the reaction chamber 2 The surrounding air is maintained at a predetermined purity. The same goes for the movement from the reaction chamber 2 to the reaction chamber 3, and the atmosphere in the reaction chamber 2 can be maintained at a predetermined 7-osphine concentration.

反応室1と前室4の間ならびに反応室3と後室50間は
第1図の場合と同様扉8により気密にしゃ断でき、基板
の前室へのそう人あるいは出来上り基板の後室からの取
出しは同様に断続的に行わわる。
The space between the reaction chamber 1 and the front chamber 4 and the space between the reaction chamber 3 and the rear chamber 50 can be sealed off airtight by the door 8 as in the case of FIG. Removal also occurs intermittently.

本発明はpn接合を有するアモルファスシリコン膜から
なる太陽電池の製造に限らず、真空中で生成される膜の
複数層を有する素子の製造にも適用できる。また、各反
応室のふん囲気の混合がないので、異種のガスを基とし
た複数の反応ガスによる薄膜の積層に対しても適用ゴる
ことかできる。
The present invention is applicable not only to the production of solar cells made of amorphous silicon films having pn junctions, but also to the production of elements having multiple layers of films produced in vacuum. Furthermore, since there is no mixing of the ambient air in each reaction chamber, it can also be applied to the lamination of thin films using a plurality of reaction gases based on different types of gases.

以と述べたように、本発明は複数の真空反応室を通過す
る基板に各室において異なる性質の薄膜を成長させる装
置において各室の間に中間真空排気室を設けて各室のふ
ん一気の混合を阻止し、各室において所定の條件の下で
反応が行わわるようにするもので、反応室間を基板の移
動の後真空気密にしゃ断する必要がな(なり、同一装置
内で薄膜の積層を容易に連続的に実施できるので、太陽
電池などの薄膜装置の量産・に極め【有効である。
As described above, the present invention is an apparatus for growing thin films with different properties in each chamber on a substrate passing through a plurality of vacuum reaction chambers. This prevents mixing and allows the reaction to take place under predetermined conditions in each chamber, eliminating the need to shut off the reaction chambers in a vacuum-tight manner after moving the substrate. Since lamination can be carried out easily and continuously, it is extremely effective for mass production of thin film devices such as solar cells.

【図面の簡単な説明】[Brief explanation of the drawing]

諮1区は従来の積層薄膜量産装置の一例を示1断面図、
fs2図は本発明の一実施例を示づ断面図である。 1t2t3・・・反応室、6・・・排気管、7・・・ガ
ス導入管、lO・・・基板、11・・・コンベヤ、14
・・・中間真空排気室。 奔 1 図 介 26 =14:
Section 1 shows an example of conventional laminated thin film mass production equipment;
Figure fs2 is a sectional view showing one embodiment of the present invention. 1t2t3...Reaction chamber, 6...Exhaust pipe, 7...Gas introduction pipe, lO...Substrate, 11...Conveyor, 14
...Intermediate vacuum evacuation chamber. 1 illustration 26 = 14:

Claims (1)

【特許請求の範囲】[Claims] l)同一基板上に複数の反応室において順次真空下で異
なる性質の薄膜を生成、積層するものにおいて、各反応
室間に反応室より高い真空度に排気される中間室が設け
ら4たことを特徴とする積層薄膜量産装置。
l) When thin films of different properties are sequentially produced and laminated under vacuum in multiple reaction chambers on the same substrate, an intermediate chamber that is evacuated to a higher degree of vacuum than the reaction chambers is provided between each reaction chamber. Laminated thin film mass production equipment featuring:
JP14904681A 1981-09-21 1981-09-21 Mass production apparatus for laminated thin film Pending JPS5850734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14904681A JPS5850734A (en) 1981-09-21 1981-09-21 Mass production apparatus for laminated thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14904681A JPS5850734A (en) 1981-09-21 1981-09-21 Mass production apparatus for laminated thin film

Publications (1)

Publication Number Publication Date
JPS5850734A true JPS5850734A (en) 1983-03-25

Family

ID=15466459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14904681A Pending JPS5850734A (en) 1981-09-21 1981-09-21 Mass production apparatus for laminated thin film

Country Status (1)

Country Link
JP (1) JPS5850734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131511A (en) * 1985-12-04 1987-06-13 Canon Inc Fine particle spraying device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678416A (en) * 1979-11-29 1981-06-27 Sumitomo Electric Ind Ltd Preparation of thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678416A (en) * 1979-11-29 1981-06-27 Sumitomo Electric Ind Ltd Preparation of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131511A (en) * 1985-12-04 1987-06-13 Canon Inc Fine particle spraying device

Similar Documents

Publication Publication Date Title
US5378639A (en) Method for manufacturing a thin-film photovoltaic conversion device
US5016562A (en) Modular continuous vapor deposition system
EP2200098A1 (en) Production system of thin film solar battery
WO2011162433A1 (en) High-density p-doped quantum dot solar cell obtained by the active doping of inp and a production method therefor
JPH0246670B2 (en)
JPH09307128A (en) Manufacturing equipment and method of thin film photoelectric transducer
JPS6257270B2 (en)
EP0606263B1 (en) Pinching gate valve
JPS5850734A (en) Mass production apparatus for laminated thin film
JP3079830B2 (en) Method and apparatus for manufacturing thin film photoelectric element, plasma CVD method and plasma CVD apparatus
JPS5850733A (en) Mass-production apparatus of thin film for solar cell
CN106637146A (en) Chain PECVD (plasma enhanced chemical vapor deposition) coating system for PERC (passivated emitter and rear contact) cell
JP3068276B2 (en) Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor
CN102816999A (en) Selenium film deposition method and system and plasma head thereof
JP3070309B2 (en) Manufacturing method of thin film solar cell
JPH08195348A (en) Semiconductor device manufacturing equipment
JPS6030124A (en) Multistage electrode type semiconductor thin-film forming device
JPS61110772A (en) Multi-layer thin film forming device
JP2815711B2 (en) Thin-film semiconductor device manufacturing equipment
JPS6030182A (en) Manufacture of amorphous photovoltaic element
JPS59228716A (en) Vapor growth method
JP2761579B2 (en) Substrate processing equipment
JP3069682B2 (en) How to clean the reaction chamber
JPS6269511A (en) Manufacture of semiconductor device
JPH01138765A (en) Manufacture of photoelectric conversion device