JP3079830B2 - Method and apparatus for manufacturing thin film photoelectric element, plasma CVD method and plasma CVD apparatus - Google Patents

Method and apparatus for manufacturing thin film photoelectric element, plasma CVD method and plasma CVD apparatus

Info

Publication number
JP3079830B2
JP3079830B2 JP05097429A JP9742993A JP3079830B2 JP 3079830 B2 JP3079830 B2 JP 3079830B2 JP 05097429 A JP05097429 A JP 05097429A JP 9742993 A JP9742993 A JP 9742993A JP 3079830 B2 JP3079830 B2 JP 3079830B2
Authority
JP
Japan
Prior art keywords
film
substrate
chamber
film forming
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05097429A
Other languages
Japanese (ja)
Other versions
JPH06291349A (en
Inventor
敏明 佐々木
均 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05097429A priority Critical patent/JP3079830B2/en
Publication of JPH06291349A publication Critical patent/JPH06291349A/en
Application granted granted Critical
Publication of JP3079830B2 publication Critical patent/JP3079830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、可撓性基板を用い
た、光エネルギーを電気エネルギーに変換する太陽電池
などの薄膜光電変換素子の製造方法および製造装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a thin-film photoelectric conversion element such as a solar cell for converting light energy into electric energy using a flexible substrate.

【0002】[0002]

【従来の技術】最近、光電変換素子として非晶質シリコ
ン、非晶質シリコン合金などの非晶質シリコン系材料の
薄膜半導体を用いた薄膜光電変換素子が注目されてい
る。薄膜光電変換素子として代表的な太陽電池において
は、大量生産によるコストダウンが一つの大きな課題と
なっており、単位時間あたりの生産量の向上が望まれ
る。現在薄膜光電変換素子の基板に一般に用いられてい
る剛性のガラス板やステンレス鋼板では、真空装置への
搬入、搬出、基板ホルダへの取付、取り外しが煩雑で時
間の軽減が望ましい。また、基板のコストの低減、太陽
電池の利用のしやすさから樹脂などを基板に用いたもの
が期待されている。これらの目的のために、例えばK.Su
zukiらにより、" Technical Digest of the Internatio
nal PVSEC-1 "(1984) p.191に、あるいはS.R.Ovshinsky
により " Technical Digest of theInternational PVS
EC-1 "(1984) p.577 に発表されているように、可撓性
基板を巻物状にして搬入室に入れ、連続して帯状に複数
の反応室を通して多層構造の薄膜光電変換素子を成膜
し、搬出室に巻物状にして取り出す「ロール・トウ・ロ
ール」方式が開発されている。
2. Description of the Related Art Recently, a thin film photoelectric conversion element using a thin film semiconductor made of an amorphous silicon material such as amorphous silicon or an amorphous silicon alloy has attracted attention as a photoelectric conversion element. In a typical solar cell as a thin-film photoelectric conversion element, cost reduction by mass production is one of the major issues, and an improvement in production per unit time is desired. With a rigid glass plate or a stainless steel plate generally used for a substrate of a thin film photoelectric conversion element at present, carrying in and out of a vacuum device, attaching and detaching to and from a substrate holder are complicated, and it is desirable to reduce time. Further, a substrate using a resin or the like for the substrate is expected from the viewpoint of cost reduction of the substrate and ease of use of the solar cell. For these purposes, for example, K.Su
"Technical Digest of the Internatio" by zuki et al.
nal PVSEC-1 "(1984) p.191 or SROvshinsky
By "Technical Digest of the International PVS
As described in EC-1 "(1984) p.577, a flexible substrate is rolled into a loading chamber, and a multilayer thin film photoelectric conversion element is continuously passed through a plurality of reaction chambers. A “roll-to-roll” method has been developed in which a film is formed and taken out in a roll shape in a carry-out chamber.

【0003】図2は、pin構造の光電変換層を形成す
るための成膜装置を示す。帯状可撓性基板1は、搬入室
20の搬入ロール2から巻きほぐされ、搬送ロール4の上
を通って搬出室30の搬出ロール3へ連続的に巻きとられ
る。この可撓性基板1の表面上に、p層成膜室31通過の
際に高電圧電極51と基板ヒータ6を備えた接地電極52と
の間に生ずるプラズマにより反応ガスが分解されること
によりp層が形成される。同様にしてi層成膜室32通過
の際にi層、n層成膜室33通過の際にn層が成膜され
る。搬入室20、各反応室31、32、33および搬出室30には
それぞれ排気系7が連結されている。
FIG. 2 shows a film forming apparatus for forming a photoelectric conversion layer having a pin structure. The belt-shaped flexible substrate 1 is loaded into the loading room.
The paper is unwound from the 20 carry-in rolls 2 and continuously wound on the carry-out rolls 3 in the carry-out chamber 30 through the transport rolls 4. The reaction gas is decomposed on the surface of the flexible substrate 1 by plasma generated between the high-voltage electrode 51 and the ground electrode 52 provided with the substrate heater 6 when passing through the p-layer deposition chamber 31. A p-layer is formed. Similarly, an i-layer is formed when passing through the i-layer film forming chamber 32, and an n-layer is formed when passing through the n-layer film forming chamber 33. The exhaust system 7 is connected to the carry-in chamber 20, the reaction chambers 31, 32, 33, and the carry-out chamber 30, respectively.

【0004】pin構造の光電変換層の両面には、一方
が透明電極層である電極層が設けられる。このような電
極層を形成する導電層を形成するには図3に示すような
成膜装置が用いられる。排気系71とガス導入管70が連結
された成膜室39内で、帯状可撓性基板1が搬入ロール2
から巻きほぐされ、搬送ロール4および加熱ローラ60の
上を通って搬出ロール3へ連続的に巻きとられる。加熱
ローラ60上に備えられた接地電極52と対向するターゲッ
ト53との間に生ずるプラズマにより、導電材料からなる
ターゲツト53の面がスパッタされるので、基板1が加熱
ローラ60上を通る際に基板表面上に導電層が成膜され
る。
[0004] On both surfaces of a photoelectric conversion layer having a pin structure, an electrode layer having one transparent electrode layer is provided. In order to form a conductive layer for forming such an electrode layer, a film forming apparatus as shown in FIG. 3 is used. In the film forming chamber 39 in which the exhaust system 71 and the gas introduction pipe 70 are connected, the belt-shaped flexible substrate 1
, And is continuously wound around the carry-out roll 3 through the transport roll 4 and the heating roller 60. Plasma generated between the ground electrode 52 provided on the heating roller 60 and the opposing target 53 sputters the surface of the target 53 made of a conductive material. A conductive layer is formed on the surface.

【0005】[0005]

【発明が解決しようとする課題】しかし図2に示した成
膜装置では、可撓性基板1が複数の反応室31、32、33を
連続して通過するので、反応室と反応室の仕切部36でガ
スの気密が十分でなく、隣の反応室にガスが混入する問
題がある。また、仕切部36や接地電極52上で摩擦により
基板1やその上の膜が損傷を受ける問題がある。その
上、各反応室を同じ圧力にする必要があり、膜質的に最
適な圧力に独立して制御できない。図4に示すように、
反応室31と32、32と33の間に独立な排気系7により低い
圧力に保った予備室35を設けると、ガスの混入、各反応
室の圧力の独立性はある程度改善されるが、基板の損傷
の問題は残る。
However, in the film forming apparatus shown in FIG. 2, since the flexible substrate 1 continuously passes through the plurality of reaction chambers 31, 32, and 33, the reaction chamber is partitioned. There is a problem that the gas is not sufficiently airtight in the section 36 and the gas is mixed into the adjacent reaction chamber. Further, there is a problem that the substrate 1 and the film thereon are damaged by friction on the partition 36 and the ground electrode 52. In addition, each reaction chamber needs to be at the same pressure, and cannot be independently controlled to an optimum pressure in terms of film quality. As shown in FIG.
By providing a spare chamber 35 maintained at a low pressure by the independent exhaust system 7 between the reaction chambers 31 and 32 and 32 and 33, the mixing of gas and the independence of the pressure of each reaction chamber are improved to some extent. The problem of damage remains.

【0006】さらに、薄膜太陽電池の変換効率を向上さ
せるために、図5に示すような多層構造が用いられる。
この構造は、電極層29を被着した基板1上の非晶質シリ
コン炭素合金 (a−SiC) あるいは非晶質シリコン酸素
合金 (a−SiO) からなる100 〜200 Åの厚さのp層21
の上に非晶質シリコン (a−Si) 、a−SiCあるいはa
−SiOからなる100 〜200 Åの厚さのバッファ層22、a
−Siからなる700 Åの厚さのi層23、a−Siからなる30
0 Åの厚さのn層24、a−SiCあるいはa−SiOからな
る厚さ100 〜200 Åのp層25、a−Si、a−SiCあるい
はa−SiOからなる厚さ100 〜200 Åのバッファ層26、
a−Siからなる厚さ3000Åのi層27およびa−Siからな
る厚さ300 Åのn層28を積層したものである。このよう
な多層構造は、図6に示すような成膜装置を用いて製造
できる。すなわち、搬入室 (Loading Chamber)20と搬出
室 (Unloading Chamber)30の間に2組のp層成膜室31、
バッファ層成膜室34、i層成膜室32、n層成膜室33が配
列されている。このように通過する室数が多くなると、
基板の損傷の問題は一層きびしくなる。
Further, in order to improve the conversion efficiency of the thin-film solar cell, a multilayer structure as shown in FIG. 5 is used.
This structure is a 100-200 mm thick p-layer made of amorphous silicon carbon alloy (a-SiC) or amorphous silicon oxygen alloy (a-SiO) on the substrate 1 on which the electrode layer 29 is deposited. twenty one
Amorphous silicon (a-Si), a-SiC or a
A buffer layer 22, a of 100-200 mm thick made of SiO;
I-layer 23 of 700 mm thick made of -Si, 30 made of a-Si
0Å thick n-layer 24, a-SiC or a-SiO 100-200Å thick p-layer 25, a-Si, a-SiC or a-SiO 100-200200 thick Buffer layer 26,
It is formed by laminating an i-layer 27 made of a-Si and having a thickness of 3000 n and an n-layer 28 made of a-Si and having a thickness of 300 Å. Such a multilayer structure can be manufactured using a film forming apparatus as shown in FIG. That is, two sets of p-layer deposition chambers 31, between the loading chamber (Loading Chamber) 20 and the unloading chamber (Unloading Chamber) 30,
A buffer layer deposition chamber 34, an i-layer deposition chamber 32, and an n-layer deposition chamber 33 are arranged. When the number of passing rooms increases,
The problem of substrate damage becomes even more severe.

