JPH0478137A - Heat treatment device system - Google Patents

Heat treatment device system

Info

Publication number
JPH0478137A
JPH0478137A JP19064990A JP19064990A JPH0478137A JP H0478137 A JPH0478137 A JP H0478137A JP 19064990 A JP19064990 A JP 19064990A JP 19064990 A JP19064990 A JP 19064990A JP H0478137 A JPH0478137 A JP H0478137A
Authority
JP
Japan
Prior art keywords
heat treatment
chamber
processing
treatment apparatus
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19064990A
Other languages
Japanese (ja)
Inventor
Yasumichi Suzuki
康道 鈴木
Yutaka Saito
裕 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19064990A priority Critical patent/JPH0478137A/en
Publication of JPH0478137A publication Critical patent/JPH0478137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform heat treatment on an object to be treated without forming any natural oxide film on the surface of the object by providing a pre-processing chamber for a cleaning process and heat treatment chamber and connecting the two chambers to a carrying chamber having a function which allows the object to be treated to move. CONSTITUTION:This heat treatment device system is constituted of three rooms of a pre-processing chamber 1, heat treatment chamber 2, and spare chamber 3, one carrying chamber 4, and two load locking chambers 5a and 5b for putting and taking out wafer in and from the chambers. A double gate valve 6 is installed to the joining section of each chamber. In the first-stage load locking chamber 5a, a wafer is set and replacement with, for example, a drying nitrogen gas is performed and, in the second-stage load locking chamber 5b, the wafer is heated and impurity gas is removed from the wafer. The wafer is then carried to the preprocessing chamber l from the carrying chamber 4 so as to remove a natural oxide film formed on the surface of the wafer. Then the wafer is moved to the next heat treatment chamber 2 where an oxide film is formed or annealing treatment is performed. The final chamber after the heat treatment is kept as a spare chamber 3.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は半導体素子等の製造工程で行なわれる熱処理の
装置システムに係シ、特に、処理の安定性を逼め半導体
素子等を製本するのに好適な熱処理装置システムに関す
る。
[Industrial Application Field] The present invention relates to a heat treatment system used in the manufacturing process of semiconductor devices, etc., and more particularly, to a heat treatment system suitable for increasing the stability of processing and binding semiconductor devices, etc. .

【従来の技術】[Conventional technology]

従来の熱処理装、fは、例えば油田和男著「最新LSI
プロセス技術」、工業調査公刊、1983年なる文献の
第128項、第152項一@154項に記載されている