【0007】その上、すべての成膜室中を一定速度で基
板が移動するので、膜厚、成膜速度の異なる複数の膜で
多層構造を作るためには、各膜の成膜速度に合わせて成
膜室の長さを設計する、もしくは成膜速度を調整する必
要がある。このため、前者では装置の大きさに自由度が
なく、設計後に調整ができない問題がある。後者では膜
によって最適の成膜速度に設定できない問題がある。た
とえば、厚さ3000Åのi層27を後段の成膜室32で成膜す
る間に300 Åの厚さのn層24あるいは28を前段の成膜室
33で成膜するためには、成膜室の長さを10:1にする
か、成膜速度を1/10にしなければならず、実現は極め
て困難である。
In addition, since the substrate moves at a constant speed in all the film forming chambers, in order to form a multilayer structure with a plurality of films having different film thicknesses and film forming speeds, it is necessary to adjust the film forming speed of each film. It is necessary to design the length of the film forming chamber or adjust the film forming speed. For this reason, in the former case, there is a problem that the size of the device is not flexible and cannot be adjusted after the design. In the latter case, there is a problem that the optimum film forming speed cannot be set depending on the film. For example, while an i-layer 27 having a thickness of 3000 mm is formed in a film forming chamber 32 in a subsequent stage, an n-layer 24 or 28 having a thickness of 300 mm is formed in a film forming chamber in a preceding stage.
In order to form a film at 33, the length of the film forming chamber must be 10: 1 or the film forming speed must be reduced to 1/10, which is extremely difficult to realize.

【0008】本発明の目的は上述の問題を解決し、各層
の成膜が最適な圧力で行うことができ、成膜される可撓
性基板の損傷の問題もなく、さらに装置の大きさや各層
の成膜速度の設定の自由度の大きい薄膜光電変換素子の
製造方法および製造装置を提供することにある。
[0008] An object of the present invention is to solve the above-mentioned problems, to form each layer at an optimum pressure, to avoid the problem of damaging the flexible substrate to be formed, and to further reduce the size of the apparatus and each layer. It is an object of the present invention to provide a method and an apparatus for manufacturing a thin film photoelectric conversion element having a high degree of freedom in setting a film forming speed.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成すため
に、本発明によれば、帯状可撓性基板の上に複数の異な
る性質の薄膜を積層して少なくとも光電変換層を形成す
る薄膜光電変換素子の製造方法において、一線上に配列
された複数の成膜室に可撓性基板を通し、基板の出入口
に基板にシール材を介して密着する壁によって気密に保
たれた成膜室内の所定の真空雰囲気内で停止した状態の
基板の表面上に成膜し、ついで成膜室壁から離した状態
の基板を次の成膜位置まで搬送する操作を繰り返すこと
とする。そして、光電変換層の形成後、後続の成膜室で
電極層を成膜することが有効である。また、各成膜室が
一つの包括真空室の中に配置されてもよく、各成膜室の
間に予備室を配置し、各成膜室および予備室をそれぞれ
真空排気してもよい。それらの場合、基板面が鉛直面内
にあることが有効である。そのほか、成膜室内で基板に
接触する電極と基板の成膜面に対向する電極との間に電
圧を印加して成膜し、基板搬送時に基板に接触していた
電極を基板より離すことが有効である。用いられる基板
が、一面に導電膜を被着した樹脂フィルムであるか、金
属フィルムであるか、あるいは一面に絶縁膜を介して導
電膜を被着した金属フィルムであることが有効である。
さらに本発明は、帯状可撓性基板の上に複数の異なる性
質の薄膜を積層して少なくとも光電変換層を形成する薄
膜光電変換素子の製造装置において、包括真空室の長手
方向の両端近くにそれぞれ配置されたロールを備え、そ
の包括真空室内を断続して一方のロールから巻きほぐさ
れ他方のロールへ巻きとることのできる可撓性基板の通
る複数の成膜室を有し、各成膜室は基板の出入口で基板
にシール材を介して密着する壁によって区切られ、その
成膜室壁のシール材は基板から離れる位置まで退避可能
であり、包括真空室および各成膜室がそれぞれ別個の排
気系に接続されたこととする。あるいは、帯状可撓性基
板の上に複数の異なる性質の薄膜を積層して少なくとも
光電変換層を形成する薄膜光電変換素子の製造装置にお
いて、一端の搬入室および他端の搬出室にそれぞれロー
ルが配置され、断続して搬入室のロールから巻きほぐさ
れ搬出室のロールに巻きとることのできる可撓性基板の
通る複数の成膜室および各二つの成膜室間の予備室が一
線上に配列され、各成膜室と隣室との間は基板の出入口
で基板にシール材を介して密着する壁によって区切ら
れ、その成膜室壁のシール材は基板から離れる位置まで
退避可能であり、搬入室、搬出室、各成膜室および各予
備室がそれぞれ別個の排気系に接続されたこととする。
ここで、成膜室の一部が基板の進行方向に垂直に隣接
し、隣接方向に移動可能で一室が基板の通る位置にある
とき他室が退避位置にある二室からなるものとする。そ
して、各成膜室に基板に接触し、基板から離れた位置ま
で退避可能の電極と、その電極の対向電極とを備えるこ
とが有効である。また、両ロールの軸および両電極の電
極面が鉛直であることが有効である。さらに、本発明
は、互いに平行に対向する二つの平板電極の一方に高電
圧を印加し、他方を接地して両電極間の反応室間内にプ
ラズマを発生させ、反応ガスを分解して基板上に薄膜を
堆積させるプラズマCVD法において、反応空間を平行
平板電極と側壁と絶縁物との密着、もしくは平行平板電
極と側壁と絶縁物とシール材との密着によって囲み、可
撓性基板が貫通する密閉空間としての成膜室を形成し、
高電圧電極の反反応空間側を大気に接触させることとす
る。さらに、本発明は、互いに対向する二つの平板電極
と側壁と絶縁物とによって密着形成され、もしくは互い
に対向する二つの平板電極と側壁と絶縁物とシール材と
によって密着形成されガス導入管およびガス排気管が接
続された成膜室が包括真空室内に設置され、その成膜室
を一方の電極に近接して貫通する可撓性性基板の送り出
し機構および巻き取り機構もその包括真空室内に存在す
ることとする。可撓性基板の送り出し機構が搬入ロール
であり、巻き取り機構が搬出ロールであるとよい。ここ
で、二つの平板電極のうちの高電圧電極の外面が大気中
に露出したことがよい。高電圧電極の大気中に露出する
面を覆って接地電位のシールド材を備えると有効であ
る。また、成膜室の側壁が導電性であり、高電圧電極と
絶縁されて接地されたことがよい。これらの場合、成膜
室が複数であることが好適である。また、各二つの成膜
室が側壁を共通にして隣接することもよい。
According to the present invention, there is provided a thin film comprising a plurality of thin films having different properties laminated on a strip-shaped flexible substrate to form at least a photoelectric conversion layer. In a method for manufacturing a photoelectric conversion element, a flexible substrate is passed through a plurality of film formation chambers arranged in a line, and the film formation chamber is kept airtight by a wall that is in close contact with a substrate via a sealant at an entrance of the substrate. The operation of forming a film on the surface of the substrate stopped in a predetermined vacuum atmosphere and then transporting the substrate separated from the film forming chamber wall to the next film forming position is repeated. After the formation of the photoelectric conversion layer, it is effective to form an electrode layer in a subsequent film formation chamber. Further, each of the film forming chambers may be arranged in one comprehensive vacuum chamber, or a preliminary chamber may be arranged between the film forming chambers, and each of the film forming chambers and the preliminary chamber may be evacuated. In those cases, it is effective that the substrate surface is in a vertical plane. In addition, it is possible to apply a voltage between the electrode in contact with the substrate and the electrode facing the deposition surface of the substrate in the deposition chamber to form a film, and to separate the electrode that was in contact with the substrate from the substrate when transporting the substrate. It is valid. It is effective that the substrate used is a resin film having a conductive film applied on one surface, a metal film, or a metal film having a conductive film applied on one surface via an insulating film.
Further, the present invention provides a thin-film photoelectric conversion element manufacturing apparatus in which a plurality of thin films having different properties are laminated on a belt-shaped flexible substrate to form at least a photoelectric conversion layer. A plurality of film-forming chambers, each having a plurality of film-forming chambers, each of which has a roll disposed thereon, and has a plurality of film-forming chambers through which a flexible substrate that can be unwound from one of the rolls and wound up on the other roll by intermittently intermittently passing through the comprehensive vacuum chamber. Is separated by a wall that is in close contact with the substrate via a sealing material at the entrance and exit of the substrate, and the sealing material on the film forming chamber wall can be retracted to a position away from the substrate, and the comprehensive vacuum chamber and each film forming chamber are separately provided. Assume that it is connected to the exhaust system. Alternatively, in a thin film photoelectric conversion element manufacturing apparatus in which a plurality of thin films having different properties are laminated on a strip-shaped flexible substrate to form at least a photoelectric conversion layer, rolls are respectively provided in a loading chamber at one end and a loading chamber at the other end. A plurality of film forming chambers through which a flexible substrate can be arranged and intermittently unwound from the rolls in the loading chamber and wound up into the rolls in the unloading chamber, and a preliminary chamber between each of the two film forming chambers are aligned. It is arranged, and between each film forming chamber and the adjacent chamber is separated by a wall which is in close contact with the substrate via a sealing material at the entrance of the substrate, and the sealing material of the film forming chamber wall can be retracted to a position away from the substrate, It is assumed that the carry-in room, carry-out room, each film forming room, and each spare room are connected to separate exhaust systems.
Here, it is assumed that a part of the film forming chamber is vertically adjacent to the traveling direction of the substrate, is movable in the adjacent direction, and includes two chambers in which the other chamber is in the retracted position when one chamber is at a position where the substrate passes. . It is effective to provide each deposition chamber with an electrode which is in contact with the substrate and which can be evacuated to a position distant from the substrate, and a counter electrode of the electrode. It is effective that the axes of both rolls and the electrode surfaces of both electrodes are vertical. Further, the present invention provides a method in which a high voltage is applied to one of two plate electrodes facing each other in parallel, the other is grounded, plasma is generated in a reaction chamber between the two electrodes, and a reaction gas is decomposed to generate a plasma. In a plasma CVD method in which a thin film is deposited on the reaction space, the reaction space is surrounded by close contact between the parallel plate electrode and the side wall and the insulator, or close contact between the parallel plate electrode and the side wall, the insulator and the sealing material, and the flexible substrate penetrates. Forming a film forming chamber as a closed space,
The counter reaction space side of the high voltage electrode is brought into contact with the atmosphere. Further, the present invention provides a gas inlet tube and a gas inlet formed by two opposed flat plate electrodes, side walls, and an insulator, or formed by two opposed flat plate electrodes, side walls, an insulator, and a sealant. A film forming chamber to which an exhaust pipe is connected is installed in the comprehensive vacuum chamber, and a feeding mechanism and a winding mechanism for a flexible substrate that passes through the film forming chamber in proximity to one electrode are also present in the comprehensive vacuum chamber. I decided to. The delivery mechanism of the flexible substrate may be a loading roll, and the winding mechanism may be a delivery roll. Here, it is preferable that the outer surface of the high-voltage electrode of the two plate electrodes is exposed to the atmosphere. It is effective to provide a ground potential shielding material covering the surface of the high voltage electrode exposed to the atmosphere. Further, it is preferable that the side wall of the film forming chamber is conductive and is insulated from the high-voltage electrode and grounded. In these cases, it is preferable that there be a plurality of film forming chambers. Further, two film forming chambers may be adjacent to each other with a common side wall.