ように、複数のクエハをホルダーに同方向−列に配置し
、ガラス製の円形の簡の中に挿入し次複数のクエハを、
反応ガスを流しt状態で円筒の周囲に配置し九と−タに
より被処理基板を加熱して熱も理を行なうものでりり、
クエハのセツティングは真空ピンセット、あるいは、大
気中で行なってい几。(この文献では横方向にし一タを
配置しているが縦方向でも良い)。 〔発明が解決しようとする課題〕 半導体製造工程の代表的な熱処理工程である熱酸化婁の
形成について考える。素子の集積度が増加するとともに
、制御するtw量は減少する。この微小な電荷を制御し
半導体の動作を安定にMM性艮ぐ行う九めには電荷の流
路となる基板の界面近傍の伏1が非常に安定しているこ
とが重要である。界面近傍に結晶欠陥、あるいは、荷電
粒子、金属等不純物の取り込みがあるとゲート電圧が再
現性よく均一に印加出来なくなりt5、リーク電流が増
加する。 この特性劣化り原因として熱処理前、あるいは熱処理中
に異物、あるいは、汚染がj!面近傍に付層し、その結
果表面の原子配列が乱れて転移が発生し九5.残留しt
異物等(特に荷電粒子)が界面に固定されゲート電極に
よる゛電界をシフトさせ几9、リーク電流の増加金引き
起こす。轡に、熱処理工程は被処理基板を高温にするた
め不純物等の拡散は速く、例えば、汚染の種類によって
は裏面に付層しt異物・汚染がH%理表面にまで容易に
拡散してしまう。従って、処理時の基板に異物が無いこ
とが重要で、かつ、H皇となる。さらに。 A拗、汚染以外に処遇基板のi面にできる自然酸化!s
も熱酸比肩に比較して僕買が憑い九め処】開始前に該自
然酸化1摸の#夫も必要でろる。 現状ラインは%酸化撲形底等の熱悠1のnKは酸洗浄、
アルカリ洗浄、水洗等を組合せることに二って自然酸化
膜:除去、汚染、異物の除去を行ない、面処理終了後、
一定時間内に熱処理を実施することで自然酸化膜の再形
成をできるだけ防止することで工程の管理を行なってい
る。例えば、Sl 、 Al 1%の酸化されやすい材
買の場合、gjr処理でるる洗浄終了後に空気の様な酸
素を含有する雰囲気中にさらしてしまうと洗浄した表面
は非常に活性化していることも手伝って容易(酸化膜を
形成してしまう。 本発明の第一の目的は信頼性の高い原子を形成するため
に被処理物の表面に自然酸化膜を形成させないで熱処理
を実現するtめの熱処理装置システムを与えることであ
る。 〔課題を解決するtめの手段] 上記本発明の目的を達成する九めに、本発明は被処理ウ
ェハを大気、あるいは、02.I20を含む雰囲気中に
さらすことなく、熱九理七行逢う。 この几めには、下記のことが重要である。 (1)  m処理終了侵−貫して02.I20を低濃度
に押えt雰囲気で彼九埋基板t’f理すること。 (2)  前処!終了後できるだけ待機時間t−≦くし
て熱感1工1ilを実施すること。また、後込埋が伴う
場合も屑様に待S時間を短縮すること。 (1) 、 (2)の処ff1Kより被処理基板の表面
に02゜I20が吸蒼し酸化IIIt−形成する1率を
非常に小さくでき、薄il!31に!s漠買劣化、コン
メクト導通不艮等の不良を防止する。 これを実現するには従来、前処理、熱処理等の処理ごと
に被処理基板を大気中に取りだし、次の処理装置に移し
変えてい九のをある一定の真空あるいは不活性ガス等で
満たされ几空間内t−経て被処理基板を移送する。この
不活性ガスを利用する場合は大気圧よりやや高く設定す
ることで外気からの制御していない雰囲気の混入を防止
する。あるいは、意図的に空間内に流れ金乍シ出す。こ
の時は、九とえ空l5iff内に異物等が混入した場合
でも、異物がこの空間内を浮遊しないようにクリーンル
ームと同様に、九とえば、上向きあるいはfR同きの被
処理基板に対して上方向から下方向に雰囲気ガスが流れ
るよりにする。同時に、この空間は空間を形成する壁面
の材料t−気体の吸IFあるいは吸蔵がしてくい材料を
使用し、使用前にベーキング等f7cj!J表面からの
ガスを十分だしておく。 ま之、前処暑終了から熱処理までの待機時間をできるだ
け垣くするため、処理室は出来るだけ近接させ複数処理
のそれぞれの処理TR1111Iを一定の時間に近づけ
る。九理m構の上でどうして4処理時間を揃えることが
出来2い場合は、処理時間の長い装置を複数1ii1設
置することで見かけ上の処jlIil?間を一定とする
ことで対応することができる。 この時のg&J11時間及び雰囲気の目安は次のように
考える。 分子量がM1分分圧のガスが単位面積、単位#間当りに
彼処M物1’c[突する分子数NはN−LSI Xl 
0 ”XPX(TM)−05(/cm’s’sa) (
1)となる。Tはガス温度を示す。 ここで、簡単化のtめI20と0□金−つのガスとみな
す。従って、M−15となる。上式をもとに付着する(
III20+O□)の分子層数りに、?=300にとす
ると L−itxloxp(pa)xz(sea)     
 I2)となる。 単結晶全形成しようとする場合の条件は、不純物の分圧
だけに依存するのでなぐ不I@物の種類、雰囲気温度等
にも関係するが、最低の条件は処理開始W&(不純物が
10−3yti以下でなければならない。従って、(2
)式は P(Pa)Xt(sea)≦t7x1o−’     
  (5)となる0例えば *送時間が10s・0とす
ると、(I20+02)の分圧はi、7X10Pa以下
が必要となる。 上記条件を満足するには、 各処31mには、ガス供給系のほかに独立の真臣糸、あ
るいはベーキング用のヒーメ七設ける。 各室はガスD吸層、吸蔵が少ないように表面伏線が非常
に滑らかでjil、蜜であること、さらに室内の*gが
単、l@でij!面積をできるだけ小さくすることが重
要である。さらに、各部屋は空間的に留金している導入
口に:は開閉a#を設ける。 〔作用〕 上記a旗において前処理の洗浄工楊までに:、被処理物
O表面の異物、汚染、さらに自然層化Sは除去され、!