【0010】[0010]

【作用】可撓性基板上への成膜を基板を停止させて行う
ことにより、成膜時に成膜室の気密を保つことが容易に
なる。また各成膜室を包括真空室内に置くことにより、
もしくは各成膜室に隣接して予備室あるいは搬入、出室
を置くことにより、外部のあるいは他の成膜室のガスに
よる汚染が防止され、各成膜室の圧力も独立に制御でき
て最適な圧力で成膜できる。そして、可撓性基板を移動
するときに、成膜時の成膜室気密保持のための成膜室壁
シール材、あるいは基板に接触していた電極を退避させ
るため、基板およびその上の膜の損傷がない。
When the film is formed on the flexible substrate while the substrate is stopped, it is easy to maintain the airtightness of the film forming chamber during the film formation. By placing each deposition chamber in a comprehensive vacuum chamber,
Alternatively, by placing a preparatory room or a loading / unloading room adjacent to each film forming chamber, contamination by external or other gas in the film forming chamber is prevented, and the pressure in each film forming chamber can be controlled independently, making it optimal. The film can be formed at an appropriate pressure. When the flexible substrate is moved, a film-forming chamber wall sealing material for keeping the film-forming chamber airtight at the time of film-forming, or a substrate and a film thereon for retreating an electrode which has been in contact with the substrate. There is no damage.

【0011】基板の停止した状態で成膜するので、各成
膜室での成膜時間を任意に選ぶことができ、成膜室の長
さ、成膜時間などを各層で任意に設定できる。この場
合、基板移動の時間間隔は、各成膜室内で成膜に要する
時間のうちの最も長い時間によって規定される。この時
間間隔の短縮のために、厚い層は、他の層の複数回の成
膜の間に長い成膜室内で位置を変えて成膜を繰り返すこ
とによって成膜することもできる。また、一つの成膜室
の中での厚い層の成膜の間に他の成膜室で反応ガスを変
えて複数の異なる種類の層を積層することもできる。あ
るいは、一部の成膜室を基板の垂直方向に移動可能の二
室を構成すれば、その一室で成膜中に他室を退避させ、
一室での成膜が終了したのち、他室で異なる種類の層を
成膜することができる。これらにより各成膜室の有効な
利用が図られ、単位時間当たりの生産量が増大し、また
成膜室の数を減らすことも可能になる。さらに基板面を
鉛直に立てた状態で成膜することにより、成膜室壁面や
天井から発生する塵埃による基板面あるいは膜面の汚染
が軽減できる。
Since the film is formed with the substrate stopped, the film forming time in each film forming chamber can be arbitrarily selected, and the length, the film forming time, etc. of the film forming chamber can be arbitrarily set for each layer. In this case, the time interval of the substrate movement is defined by the longest time required for film formation in each film formation chamber. In order to shorten the time interval, a thick layer can be formed by changing a position in a long film forming chamber and repeating film formation during a plurality of times of forming another layer. Further, a plurality of different types of layers can be stacked by changing a reaction gas in another film formation chamber while a thick layer is formed in one film formation chamber. Alternatively, if some of the film formation chambers are configured as two chambers that can be moved in the vertical direction of the substrate, one chamber is evacuated to another chamber during film formation,
After the film formation in one room is completed, different types of layers can be formed in another room. Thus, effective utilization of each of the film forming chambers is achieved, the production amount per unit time is increased, and the number of the film forming chambers can be reduced. Further, by forming a film in a state where the substrate surface is set upright, contamination of the substrate surface or the film surface by dust generated from the wall surface or the ceiling of the film forming chamber can be reduced.

【0012】このほか,光電変換層形成後ロールへ巻き
とらないで、後続の成膜室で光電変換層の上の電極層も
形成したのち巻きとれば、電極層が光電変換層の補強お
よび保護をするため、ロールへ巻きとる際の応力で、例
えばa−Si光電変換層のSi−Si結合のうちの弱い結合が
切断されることがなく、大気に含まれる水分等による光
電変換層の劣化、ロールへ巻きとる際の基板の熱収縮か
ら起きる光電変換層のピンホールの発生を防ぐことがで
きる。
[0012] In addition, if the electrode layer is formed on the photoelectric conversion layer in the subsequent film forming chamber and then wound without being wound around a roll after the formation of the photoelectric conversion layer, the electrode layer is reinforced and protected. Therefore, for example, the weak bond among the Si-Si bonds of the a-Si photoelectric conversion layer is not broken by the stress generated when the film is wound around a roll, and the deterioration of the photoelectric conversion layer due to moisture and the like contained in the air. In addition, it is possible to prevent pinholes from being generated in the photoelectric conversion layer due to thermal shrinkage of the substrate when the substrate is wound into a roll.

【0013】[0013]

【実施例】以下、図2ないし図6を含めて共通の部分に
同一の符号を付した各図を引用して本発明の実施例につ
いて説明する。図1は本発明の一実施例のステッピング
ロール式成膜装置を示す。排気系7を備えた長く大きな
真空室10の中の搬入ロール2に巻かれていた帯状可撓性
基板1は、搬送ローラ4上を経て反応室であるp層成膜
室31、i層成膜室32、n層成膜室33を通って搬出ロール
3に巻きとられる。反応室31、32、33は2系統で、それ
ぞれに2ロール計4ロールの可撓性基板が通る。各反応
室31、32、33には、高電圧電極51、基板ヒータ6を備え
た接地電極52が対向しており、プラズマCVDによるa
−Si系薄膜の成膜が行われる。成膜は可撓性基板1を停
止させた状態で行われる。停止した基板1に接地電極52
と両側にシール材81を備えた反応室壁8が密着すること
により各反応室31、32、33の気密性が保たれるので、反
応室の圧力はそれぞれに連結された図示しない排気系に
より独立して制御可能であり、各成膜条件は独立して制
御できる。また、排気系7により独立して排気される真
空室10の圧力を反応室より低くすることにより、各成膜
室31、32、33への他の反応室の反応ガスあるいは大気の
侵入が防止される。各成膜室の電極への電圧印加を止め
て成膜が終わると、各反応室内を真空にし、後に詳述す
るように接地電極52および反応室壁8のシール材81が基
板から離れた状態で基板を次の層の形成の位置まで搬送
する。搬入ロール2、搬出ロール3、搬送ローラ4の各
軸、高圧電極51、接地電極52の各面は鉛直であって、各
反応室31、32、33の天井や壁面から落ちる塵埃の基板あ
るいはその上の膜面への付着を防いでいる。しかし、基
板1の面を水平にすることも可能である。この装置で4
ロールの可撓性基板上に同時に成膜できるので生産効率
が高い。また、一つの反応室で2ロールの基板への成膜
を行うので、原料ガスの利用効率も高く、装置を小型化
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a stepping roll type film forming apparatus according to one embodiment of the present invention. The belt-shaped flexible substrate 1 wound on the carry-in roll 2 in a long and large vacuum chamber 10 provided with an exhaust system 7 passes through the conveying roller 4 to form a p-layer film forming chamber 31 as a reaction chamber and an i-layer forming chamber. The film is wound around the unloading roll 3 through the film chamber 32 and the n-layer film forming chamber 33. The reaction chambers 31, 32, and 33 are of two systems, each of which passes a two-roll flexible substrate of a total of four rolls. A high-voltage electrode 51 and a ground electrode 52 having a substrate heater 6 are opposed to the respective reaction chambers 31, 32, and 33.
-An Si-based thin film is formed. The film formation is performed with the flexible substrate 1 stopped. A ground electrode 52 is attached to the stopped substrate 1.
And the reaction chamber walls 8 provided with sealing materials 81 on both sides keep the airtightness of each of the reaction chambers 31, 32, and 33, so that the pressure in the reaction chambers is controlled by an exhaust system (not shown) connected to each of the reaction chambers. It can be controlled independently, and each film forming condition can be controlled independently. Further, the pressure of the vacuum chamber 10 independently evacuated by the exhaust system 7 is made lower than that of the reaction chamber, thereby preventing the reaction gas or the atmosphere of the other reaction chambers from entering the deposition chambers 31, 32, and 33 from entering. Is done. When the application of voltage to the electrodes in each film formation chamber is stopped and the film formation is completed, each reaction chamber is evacuated, and the ground electrode 52 and the sealing material 81 of the reaction chamber wall 8 are separated from the substrate as described later in detail. Transports the substrate to the position for forming the next layer. Each axis of the carry-in roll 2, the carry-out roll 3, and the transport roller 4, the respective surfaces of the high-voltage electrode 51, and the ground electrode 52 are vertical, and the substrate of the dust falling from the ceiling or the wall surface of each of the reaction chambers 31, 32, 33 or the like. It prevents adhesion to the upper film surface. However, it is also possible to make the surface of the substrate 1 horizontal. 4 with this device
Since the film can be simultaneously formed on the flexible substrate of the roll, the production efficiency is high. Further, since film formation is performed on a two-roll substrate in one reaction chamber, the utilization efficiency of the source gas is high, and the apparatus can be downsized.