1fi31基板の表面は非常に活性な状態になっている
。従って、雰囲気内の不純物が表面に付層すると化学的
に非常KM合しやすい、特に、雰囲気中の02.llI
20は81あるいは金属表面に付層すると容易にSiO
□等の酸化IIt形成する。 しかし、不発明のように、各室の表面aをできるだけ小
さくし、かつ、ヒータによるベーキングで不R物ガスの
吸着が少々り、まt、各室は大気中からガスを取り入れ
ることがない九め0□、 I20の分圧の低い雰囲気中
で、かつ、前処暑終了から短い待機時間で久の熱処!l
を開始できる。一方、そこで、熱処理開始時に彼処11
物は清浄な表面が確保でき、熟熱!lは再現性よく理想
的に行なわれる。その結果、#絶a摸凝買劣化、コンタ
クト導通不良等の歩留あるいは信頼性を低下させる1員
因はなくなる。特に、半導体製造工程の中の熱処理工程
のように半導体の性能金乍用する界を近傍の処to場合
、その影#は大きい。 〔実施例〕 以下、本発明の実施例t−纂1図から第8図により説明
する。 第1図は本発明の熱感aW装置システムの第一の実施例
の11gを示す説明図である。 本実施例の装置lは、第1図に示すよ5に前処理室1、
熱処理室2、予備室3の王室、搬送室4の一室、被、@
理物であるウェハを室に出し入れするロードロック:i
5a、5bの二基から成り立っている。また、各室の接
合部には二重のゲートバルブ6t−設置している。 第2図は本実施例の装置システム内のウェハの1送方向
を示している。 第31イ;ゲートバルブ部分全拡大しt説明図でるる。 処理if間は薄型の二組のゲートバルブ6゜7に;って
接続されており、このゲートパルプ閲に温さまれt空間
iCは真空引き用ボート8a、ガス導入用ボートabl
投σ、ベーク用Oヒーメ9が#!面に内、Iされて電f
iloが接続されている。 各室に4h同様にベーク用のヒータ、あるいは、ランプ
が設置されているe、また各室は独立構成とする力め真
空系等の付属品全IiI膚にもってお夕、制御ユニット
と共に各室金支える架8yc取付けてできるf:け一体
化し、各室はIE源屑と制御用配線、排気用とガス供給
用配管t′Ri、り外すことで室全体を装置・システム
から容易に171.!7aすことがで惠る。 一般に、被処理ウェハは任意の枚数を一単位とし念ブロ
ック単位でウェハ専用ケースに収容されて処理工程IW
Uft移動させる。この移動の際、ウニへB面は雰囲気
中の820,0□に毅して物理的な吸7ftするか、あ
るいは化学的な吸着として自然酸化ate底する。自然
酸化膜は安定な状態であるが、吻】的に吸着し几ガスは
常に脱着する可能性がゐる。従って、ガスの膏!しt伏
量のまオでウェハを熱、!&jt’ステムO室内に取)
入れていくと。 室内の不偽物のガスa夏、あるいは、壁面への吸漕ガス
a度が高まる危険性がある。そこで、ロードロック室5
fI:二重として前段のロードロック室51ではカセッ
トケースに収納されtウェハt−投宣し、例えば、乾桑
窒素ガスとの置換全行なり九f&で為、あるXAは、1
襞、真空排気を十分に行ない雰囲気から取り込まれ之不
lII@物ガスatLをできるだけ低く押える。この処
lO後、ウェハを一枚づつ、あるいは数枚を一単位とし
て後段のロードロック室5bに移送する。ここでは、と
−タちるいはランプによってウェハを加熱し表面に吸着
しt不、@物ガスを脱着させる。このようなロードロッ
ク室5での処yss了後、ウェハを搬送室5に導入でき
る。 搬送!!4の搬送アーム等の輸送手段を経てウェハは前
処理室1に運ばれる。前処理室1では、自然酸化aO線
除去”行なう。但し、本処理はウェハがシステムに導入
されるときに異物・汚染が除去されていること金創提と
している5もし、面処理室1にウェハ′Jt4人しt時
点で異物・汚染が残っていが場合には、#処理室1では
異物・汚染の除去工s11付加しなければならない。 次の熱処理室2に移送さ几たウェハはランプ等の加熱に
工って酸化S形成、あるいは、アニール処理i行2う。 熱処理の開始時に、クエ/・には異物・汚染のけ着がな
く、3然酸化、Jlも除去して洗浄な:lR面が得られ
ているため、熱@理工程に伴い汚染が拡散し、界面特性
が変動しfF−9,絶縁特性が劣化しtりする現象?:
防止できる。この九】(より熱処理工程は完了するが、
熱燻lシステムでは予需室Sが残つている。 熱処理後の最後の一室は二通りの使い方が考えられる。 一つは予備室としての使い方である。処理室が故障しな
いこと、掃除が不要なことは、】想的なことであるがこ
れt完全に実現することは離しい。そこで本システムの
場合、二つの処理室のうち故障率または掃#列度が羅い
処m*を用意して予備室とする。但し、このシステムの
場合、室が王室しか設置できないsgとなっている几め
、二つの処理室に対して一つの予Sl室しか設けられな
いが、量産等を考えt場合、二つの予fa室を設けるこ
とが必要である。 萬4図は処理室数を増やすためKJI送′Mを直列(並
べた4のである。 第5図は処!1室数を増やす几めに搬送室を多角構造と
している。ま7t%前述の実施例ではウェハを出し入れ
する部分くロードロック室)は同一になってbるが、状
況に応じてロード室とアンロード室を別々に設けても良
い。 もう一つの使い方は予備室を成膜処理室に利用すること
である。例えば、厚い酸化膜等を形成する場合、熱処理
だけでは一般に時間がかかる九め熱酸比肩とCV D 
(Chwioal Vapor Depoiiitio
n)による絶a、St−層状に形成する。これによ5M
特性と生産性の向上を両立する生産が可能となる。 ここで、各空間には二重のゲートパルプが設けられてい
るが、通常のウェハ錫塩を行なう際には、処理室1lI
K近いゲートパルプのみの開閉を行ない、搬送jlll
/C近いゲートパルプは開状態のままにしておく、:l
[KA茗が生じ几場合にのみ、両ゲートパルプと閉じ、
池の室を犬*にさらすことなく交換が可砺となる。(本
発明のように不RIklガスa度の低JRが必要な装置
システムでは、修1時に大2にさらし理室はすぐにクエ
ハ込1が可能な不純物レベルまで低減することは不可能
であシ、処理室単独でのべ一り、真空排気が必要なtめ
故陣時の処!としては処1室を交換する必要がある。)
しかし、二重のゲートパルプを設置しても室の交換後す
ぐにクエハ処理會開始することはできない。 なぜなら、二重のゲートパルプにはさまれた空間は大1
!cKIi= してしまう之め表面に不純物ガスが吸着
してシシ、この状1でパルプを開状態にしてしまうと不
純物ガスが処理室等を汚染する几めである。@麿物xt
−除去するtめ、込m室を交換後真空あるいは乾燥直素
ガスを流した雰囲気中でベーキング全行ない壁面の吸着
ガスを脱趨させる。処理終了後に熱旭at開始すること
で信頼性の高い処置が開始できる。 @6囮に、熱感!!速度が高くできす熱処理法としてウ
ェハの一括処理(バッジ)方式しか採用できない場合の