【0014】図7(a) 、(b) は可撓性基板の支持および
搬送機構の一実施例を示す。同図(a) に示す成膜時に
は、搬送ローラ4にはさまれた基板1の外側に接地電極
52が密着し、内側に反応室壁8のシール材81が密着し、
反応室31 (32、33) が気密に保たれ、両電極51、52間の
電圧の印加でプラズマ5が生じている。可撓性基板1の
移動時には各搬送ローラ4および接地電極52を図(a) の
矢印41のように上下に約1cm移動させる。それに伴って
基板1も上下に約1cm移動する。同図(b) は移動後の状
態で、これにより基板1を反応室壁8および接地電極52
と接触させないで矢印42のように搬送することができ
る。
FIGS. 7 (a) and 7 (b) show an embodiment of a flexible substrate supporting and transporting mechanism. At the time of film formation shown in FIG.
52 adheres, and the sealing material 81 of the reaction chamber wall 8 adheres inside,
The reaction chamber 31 (32, 33) is kept airtight, and a plasma 5 is generated by applying a voltage between the electrodes 51, 52. When the flexible substrate 1 is moved, each transport roller 4 and the ground electrode 52 are moved up and down by about 1 cm as indicated by an arrow 41 in FIG. Accordingly, the substrate 1 also moves up and down by about 1 cm. FIG. 5B shows the state after the movement, whereby the substrate 1 is moved to the reaction chamber wall 8 and the ground electrode 52.
Can be conveyed as shown by arrow 42 without contacting the substrate.

【0015】図8(a) 、(b) は可撓性基板の支持および
搬送機構の別の実施例を示す。この場合は、図1、図6
の場合と異なり、2ロールの可撓性基板1に対して二つ
の高電圧電極51と一つの接地電極52を備えている。そし
て断面コ字状の反応室壁8と搬送ローラ4を同図(a) の
矢印41のように移動させて基板1を浮かせ、同図(b)の
矢印42のように搬送する。
FIGS. 8A and 8B show another embodiment of the supporting and transporting mechanism for the flexible substrate. In this case, FIGS. 1 and 6
Unlike the above case, two high-voltage electrodes 51 and one ground electrode 52 are provided for the two-roll flexible substrate 1. Then, the reaction chamber wall 8 having a U-shaped cross section and the transport roller 4 are moved as shown by an arrow 41 in FIG. 4A to lift the substrate 1 and transported as shown by an arrow 42 in FIG.

【0016】図9は包括真空室10を用いない別の本発明
の一実施例を示す。この場合は各反応室31、32、33は隣
接せず、その間に予備室35が設けられ、またp層成膜室
31の外側に搬入室20が、n層成膜室33の外側に搬出室30
が設けられている。各室は共通の外壁40を持っている。
図示しないが、これらの各反応室31、32、33、予備室3
5、搬入室20および搬出室30には独立した排気系が接続
され、別個に真空排気できる。従ってそれらの排気系は
小容量化、高真空化でき、予備室35、搬入室20および搬
出室30の圧力を、反応室31、32、33より低くすることに
より各反応室への他の反応室の反応ガスあるいは大気の
侵入が防止される。
FIG. 9 shows another embodiment of the present invention in which the comprehensive vacuum chamber 10 is not used. In this case, the reaction chambers 31, 32, and 33 are not adjacent to each other, and a preliminary chamber 35 is provided therebetween.
The loading chamber 20 is located outside the n-layer deposition chamber 33, and the loading chamber 30 is located outside the n-layer deposition chamber 33.
Is provided. Each room has a common outer wall 40.
Although not shown, each of these reaction chambers 31, 32, 33, and the preliminary chamber 3
5. An independent exhaust system is connected to the carry-in room 20 and the carry-out room 30, and can be evacuated separately. Therefore, the exhaust system can be reduced in capacity and vacuum can be increased, and the pressures in the preparatory chamber 35, the loading chamber 20, and the unloading chamber 30 are made lower than those in the reaction chambers 31, 32, and 33 so that other reaction to each reaction chamber can be performed. Intrusion of the reaction gas or air into the chamber is prevented.

【0017】図10に示す実施例では、包括真空室10中に
シール機能を有する四つの成膜室31、32、33、39を配置
し、光電変換層のほかに、従来別個の成膜装置で成膜し
ていた導電層も大気に触れないで連続的に成膜できるよ
うにしたものである。この装置では、予備室35を設け
ず、各成膜室の間では帯状可撓性基板1は包括真空室10
の中に出る。成膜室31、32、33は、ガス導入管70が連結
された高電圧電極51と、それに対向する基板ヒータ6を
備えた接地電極52と、高電圧電極51と絶縁物9で絶縁さ
れた成膜室壁8とからなり、成膜室壁8がシール材を介
してまたは、直接基板1と共に接地電極52に密着するこ
とによって、排気管71により図示しない排気系に連通す
る密閉空間を形成している。成膜室39は、基板ヒータ6
を備えた接地電極52とガス導入管70および排気管71が開
口する成膜室壁8とからなり、パッキングプレート54上
に支持されるターゲツト53と成膜室壁8とは絶縁物9に
よって絶縁されている。この成膜室39では、排気管71を
介して真空排気を行い、ガス導入管70からスパッタガス
を導入し、所定成膜圧力を維持してターゲツト53に電圧
を印加してターゲツト53の面をスパッタすることによ
り、電極層を反応室31、32、33で形成された光電変換層
上に成膜する。基板1の移動時には、接地電極52を移動
させ、基板1を浮かせることは前述の実施例におけると
同様である。図11に示す実施例では、包括真空室10の壁
の一部が各成膜室31、32、33、34の共通外壁40となって
おり、排気管71はそれぞれその共通外壁40を貫通してい
る。そして、高電圧電極51およびターゲツト53を固定し
たパッキングプレート54は外側が直接大気に接してい
る。しかし、この装置で高電圧電極51およびパッキング
プレート54に印加される電圧では、大気中で放電が起き
ることはない。ただ電磁波の放出を防止するために、高
電圧電極51をシールドプレート47で覆っている。この装
置では、高電圧電極51とパッキングプレート54を容易に
取り外すことができるようにすることにより、各成膜室
内部の清掃、接地電極52あるいはターゲツト53の交換等
のメンテナンスが簡単にできる。
In the embodiment shown in FIG. 10, four film-forming chambers 31, 32, 33, and 39 having a sealing function are arranged in a comprehensive vacuum chamber 10, and a conventional separate film-forming apparatus is provided in addition to the photoelectric conversion layer. The conductive layer formed as described above can be formed continuously without contacting the atmosphere. In this apparatus, the preliminary chamber 35 is not provided, and the band-shaped flexible substrate 1 is provided between the film forming chambers.
Get out of The film forming chambers 31, 32, and 33 were insulated by the high-voltage electrode 51 to which the gas introduction tube 70 was connected, the ground electrode 52 having the substrate heater 6 opposed thereto, and the high-voltage electrode 51 and the insulator 9. A closed space is formed from the film forming chamber wall 8, and the film forming chamber wall 8 is in close contact with the ground electrode 52 via the sealing material or directly with the substrate 1 to communicate with an exhaust system (not shown) through the exhaust pipe 71. doing. The film forming chamber 39 is provided with the substrate heater 6.
A target 53 supported on a packing plate 54 and the film forming chamber wall 8 are insulated by an insulator 9. Have been. In the film forming chamber 39, vacuum evacuation is performed through an exhaust pipe 71, a sputtering gas is introduced from a gas introduction pipe 70, a voltage is applied to the target 53 while maintaining a predetermined film forming pressure, and the surface of the target 53 is cleaned. By sputtering, an electrode layer is formed on the photoelectric conversion layer formed in the reaction chambers 31, 32, and 33. When the substrate 1 is moved, the ground electrode 52 is moved and the substrate 1 is floated in the same manner as in the above-described embodiment. In the embodiment shown in FIG. 11, a part of the wall of the comprehensive vacuum chamber 10 is a common outer wall 40 of each of the film forming chambers 31, 32, 33, and 34, and the exhaust pipe 71 penetrates the common outer wall 40, respectively. ing. The outside of the packing plate 54 to which the high-voltage electrode 51 and the target 53 are fixed is in direct contact with the atmosphere. However, with the voltage applied to the high voltage electrode 51 and the packing plate 54 in this device, no discharge occurs in the atmosphere. However, the high-voltage electrode 51 is covered with a shield plate 47 to prevent emission of electromagnetic waves. In this apparatus, since the high-voltage electrode 51 and the packing plate 54 can be easily removed, maintenance such as cleaning of the inside of each deposition chamber and replacement of the ground electrode 52 or the target 53 can be easily performed.

【0018】図12(a) 、(b) および図13(a) 、(b) は、
このような装置の可撓性基板の支持および搬送機構の一
例を示し、図13はそれぞれ図12のA−A断面図である。
この機構では基板搬送時に反応室壁8のシール部材を退
避させる。すなわち、基板搬送時には、搬送ローラを矢
印41のように移動させると共にシール材81を周囲につけ
ていたシールローラ82を図12(a) の矢印43のように移動
させる。これにより図12(b) 、図13(b) に示すように、
基板1は反応室壁8の縁部に明けられた搬送口83を通っ
て接地電極52から浮かせて搬送することができる。な
お、反応室壁8の縁部はシールローラ82と密着するよう
な曲面を持たせてある。この例では円柱状のシールロー
ラ82を用いているが、可撓性基板1、反応室壁8とのシ
ールが十分であれば、断面が直角三角形、長方形あるい
は円弧状のシール部材を用いることもできる。なお、こ
のような可撓性基板の支持および搬出機構は、図1に示
したような成膜装置にも適用することが可能である。
FIGS. 12 (a) and 12 (b) and FIGS. 13 (a) and 13 (b)
FIG. 13 is a cross-sectional view taken along the line AA of FIG. 12, showing an example of a flexible substrate supporting and transporting mechanism of such an apparatus.
In this mechanism, the seal member on the reaction chamber wall 8 is retracted during the transfer of the substrate. That is, at the time of substrate transport, the transport roller is moved as shown by an arrow 41, and the seal roller 82 around which the sealing material 81 is attached is moved as shown by an arrow 43 in FIG. As a result, as shown in FIGS. 12 (b) and 13 (b),
The substrate 1 can be transported by being floated from the ground electrode 52 through a transport port 83 formed in the edge of the reaction chamber wall 8. The edge of the reaction chamber wall 8 has a curved surface so as to be in close contact with the seal roller 82. In this example, a cylindrical seal roller 82 is used, but if the seal between the flexible substrate 1 and the reaction chamber wall 8 is sufficient, a seal member having a cross section of a right triangle, a rectangle or an arc may be used. it can. Note that such a flexible substrate supporting and unloading mechanism can be applied to a film forming apparatus as shown in FIG.

【0019】図5に示した多層構造太陽電池を製造する
には、反応室は31、32、33の3室だけでなく、p層成膜
室31、バッファ層成膜室34、i層成膜室32、n層成膜室
33を2室ずつ備え、図6に示すように配列した成膜装置
を用いる。このような装置を用いた実施例としては、先
ず搬入室20のロールから巻きほぐされ停止した、表面に
透光性の電極層29を有する可撓性基板1上に、第一のp
層成膜室31に10%のSiH4 とH2 の混合ガスを1000Scc
m、C2 2 を5Sccm、B2 6 を1Sccmの流量で流
し、1.0Torrの圧力、100 mW/cm2 のパワー密度で100
Åの膜厚のp層21を1分間で成膜する。従って成膜速度
は100 Å/min である。その上のバッファ層22は、p層
21が形成された基板部分を第二のバッファ層成膜室34に
移動させ、(10 %SiH4 +H2 ) ガスを1000Sccm、C2
2 を5Sccmの流量で流し、1.0Torrの圧力、100 mW/
cm2 のパワー密度で1.3分間に100 Åの膜厚に成膜す
る。従って成膜速度は80Å/min である。i層23は、p
層21、バッファ層22が積層された基板部分を第一のi層
成膜室32に移動させ、100 %SiH4 ガスを1000Sccmの流
量で流し、0.5Torrの圧力、100 mW/cm2 のパワー密度
で3分間に600 Åの膜厚に成膜する。従って成膜速度は
150 Å/min である。次いで、p層21、バッファ層22、
i層23を積層した基板部分を第一のi層成膜室32に移動
させ、 (10%SiH4+H2 ) ガスを1000Sccm、PH3
4Sccmの流量で流し、1.0Torrの圧力、100mA/cm2
パワー密度で、2.5分間に300 Åの膜厚にn層24を成膜
する。従って成膜速度は120 Å/分である。
In order to manufacture the multilayer solar cell shown in FIG. 5, not only three reaction chambers 31, 32, and 33 but also a p-layer deposition chamber 31, a buffer layer deposition chamber 34, and an i-layer Film chamber 32, n-layer deposition chamber
A film forming apparatus provided with two chambers 33 and arranged as shown in FIG. 6 is used. In an embodiment using such a device, first, the first p-type substrate is unwound from the roll of the loading chamber 20 and stopped on the flexible substrate 1 having the translucent electrode layer 29 on the surface.
1000 Scc mixed gas of 10% SiH 4 and H 2 into the layer deposition chamber 31
m, C 2 H 2 at a flow rate of 5 Sccm and B 2 H 6 at a flow rate of 1 Sccm, and a pressure of 1.0 Torr and a power density of 100 mW / cm 2.
The p layer 21 having a thickness of Å is formed in one minute. Therefore, the deposition rate is 100 mm / min. The buffer layer 22 thereon is a p-layer
The substrate portion on which 21 has been formed is moved to the second buffer layer deposition chamber 34, and (10% SiH 4 + H 2 ) gas is supplied at 1000 Sccm and C 2.
H 2 was flowed at a flow rate of 5 Sccm, and a pressure of 1.0 Torr, 100 mW /
A film is formed to a thickness of 100 mm in 1.3 minutes at a power density of cm 2 . Therefore, the deposition rate is 80 ° / min. The i-layer 23 has p
The substrate portion on which the layer 21 and the buffer layer 22 are stacked is moved to the first i-layer film forming chamber 32, and 100% SiH 4 gas is flowed at a flow rate of 1000 Sccm, at a pressure of 0.5 Torr and a pressure of 100 mW / cm 2 . A film is formed at a power density of 600 に in 3 minutes. Therefore, the deposition rate is
It is 150 l / min. Next, the p layer 21, the buffer layer 22,
The substrate portion on which the i-layer 23 is laminated is moved to the first i-layer deposition chamber 32, and (10% SiH 4 + H 2 ) gas is flowed at a flow rate of 1000 Sccm and PH 3 at a flow rate of 4 Sccm. The n-layer 24 is formed at a power density of / cm 2 and a thickness of 300 ° for 2.5 minutes. Therefore, the deposition rate is 120 ° / min.

【0020】以上で光入射側のトップ構造の21、22、2
3、24の4層を形成した基板1の上にボトム構造のp層2
5、バッファ層26、i層27、n層28を、第二のp層成膜
室31、バッファ層成膜室34、i層成膜室32、n層成膜室
33で同様にして成膜する。成膜条件は第一の各成膜室に
おける場合と同じである。ただし、i層27膜厚のみは30
00Åに厚くする。この成膜時間は20分要する。従って、
可撓性基板1はこの20分の間停止させ、その後移動させ
てそれぞれ新しい成膜を行う。
As described above, the light-incident side top structures 21, 22, 2
A p-layer 2 having a bottom structure is formed on a substrate 1 on which four layers 3 and 24 are formed.
5, the buffer layer 26, the i-layer 27, and the n-layer 28 are formed into a second p-layer deposition chamber 31, a buffer layer deposition chamber 34, an i-layer deposition chamber 32, and an n-layer deposition chamber.
At 33, a film is formed in the same manner. The film forming conditions are the same as those in each of the first film forming chambers. However, only the i-layer 27 thickness is 30
Thicken to 00Å. This film formation time requires 20 minutes. Therefore,
The flexible substrate 1 is stopped for this 20 minutes, and then moved to form a new film.

【0021】この基板移動の時間間隔を短くすることの
できる成膜装置の反応室の配列を図14に示す。この場合
は、p層成膜室およびバッファ層成膜室を兼用した成膜
室37、p層成膜室、バッファ層成膜室およびn層成膜室
を兼用した成膜室38を設けることにより装置が小型化さ
れる。i層成膜室32における成膜時間は他の反応室にお
ける成膜時間より長いので、i層成膜中に他の複数層の
成膜が可能で、多層成膜に要する総時間を短縮すること
ができる。上述の実施例と同様の太陽電池製造の場合、
成膜室37での成膜時間は、ガス切換えに要する時間を除
いて2.3分、成膜室38での成膜時間は、ガス切換えに要
する時間を除いて4.8分で、i層27の成膜時間20分の間
に十分成膜操作を終えることができる。また、i層成膜
室32を他の成膜室の整数倍の長さにして、可撓性基板を
断続的に搬送しながらその中で複数回i層の成膜を繰り
返すことも総時間の短縮に有効である。
FIG. 14 shows an arrangement of reaction chambers of a film forming apparatus capable of shortening the time interval of the substrate movement. In this case, a film forming chamber 37 also serving as a p-layer film forming chamber and a buffer layer film forming chamber, and a film forming chamber 38 also serving as a p-layer film forming chamber, a buffer layer film forming chamber and an n-layer film forming chamber are provided. Thereby, the device is downsized. Since the film formation time in the i-layer film formation chamber 32 is longer than the film formation time in the other reaction chambers, another plurality of layers can be formed during the i-layer film formation, and the total time required for multilayer film formation is reduced. be able to. In the case of solar cell production similar to the above-described embodiment,
The film forming time in the film forming chamber 37 was 2.3 minutes excluding the time required for gas switching, and the film forming time in the film forming chamber 38 was 4.8 minutes excluding the time required for gas switching. The film forming operation can be completed sufficiently during the film forming time of the layer 27 of 20 minutes. It is also possible to make the i-layer deposition chamber 32 an integral multiple of the length of the other deposition chambers and repeat the deposition of the i-layer a plurality of times while intermittently transporting the flexible substrate. It is effective for shortening.