装置システムを示す。fIrIs理室1で洗室1れたウ
ェハは、ボート13t−経て搬送室14に運びこまれ、
搬送室14に設置され九二個のバッジ用熱込理室2 m
 + 2 bにかいる。例えば、熱処理i!21で熟熱
!をおこなっている間に前処】食終わったウェハを、順
次、熱処J13i2bに運び込む。このはこび込みが終
了後、熱錫塩室2bはaSSを開始し、一方、熱S1室
2&で熱処1室を終了したウェハはボート13t−通っ
て搬送室4を経て、予備室3、あるいは、ロードロック
室5へ運びたす。この構成に工りバッジ処理との併用で
も#!込理物であるウェハを大9CKさらすことなく連
続した処理が可能となる。 第7図は本発明の装置システムへのウェハ搬送を雰囲気
を制御したトンネルであるクリーントンネル14により
行なっ友場合のシ、ステム概llI図を示す。ここでは
、ウェハは始めからその周辺雰囲気を管埋している几め
、ロードロック室5の吸着ガスの除去等は不景となる。 従って、クリーントンネル14からゲートパルプを介し
てウェハの受ff#LのS相tもクロードロック室5が
委俊されている。池の構成Fi第1図で示した構成と同
様でhる。 第3図も第7図と同様にウェハ1送を雰囲気を制御しL
ドアネルであるクリーントンネル14に=9行なりt場
合のシステム説明図を示して−るつ但し、このシステム
では搬送室は表くクリーントンネル14にロードロック
室を介してI11!f!処】室が擬続されている。 〔発明の効果〕 (1)前処】終了後−貫して制御雰囲気内、籍KO□、
H2O1低濃[K禅え友雰囲気で彼処塩基板管管理する
こと。(2)前処理終了後できるだけ放置時間を短くし
て熟熱理工iiを実施すること。′を次、後込1が伴り
場合も同様に*ai時間を短期する。 (1) 、 (2)の処置に:5被処暑基板の表面に0
2゜f12oが吸着し酸化Xt形属する確率を非常に小
さくすることが出来る。 そこで、特に従来自然酸化、I!■形成によって誘発さ
れyt−11IAIA子の不良である自然酸化膜上に絶
縁s、を形成した場合O絶磁婁耐圧劣化(現象は特4C
Aljl化#に犬!lJ[K:+る。)等が防止で1、
その結果、半導体等の製品の(Pi類性および歩留iが
向上する。
The conventional heat treatment equipment, f, is used, for example, in Kazuo Yuta's ``Latest LSI
As described in paragraphs 128, 152 and 154 of the document titled "Process Technology", Industrial Research Publication, 1983, a plurality of wafers are placed in a holder in the same direction and in a row, and a glass circular Insert the following multiple queha into the card,
Heat treatment is performed by placing a reactant gas around a cylinder in a flowing state and heating the substrate to be processed with a heater.