【0022】図15(a) 〜(d) は、図11でなお5室あった
成膜室を4室に減らし、基板移動回数を5回から3回に
減らすことのできる成膜装置を横からみた垂直断面図お
よびその運転方法を示す。この装置は搬入室20と搬出室
30の間に移動成膜室61、62、i層成膜室32、n層成膜室
33とが設けられる。しかし、移動成膜室61、62は鉛直方
向に移動し、そのうちの一室のみが可撓性基板を通すこ
とができるようになっている。この装置を用いて図5に
示す薄膜太陽電池を製造するには、搬入室20の搬入ロー
ル2から巻きほぐされた可撓性基板1を移動成膜室61に
通し、この室でp層21およびバッファ層22を上述の条件
で成膜する〔同図(a) 〕。次に、移動成膜室61、62を矢
印44のように下方に移動させ、基板1の位置に成膜室62
が来るようにしたのち、i層23を上述の条件で成膜する
〔同図(b) 〕。次いで、移動成膜室61、62を矢印45のよ
うに上方に移動させ、基板1の位置に再び成膜室61が来
るようにしたのち、上述の条件でn層24、p層25、バッ
ファ層26を成膜する〔同図(c) 〕。このあと矢印46のよ
うに基板1を移動させ、i層成膜室32でi層27を成膜
し、さらに基板1を移動させてn層成膜室33でn層28を
形成する〔同図(d) 〕。上述のようにボトムi層27に膜
厚が3000Åと厚いので、その20分の成膜中に、合計成膜
時間が10.1分の成膜室61における層21、22および層24、
25、26の成膜、成膜室62におけるi層23の成膜が可能で
ある。そして、移動成膜室62はi層の成膜のみが行われ
るので、i層への不純物の混入のおそれがない。また、
移動成膜室61での成膜は、常に真性層であるバッファ層
の成膜で終了するので、次にp層を成膜するときに壁面
や電極からのn型不純物の影響が少ない。なお、成膜室
61、62の移動の際に気密が劣化し、外気の侵入のおそれ
があるので、図示しないが搬入室20、各成膜室61、62、
32、33、搬出室30を図1の装置と同様、包括真空室10の
中に収容している。
FIGS. 15 (a) to 15 (d) show a film forming apparatus capable of reducing the number of substrate movements from five to three by reducing the number of film forming chambers from five to three in FIG. 1 shows a vertical cross-sectional view from the viewpoint and an operation method thereof. This device has a loading room 20 and a loading room
Moving film chambers 61 and 62, i-layer film forming chamber 32, n-layer film forming chamber during 30
33 are provided. However, the moving film forming chambers 61 and 62 move in the vertical direction, and only one of them can pass through the flexible substrate. To manufacture the thin-film solar cell shown in FIG. 5 using this apparatus, the flexible substrate 1 unwound from the carry-in roll 2 of the carry-in chamber 20 is passed through the moving film-forming chamber 61, and the p-layer 21 Then, a buffer layer 22 is formed under the above-mentioned conditions [FIG. Next, the moving film forming chambers 61 and 62 are moved downward as indicated by an arrow 44, and
Then, the i-layer 23 is formed under the above-mentioned conditions [FIG. Next, the moving film forming chambers 61 and 62 are moved upward as indicated by an arrow 45 so that the film forming chamber 61 comes to the position of the substrate 1 again, and then the n-layer 24, the p-layer 25 and the buffer The layer 26 is formed [FIG. Thereafter, the substrate 1 is moved as indicated by an arrow 46, an i-layer 27 is formed in the i-layer film forming chamber 32, and the substrate 1 is further moved to form an n-layer 28 in the n-layer film forming chamber 33. Figure (d)]. Since the thickness of the bottom i-layer 27 is as thick as 3000 Å as described above, during the 20-minute deposition, the layers 21, 22 and 24, in the deposition chamber 61 with a total deposition time of 10.1 minutes,
The film formation of 25 and 26 and the film formation of the i-layer 23 in the film formation chamber 62 are possible. In addition, since only the film formation of the i-layer is performed in the movable film-forming chamber 62, there is no possibility that impurities are mixed into the i-layer. Also,
Since the film formation in the moving film formation chamber 61 is always terminated by the formation of the buffer layer, which is the intrinsic layer, the influence of the n-type impurities from the wall surface and the electrode when forming the next p layer is small. In addition, the film forming chamber
Although the airtightness deteriorates during the movement of 61 and 62 and there is a possibility of intrusion of outside air, although not shown, the loading chamber 20, each of the film forming chambers 61 and 62,
As in the apparatus of FIG. 1, the transfer chambers 32 and 33 are housed in the comprehensive vacuum chamber 10.

【0023】図16は、上記製造方法および製造装置に使
用する可撓性基板の例である。同図(a) は透明樹脂フィ
ルム11の上に透明導電膜12を被着した基板を示す。透明
樹脂フィルム11の材料にはポリエチレンナフタレート、
ポリエチレンテレフタレート、ポリエチレンサルファイ
ド、ポリビニールフルオレート等が用いられる。透明導
電膜12の材料としては、ITO、酸化錫、酸化亜鉛など
がある。この構成では、基板側から光を入射可能であ
る。同図(b) は、樹脂フィルム13上に導電膜14をつけた
基板の例である。この基板を用いると、光をa−Si系膜
側から入射する構成になるが、樹脂フィルム13や導電膜
14に透過率を考慮せず広い自由度で材料選択が可能にな
る。たとえば、樹脂フィルム13にポリイミド系のものを
用いると耐熱性が向上して成膜時の温度を高くしてa−
Si系膜の膜質を向上できる。同図(c) は、金属フィルム
15を基板に使用した例である。この基板15には、フィル
ム状にしたステンレス鋼、アルミニウム、銅などを用
い、導電率の高い電極として利用できる。また、耐熱
性、耐環境性を強くできる。同図(d) は金属フィルム15
の上に、絶縁膜16、導電膜14をつけた基板の例である。
図(c) の基板では、同一基板状に直列構造をつくること
ができないが、図(d) の基板では絶縁膜をつけることに
より直列構造が可能となる。絶縁膜の材料としては、酸
化シリコンなどが挙げられる。勿論、図(a) 、(b) の基
板でも絶縁性の高い樹脂を使えば直列構造は可能であ
る。なお、透明導電膜12、導電膜14、絶縁膜16の成膜に
要する時間は、a−Si系材料の薄膜の成膜時間に比して
短いので、上述の成膜装置とは別個の装置で成膜した方
が有利である。
FIG. 16 shows an example of a flexible substrate used in the above manufacturing method and manufacturing apparatus. FIG. 1A shows a substrate in which a transparent conductive film 12 is applied on a transparent resin film 11. The material of the transparent resin film 11 is polyethylene naphthalate,
Polyethylene terephthalate, polyethylene sulfide, polyvinyl fluorate and the like are used. Examples of the material of the transparent conductive film 12 include ITO, tin oxide, and zinc oxide. In this configuration, light can be incident from the substrate side. FIG. 2B is an example of a substrate in which a conductive film 14 is provided on a resin film 13. When this substrate is used, light is incident from the a-Si-based film side.
14 enables material selection with a wide degree of freedom without considering transmittance. For example, when a polyimide-based resin film is used for the resin film 13, the heat resistance is improved and the temperature at the time of film formation is increased to increase the a-
The film quality of the Si-based film can be improved. Figure (c) shows a metal film.
This is an example in which 15 is used for the substrate. The substrate 15 is made of a film of stainless steel, aluminum, copper, or the like, and can be used as an electrode having high conductivity. Further, heat resistance and environmental resistance can be enhanced. Figure (d) shows the metal film 15.
This is an example of a substrate on which an insulating film 16 and a conductive film 14 are provided.
In the case of the substrate shown in FIG. (C), a series structure cannot be formed on the same substrate, but in the case of the substrate shown in FIG. (D), a series structure can be obtained by providing an insulating film. Examples of the material of the insulating film include silicon oxide. Needless to say, a series structure can be applied to the substrates shown in FIGS. Note that the time required for forming the transparent conductive film 12, the conductive film 14, and the insulating film 16 is shorter than the time for forming the thin film of the a-Si-based material. It is more advantageous to form the film.

【0024】本発明による製造方法あるいは製造装置
は、図5に示したような可撓性基板1側から光が入射す
る薄膜太陽電池に限らず、図17のように表面に金属電極
層29を被着した可撓性基板1の上に、図5と逆の順序で
各層を積層し、光が基板1と反対の側から入射する多層
構造薄膜太陽電池に対しても適用することができる。
The manufacturing method or the manufacturing apparatus according to the present invention is not limited to the thin film solar cell in which light is incident from the flexible substrate 1 side as shown in FIG. 5, but the metal electrode layer 29 is formed on the surface as shown in FIG. Each layer is laminated on the attached flexible substrate 1 in the reverse order of FIG. 5, and the present invention can also be applied to a multilayer thin film solar cell in which light enters from the side opposite to the substrate 1.

【0025】[0025]

【発明の効果】本発明によれば、停止した可撓性基板に
壁をシール材を介して密着させて形成する気密の成膜室
内で成膜したのち、その成膜室壁などを離した状態で基
板を次の成膜位置まで移動させて多層構造の成膜を行
う。これにより次の効果が得られた。すなわち、各成膜
室の気密性が向上し、他の成膜室からの原料ガスの混入
を防げる。また、各成膜室の大きさを任意に設計でき、
圧力、成膜時間などの条件を成膜室ごとに独立して設定
できる。搬送時に基板との接触部を浮かせることによ
り、基板や膜の損傷を防げる。また、多層の膜を作成で
きる成膜室を設けることができ、あるいは、移動して基
板移動ラインに入る成膜室を設けることにより、多層構
造のデバイスを作成する場合、装置の小型化と作成時間
の短縮が図れる。さらに、基板を鉛直に立てることによ
り成膜室の壁面などからの塵埃の影響を軽減できる。こ
の結果、可撓性基板上に多層構造をもつ高変換効率の薄
膜光電変換素子を高い生産性で製造することができる。
According to the present invention, a film is formed in an air-tight film-forming chamber formed by closely attaching a wall to a stopped flexible substrate via a sealing material, and then the film-forming chamber wall and the like are separated. In this state, the substrate is moved to the next film formation position to form a multilayer structure. As a result, the following effects were obtained. That is, the airtightness of each film forming chamber is improved, and the mixing of the source gas from another film forming chamber can be prevented. In addition, the size of each deposition chamber can be arbitrarily designed,
Conditions such as pressure and deposition time can be set independently for each deposition chamber. The substrate and the film can be prevented from being damaged by floating the contact portion with the substrate during transfer. In addition, it is possible to provide a film formation chamber capable of forming a multilayer film, or to provide a film formation chamber which moves and enters a substrate moving line, thereby reducing the size and size of the apparatus when a device having a multilayer structure is formed. Time can be reduced. Further, by setting the substrate upright, the influence of dust from the wall surface of the film formation chamber can be reduced. As a result, a thin-film photoelectric conversion element having a high conversion efficiency and having a multilayer structure on a flexible substrate can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の成膜装置の水平断面図FIG. 1 is a horizontal sectional view of a film forming apparatus according to one embodiment of the present invention.

【図2】従来の成膜装置の断面図FIG. 2 is a cross-sectional view of a conventional film forming apparatus.

【図3】従来の電極層形成のためのスパッタ装置の断面
FIG. 3 is a cross-sectional view of a conventional sputtering apparatus for forming an electrode layer.

【図4】別の従来の成膜装置の断面図FIG. 4 is a cross-sectional view of another conventional film forming apparatus.

【図5】本発明により製造される多層構造太陽電池の断
面構造図
FIG. 5 is a sectional structural view of a multilayer solar cell manufactured according to the present invention.

【図6】図4の太陽電池製造のための従来の成膜装置の
構成図
FIG. 6 is a configuration diagram of a conventional film forming apparatus for manufacturing the solar cell of FIG.

【図7】本発明の一実施例の基板支持、搬送機構を示
し、(a) は成膜時、(b) は搬送時の水平断面図
FIGS. 7A and 7B show a substrate support and transfer mechanism according to an embodiment of the present invention, wherein FIG. 7A is a horizontal sectional view during film formation and FIG.