Setting the wafer is done with vacuum tweezers or in the atmosphere. (In this document, the tassels are arranged horizontally, but they may also be arranged vertically.) [Problems to be Solved by the Invention] Consider the formation of a thermal oxidation layer, which is a typical heat treatment step in the semiconductor manufacturing process. As the degree of integration of elements increases, the amount of tw to control decreases. In order to control this minute charge and achieve stable MM operation of the semiconductor, it is important that the surface 1 near the interface of the substrate, which serves as a flow path for the charge, is extremely stable. If there are crystal defects or impurities such as charged particles or metals in the vicinity of the interface, the gate voltage cannot be applied uniformly with good reproducibility, resulting in an increase in leakage current at t5. The cause of this characteristic deterioration is foreign matter or contamination before or during heat treatment. 95. A layer is deposited near the surface, and as a result, the atomic arrangement on the surface is disturbed and dislocation occurs.95. remaining t
Foreign matter (particularly charged particles) is fixed at the interface and shifts the electric field due to the gate electrode, causing an increase in leakage current. On the other hand, since the heat treatment process raises the temperature of the substrate to be processed, the diffusion of impurities is fast.For example, depending on the type of contamination, foreign matter and contamination may be deposited on the back surface and easily diffuse to the surface of the substrate. . Therefore, it is important that there are no foreign substances on the substrate during processing, and this is important. moreover. A: In addition to contamination, natural oxidation occurs on the i-plane of the treated substrate! s
Even compared to hot acid, I am possessed by the 9th place] Before starting, you will also need a #husband of the natural oxidation. The current line is % oxidized bruise-shaped bottom etc. Netsuyu 1 nK is acid washed,
By combining alkaline cleaning, water washing, etc., natural oxide film removal, contamination, and foreign matter are removed, and after surface treatment is completed,
The process is controlled by performing heat treatment within a certain period of time to prevent the natural oxide film from re-forming as much as possible. For example, in the case of materials that are easily oxidized and contain 1% Sl and Al, if they are exposed to an oxygen-containing atmosphere such as air after GJR treatment, the cleaned surface may become highly activated. The first purpose of the present invention is to realize heat treatment without forming a natural oxide film on the surface of the workpiece in order to form highly reliable atoms. It is an object of the present invention to provide a heat treatment apparatus system. The following points are important in this method: (1) After the treatment is completed, the I20 is kept at a low concentration and buried in the atmosphere. (2) Pre-treatment!After completion of the heat treatment, the waiting time t-≦ should be kept as low as possible and heat sensing should be carried out.Also, if post-embedding is involved, the waiting time S should be reduced as much as possible. By using the processes (1) and (2), the rate at which 02°I20 is absorbed and forms IIIt-oxide on the surface of the substrate to be processed can be made very small, resulting in a thin film of 31%. This prevents defects such as deterioration and contact failure.To achieve this, conventionally, the substrate to be processed is taken out into the atmosphere after each treatment such as pretreatment and heat treatment, and then transferred to the next processing equipment. The substrate to be processed is transferred through a vacuum space filled with a certain amount of vacuum or inert gas, etc. When using this inert gas, the pressure is set slightly higher than atmospheric pressure so that it is not controlled from outside air. Prevent the atmosphere from getting mixed in. Or intentionally let the metal flow into the space. At this time, even if foreign matter gets into the space, make sure that the foreign matter does not float in the space. Similar to a clean room, for example, the atmospheric gas should flow from above to below against the substrate to be processed, which is the same as fR. Use IF or a material that is difficult to absorb, and remove sufficient gas from the surface by baking etc. before use.In order to minimize the waiting time from the end of pre-heating to heat treatment. , the processing chambers should be placed as close together as possible, and each process TR1111I of multiple processes should be brought close to a certain time.If it is not possible to align the four processing times based on the nine-dimensional structure, it is necessary to install multiple devices with long processing times. By installing 1ii1, what is the apparent result? This can be handled by keeping the interval constant. The approximate time and atmosphere for G&J11 at this time are as follows. A gas with a molecular weight of M1 partial pressure has a molecular weight of M1'c per unit area and a unit # of gas [the number of molecules N is N-LSI Xl]
0 ”XPX(TM)-05(/cm's'sa) (
1). T indicates the gas temperature. Here, for simplification, it is assumed that t I20 and 0□ gold gas. Therefore, it becomes M-15. Attach based on the above formula (
What is the number of molecular layers of III20+O□)? = 300, L-itxloxp(pa)xz(sea)
I2). The conditions when attempting to form a single crystal entirely depend not only on the partial pressure of the impurity, but also on the type of impurity, ambient temperature, etc., but the lowest conditions are W & (when the impurity is 10- It must be less than or equal to 3yti. Therefore, (2
) formula is P(Pa)Xt(sea)≦t7x1o-'
(5) 0 For example: *If the sending time is 10 s·0, the partial pressure of (I20+02) must be i,7×10 Pa or less. In order to satisfy the above conditions, in addition to the gas supply system, seven independent Shinomi yarns or heimes for baking will be installed at each 31m length. Each chamber has a very smooth surface foreshadowing so that there is little absorption and absorption of gas D, and furthermore, the *g in the room is single, and the l@ is ij! It is important to keep the area as small as possible. Furthermore, each room is provided with an opening/closing a# at the inlet which is spatially clamped. [Operation] In the above flag a, by the pre-treatment cleaning step: Foreign matter, contamination, and natural stratification S on the surface of the object to be treated O are removed, and!