【図8】本発明の別の実施例の基板支持、搬送機構を示
し、(a) は成膜時、(b) は搬送時の水平断面図
8A and 8B show a substrate support and transfer mechanism according to another embodiment of the present invention, wherein FIG. 8A is a horizontal sectional view at the time of film formation and FIG.

【図9】別の本発明の一実施例の成膜装置の水平断面図FIG. 9 is a horizontal sectional view of a film forming apparatus according to another embodiment of the present invention.

【図10】本発明の他の実施例の成膜装置の水平断面図FIG. 10 is a horizontal sectional view of a film forming apparatus according to another embodiment of the present invention.

【図11】本発明の他の実施例の成膜装置の水平断面図FIG. 11 is a horizontal sectional view of a film forming apparatus according to another embodiment of the present invention.

【図12】図9の成膜装置の基板支持、搬送機構を示し、
(a) は成膜時、(b) は搬送時の水平断面図
12 shows a substrate supporting and transporting mechanism of the film forming apparatus of FIG. 9,
(a) is a horizontal sectional view during film formation, (b) is a horizontal sectional view during transport.

【図13】図12 (a)、(b) のA−A線断面をそれぞれ(a)
、(b) に示す断面図
13 is a sectional view taken along line AA of FIGS. 12 (a) and 12 (b), respectively.
Sectional view shown in (b)

【図14】図5の太陽電池製造のための本発明の他の実施
例の成膜装置の構成図
14 is a configuration diagram of a film forming apparatus according to another embodiment of the present invention for manufacturing the solar cell in FIG.

【図15】さらに別の本発明の一実施例の成膜装置および
その運転方法を(a) から(d) までの順に示す垂直断面図
FIG. 15 is a vertical sectional view showing a film forming apparatus according to still another embodiment of the present invention and an operation method thereof in the order of (a) to (d).

【図16】本発明の実施例に用いられる各種可撓性基板を
(a) 、(b) 、(c) 、(d) に示す断面図
FIG. 16 shows various flexible substrates used in the embodiments of the present invention.
Sectional views shown in (a), (b), (c) and (d)

【図17】本発明により製造される多層構造太陽電池の断
面図
FIG. 17 is a cross-sectional view of a multilayer solar cell manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1 可撓性基板 2 搬入ロール 3 搬出ロール 4 搬送ローラ 5 プラズマ 51 高電圧電極 52 接地電極 6 基板ヒータ 7 排気系 70 ガス導入管 71 排気管 8 反応室壁 81 シール材 82 シールローラ 11 透明樹脂フィルム 12 透明導電膜 13 樹脂フィルム 14 導電膜 15 金属フィルム 16 絶縁膜 20 搬入室 30 搬出室 31 p層成膜室 32 i層成膜室 33 n層成膜室 35 予備室 39 電極層成膜室 61、62 移動成膜室 REFERENCE SIGNS LIST 1 flexible substrate 2 carry-in roll 3 carry-out roll 4 transport roller 5 plasma 51 high-voltage electrode 52 ground electrode 6 substrate heater 7 exhaust system 70 gas introduction pipe 71 exhaust pipe 8 reaction chamber wall 81 sealant 82 seal roller 11 transparent resin film REFERENCE SIGNS LIST 12 transparent conductive film 13 resin film 14 conductive film 15 metal film 16 insulating film 20 carry-in room 30 carry-out room 31 p-layer film forming room 32 i-layer film forming room 33 n-layer film forming room 35 preliminary room 39 electrode layer film forming room 61 , 62 Moving film formation chamber

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−99778(JP,A) 特開 昭60−12735(JP,A) 特開 昭63−282274(JP,A) 特開 昭60−30124(JP,A) 特開 昭57−122581(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 H01L 21/205 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-99778 (JP, A) JP-A-60-12735 (JP, A) JP-A-63-282274 (JP, A) JP-A-60-1985 30124 (JP, A) JP-A-57-122581 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 31/04 H01L 21/205

Claims (22)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】帯状可撓性基板の上に複数の異なる性質の
薄膜を積層して少なくとも光電変換層を形成する薄膜光
電変換素子の製造方法において、 一線上に配列された複数の成膜室に可撓性基板を通し、
基板の出入口に基板にシール材を介して密着する壁によ
って気密に保たれた成膜室内の所定の真空雰囲気内で停
止した状態の基板の表面上に成膜し、ついで成膜室壁か
ら離した状態の基板を次の成膜位置まで搬送する操作を
繰り返すことを特徴とする薄膜光電変換素子の製造方
法。
1. A method for manufacturing a thin film photoelectric conversion element, wherein at least a photoelectric conversion layer is formed by laminating a plurality of thin films having different properties on a strip-shaped flexible substrate, a plurality of film forming chambers arranged in a line. Through a flexible substrate,
A film is formed on the surface of the substrate stopped in a predetermined vacuum atmosphere in the film forming chamber which is kept airtight by a wall which is in close contact with the substrate via a sealing material at the entrance of the substrate, and then separated from the film forming chamber wall. A method for manufacturing a thin-film photoelectric conversion element, comprising repeating an operation of transporting a substrate in a state where the substrate has been formed to a next film forming position.
【請求項2】光電変換層の形成後、後続の成膜室で電極
層を成膜する請求項1記載の薄膜光電変換素子の製造方
法。
2. The method according to claim 1, wherein the electrode layer is formed in a subsequent film forming chamber after the formation of the photoelectric conversion layer.
【請求項3】各成膜室が一つの包括真空室の中に配置さ
れた請求項1あるいは2記載の薄膜光電変換素子の製造
方法。
3. The method for manufacturing a thin film photoelectric conversion element according to claim 1, wherein each of the film forming chambers is arranged in one comprehensive vacuum chamber.
【請求項4】各成膜室の間に予備室を配置し、各成膜室
および予備室をそれぞれ真空排気する請求項1あるいは
2記載の薄膜光電変換素子の製造方法。
4. The method for manufacturing a thin film photoelectric conversion device according to claim 1, wherein a preparatory chamber is arranged between each of the film forming chambers, and each of the film forming chambers and the preparatory chamber is evacuated.
【請求項5】基板面が鉛直面内にある請求項1ないし4
のいずれかに記載の薄膜光電変換素子の製造方法。
5. A substrate according to claim 1, wherein said substrate surface is in a vertical plane.
The method for producing a thin-film photoelectric conversion element according to any one of the above.
【請求項6】成膜室内で基板に接触する電極と基板の成
膜面に対向する電極との間に電圧を印加して成膜し、基
板搬送時に基板に接触していた電極を基板より離す請求
項1ないし5のいずれかに記載の薄膜光電変換素子の製
造方法。
6. A film is formed by applying a voltage between an electrode in contact with a substrate and an electrode facing a film-forming surface of the substrate in a film-forming chamber, and the electrode in contact with the substrate when the substrate is transported is removed from the substrate. A method for manufacturing a thin-film photoelectric conversion device according to any one of claims 1 to 5.
【請求項7】基板が一面に導電膜を被着した樹脂フィル
ムである請求項1ないし6のいずれかに記載の薄膜光電
変換素子の製造方法。
7. The method for manufacturing a thin-film photoelectric conversion element according to claim 1, wherein the substrate is a resin film having a conductive film adhered on one surface.
【請求項8】基板が金属フィルムである請求項1ないし
6のいずれかに記載の薄膜光電変換素子の製造方法。
8. The method according to claim 1, wherein the substrate is a metal film.
【請求項9】基板が一面に絶縁膜を介して導電膜を被着
した金属フィルムである請求項1ないし6のいずれかに
記載の薄膜光電変換素子の製造方法。
9. The method for manufacturing a thin-film photoelectric conversion element according to claim 1, wherein the substrate is a metal film having a conductive film attached on one surface via an insulating film.
【請求項10】帯状可撓性基板の上に複数の異なる性質
の薄膜を積層して少なくとも光電変換層を形成する薄膜
光電変換素子の製造装置において、 包括真空室の長手方向の両端近くにそれぞれ配置された
ロールを備え、その包括真空室内を断続して一方のロー
ルから巻きほぐされ他方のロールへ巻きとることのでき
る可撓性基板の通る複数の成膜室を有し、各成膜室は基
板の出入口で基板にシール材を介して密着する壁によっ
て区切られ、その成膜室壁のシール材は基板から離れる
位置まで退避可能であり、包括真空室および各成膜室が
それぞれ別個の排気系に接続されたことを特徴とする薄
膜光電変換素子の製造装置。
10. An apparatus for manufacturing a thin film photoelectric conversion element in which at least a photoelectric conversion layer is formed by laminating a plurality of thin films having different properties on a strip-shaped flexible substrate, wherein: A plurality of film-forming chambers, each having a plurality of film-forming chambers, each of which has a roll disposed thereon, and has a plurality of film-forming chambers through which a flexible substrate that can be unwound from one of the rolls and wound up on the other roll by intermittently intermittently passing through the comprehensive vacuum chamber. Is separated by a wall that is in close contact with the substrate via a sealing material at the entrance and exit of the substrate, and the sealing material on the film forming chamber wall can be retracted to a position away from the substrate, and the comprehensive vacuum chamber and each film forming chamber are separately provided. An apparatus for manufacturing a thin-film photoelectric conversion element connected to an exhaust system.
【請求項11】帯状可撓性基板の上に複数の異なる性質
の薄膜を積層して少なくとも光電変換層を形成する薄膜
光電変換素子の製造装置において、 一端の搬入室および他端の搬出室にそれぞれロールが配
置され、断続して搬入室のロールから巻きほぐされ搬出
室のロールに巻きとることのできる可撓性基板の通る複
数の成膜室および各二つの成膜室間の予備室が一線上に
配列され、各成膜室と隣室との間は基板の出入口で基板
にシール材を介して密着する壁によって区切られ、その
成膜室壁のシール材は基板から離れる位置まで退避可能
であり、搬入室、搬出室、各成膜室および各予備室がそ
れぞれ別個の排気系に接続されたことを特徴とする薄膜
光電変換素子の製造装置。
11. An apparatus for manufacturing a thin-film photoelectric conversion element in which at least a photoelectric conversion layer is formed by laminating a plurality of thin films having different properties on a strip-shaped flexible substrate, wherein a loading chamber at one end and a loading chamber at the other end are provided. Rolls are arranged, and a plurality of film forming chambers through which a flexible substrate can be intermittently unwound from the rolls in the loading chamber and wound around the rolls in the unloading chamber, and a spare chamber between the two film forming chambers are provided. It is arranged in a line, and the wall between each deposition chamber and the adjacent chamber is separated by a wall that is in close contact with the substrate via a sealing material at the entrance of the substrate, and the sealing material on the wall of the deposition chamber can be retracted to a position away from the substrate Wherein the carry-in room, carry-out room, each film forming room, and each spare room are connected to separate exhaust systems, respectively.
【請求項12】成膜室の一部が基板の進行方向に垂直に
隣接し、隣接方向に移動可能で一室が基板の通る位置に
あるとき他室が退避位置にある二室からなる請求項10
あるいは11記載の薄膜光電変換素子の製造装置。
12. A method according to claim 1, wherein a part of the film forming chamber is vertically adjacent to the direction of travel of the substrate, and the two chambers are movable in the adjacent direction and one of the chambers is located at a position where the substrate passes and the other is at a retracted position. Item 10
Alternatively, the apparatus for manufacturing a thin-film photoelectric conversion element according to 11.
【請求項13】各成膜室に基板に接触し、基板から離れ
た位置まで退避可能の電極と、その電極の対向電極とを
備える請求項10,11あるいは12記載の薄膜光電変
換素子の製造装置。
13. A thin-film photoelectric conversion element according to claim 10, wherein each of the film forming chambers comprises an electrode which is in contact with the substrate and which can be retracted to a position distant from the substrate, and a counter electrode of the electrode. apparatus.
【請求項14】両ロールの軸および両電極の電極面が鉛
直である請求項13記載の薄膜光電変換素子の製造装
置。
14. The apparatus according to claim 13, wherein the axes of both rolls and the electrode surfaces of both electrodes are vertical.
【請求項15】互いに平行に対向する二つの平板電極の
一方に高電圧を印加し、他方を接地して両電極間の反応
空間内にプラズマを発生させ、反応ガスを分解して可撓
性基板上に薄膜を堆積させるプラズマCVD法におい
て、反応空間を平行平板電極と側壁と絶縁物との密着、
もしくは平行平板電極と側壁と絶縁物とシール材との密
着によって囲み、可撓性基板が貫通する密閉空間として
の成膜室を形成し、高電圧電極の反反応空間側を大気に
接触させることを特徴とするプラズマCVD法。
15. A high voltage is applied to one of two plate electrodes opposed to each other in parallel, and the other is grounded to generate plasma in a reaction space between the two electrodes, thereby decomposing a reaction gas to obtain a flexible material. In a plasma CVD method for depositing a thin film on a substrate, a reaction space is formed between a parallel plate electrode, side walls and an insulator,
Alternatively, form a film-forming chamber as a closed space through which the flexible substrate penetrates by surrounding the parallel plate electrode, the side wall, the insulator, and the sealant in close contact with each other, and bring the anti-reaction space side of the high-voltage electrode into contact with the atmosphere. A plasma CVD method characterized by the above-mentioned.
【請求項16】互いに対向する二つの平板電極と側壁と
絶縁物とによって密着形成され、もしくは互いに対向す
る二つの平板電極と側壁と絶縁物とシール材とによって
密着形成されガス導入管およびガス排気管が接続された
成膜室が包括真空室内に設置され、その成膜室を一方の
電極に近接して貫通する可撓性性基板の送り出し機構お
よび巻き取り機構もその包括真空室内に存在することを
特徴とするプラズマCVD装置。
16. A gas introduction pipe and a gas exhaust formed by closely contacting two plate electrodes, side walls, and an insulator facing each other, or tightly formed by two plate electrodes, side walls, an insulator, and a sealing member facing each other. A film forming chamber to which a tube is connected is installed in the comprehensive vacuum chamber, and a feeding mechanism and a winding mechanism of a flexible substrate that penetrate the film forming chamber in proximity to one electrode also exist in the general vacuum chamber. A plasma CVD apparatus characterized by the above-mentioned.
【請求項17】可撓性基板の送り出し機構が搬入ロール
であり、巻き取り機構が搬出ロールである請求項16記
載のプラズマCVD装置。
17. The plasma CVD apparatus according to claim 16, wherein the sending-out mechanism of the flexible substrate is a carry-in roll, and the winding mechanism is a carry-out roll.
【請求項18】二つの平板電極のうちの高電圧電極の外
面が大気中に露出した請求項16あるいは17記載のプ
ラズマCVD装置。
18. The plasma CVD apparatus according to claim 16, wherein the outer surface of the high-voltage electrode of the two plate electrodes is exposed to the atmosphere.
【請求項19】高電圧電極の大気中に露出する面を覆っ
て接地電位のシールド材を備えた請求項18記載のプラ
ズマCVD装置。
19. The plasma CVD apparatus according to claim 18, further comprising a ground potential shielding material covering a surface of the high voltage electrode exposed to the atmosphere.
【請求項20】成膜室の側壁が導電性であり、高電圧電
極と絶縁されて接地された請求項16ないし19のいず
れかに記載のプラズマCVD装置。
20. The plasma CVD apparatus according to claim 16, wherein a side wall of the film forming chamber is conductive, and is insulated from the high-voltage electrode and grounded.
【請求項21】成膜室が複数である請求項16ないし2
0のいずれかに記載のプラズマCVD装置。
21. The method according to claim 16, wherein a plurality of film forming chambers are provided.
0. The plasma CVD apparatus according to any one of the above.
【請求項22】各二つの成膜室が側壁を共通にして隣接
する請求項21記載のプラズマCVD装置。
22. The plasma CVD apparatus according to claim 21, wherein each of the two film forming chambers is adjacent to each other with a common side wall.
JP05097429A 1992-07-24 1993-04-23 Method and apparatus for manufacturing thin film photoelectric element, plasma CVD method and plasma CVD apparatus Expired - Lifetime JP3079830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05097429A JP3079830B2 (en) 1992-07-24 1993-04-23 Method and apparatus for manufacturing thin film photoelectric element, plasma CVD method and plasma CVD apparatus

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP19732192 1992-07-24
JP28479192 1992-10-23
JP1712493 1993-02-04
JP4-284791 1993-02-04
JP4-197321 1993-02-04
JP5-17124 1993-02-04
JP05097429A JP3079830B2 (en) 1992-07-24 1993-04-23 Method and apparatus for manufacturing thin film photoelectric element, plasma CVD method and plasma CVD apparatus

Publications (2)

Publication Number Publication Date
JPH06291349A JPH06291349A (en) 1994-10-18
JP3079830B2 true JP3079830B2 (en) 2000-08-21

Family

ID=27456717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05097429A Expired - Lifetime JP3079830B2 (en) 1992-07-24 1993-04-23 Method and apparatus for manufacturing thin film photoelectric element, plasma CVD method and plasma CVD apparatus

Country Status (1)

Country Link
JP (1) JP3079830B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045582B3 (en) 2005-09-23 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for continuous vapor deposition under atmospheric pressure and their use
JP2009038277A (en) * 2007-08-03 2009-02-19 Fuji Electric Systems Co Ltd Apparatus for manufacturing thin-film laminated member
JP2009038276A (en) * 2007-08-03 2009-02-19 Fuji Electric Systems Co Ltd Apparatus for manufacturing thin-film laminated member
EP2020392B1 (en) * 2007-08-03 2013-10-23 Fuji Electric Co., Ltd. Apparatus for manufacturing thin-film laminated member
US7972898B2 (en) * 2007-09-26 2011-07-05 Eastman Kodak Company Process for making doped zinc oxide
TWI481054B (en) * 2008-07-25 2015-04-11 Ulvac Inc Thin film solar cell manufacturing equipment and manufacturing method, and thin film solar cell
EP2368860A1 (en) * 2010-03-01 2011-09-28 Saint-Gobain Glass France Method and device for substrate processing
JP2012256637A (en) * 2011-06-07 2012-12-27 Philtech Inc Film growth apparatus and manufacturing apparatus of solar cell

Also Published As

Publication number Publication date
JPH06291349A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
US5364481A (en) Apparatus for manufacturing a thin-film photovoltaic conversion device
JP2714247B2 (en) Method and apparatus for continuously forming large-area functional deposited film by microwave plasma CVD
EP0406690B1 (en) Process for continuously forming a large area functional deposited film by microwave PCVD method and an apparatus suitable for practicing the same
US5514217A (en) Microwave plasma CVD apparatus with a deposition chamber having a circumferential wall comprising a curved moving substrate web and a microwave applicator means having a specific dielectric member on the exterior thereof
JPH0468390B2 (en)
JP3079830B2 (en) Method and apparatus for manufacturing thin film photoelectric element, plasma CVD method and plasma CVD apparatus
JP2722114B2 (en) Method and apparatus for continuously forming large-area functional deposition film by microwave plasma CVD
US20120285525A1 (en) Solar cell and method for manufacturing solar cell
WO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
US5897332A (en) Method for manufacturing photoelectric conversion element
JPH08298333A (en) Semiconductor coating film forming equipment, and thin film solar cell and forming method of thin film solar cell
JPH07231109A (en) Photovoltaic cell and method and apparatus for forming the cell
JP3560134B2 (en) Thin-film semiconductor manufacturing equipment
JP4126810B2 (en) Thin film solar cell manufacturing equipment
JP2722115B2 (en) Method and apparatus for continuously forming large-area functional deposition film by microwave plasma CVD
JPH11251609A (en) Photovoltaic element and its manufacture
JP2801498B2 (en) Thin film manufacturing equipment
JPH08195348A (en) Semiconductor device manufacturing equipment
JPH09213636A (en) This film forming device
JPH06204138A (en) Thin film forming method and thin film forming equipment and semiconductor element
JPS61110772A (en) Multi-layer thin film forming device
JP3069682B2 (en) How to clean the reaction chamber
JPH0563223A (en) Manufacture of non-single-crystal tandem-type solar battery and manufacturing apparatus used therefor
JP2815711B2 (en) Thin-film semiconductor device manufacturing equipment
JPH06204136A (en) Thin film forming method and thin film forming equipment and semiconductor element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

EXPY Cancellation because of completion of term