The surface of the 1fi31 substrate is in a highly active state. Therefore, if impurities in the atmosphere are deposited on the surface, they are likely to chemically cause KM, especially 02. llI
20 is easily converted into SiO when deposited on 81 or a metal surface.
Forms oxide IIt such as □. However, unlike the invention, the surface a of each chamber is made as small as possible, and the adsorption of impurity gas is reduced by baking with a heater. Heat treatment in an atmosphere with low partial pressure of Me0□, I20 and in a short waiting time from the end of the pre-heat treatment! l
can be started. On the other hand, at the start of heat treatment, 11
You can ensure a clean surface for things and heat them up! 1 is ideally performed with good reproducibility. As a result, factors that reduce yield or reliability, such as deterioration caused by overexposure and defective contact conduction, are eliminated. In particular, the impact is large when the area where semiconductor performance is important, such as the heat treatment process in the semiconductor manufacturing process, is located nearby. [Example] Hereinafter, an example of the present invention will be explained with reference to FIGS. 1 to 8. FIG. 1 is an explanatory diagram showing 11g of the first embodiment of the thermal aW device system of the present invention. As shown in FIG. 1, the apparatus 1 of this embodiment includes a pretreatment chamber 1,
Heat treatment chamber 2, preliminary chamber 3 royal room, transfer chamber 4 room, covered, @
Load lock for moving physical wafers into and out of the chamber: i
It consists of two groups, 5a and 5b. Further, a double gate valve 6t is installed at the joint of each chamber. FIG. 2 shows one feeding direction of the wafer within the apparatus system of this embodiment. 31st A: Entirely enlarged explanatory view of the gate valve. The processing space is connected to two sets of thin gate valves 6゜7; the space iC heated by the gate pulp is heated by a vacuum boat 8a, a gas introduction boat abl.
Throwing σ, O heate 9 for baking is #! Inside the plane, electric f
ilo is connected. Each room is equipped with a baking heater or lamp, and each room is equipped with an independent vacuum system and other accessories. The metal support rack 8yc is attached to form a single frame, and each chamber can be easily separated from the equipment/system by removing the IE source scrap, control wiring, exhaust and gas supply piping t'Ri. ! 7a You can be proud by doing something. Generally, an arbitrary number of wafers to be processed are stored in a wafer-dedicated case in block units, and the processing step IW is carried out.
Move Uft. During this movement, the B side of the sea urchin is either physically absorbed by 820,0 □ in the atmosphere or chemically adsorbed to form natural oxide ate. Although the natural oxide film is in a stable state, there is always a possibility that the gases adsorbed and desorbed. Therefore, gas plaster! Heating the wafer at a controlled rate! &jt' Stem O (taken inside the room)
As I put it in. There is a risk that the temperature of fake gas in the room or the suction gas on the wall will increase. Therefore, load lock chamber 5
fI: As a double load lock chamber 51 in the front stage, t wafers t- are stored in a cassette case, and for example, the entire replacement process with dry mulberry nitrogen gas is 9f&, so a certain XA is 1
Thoroughly perform vacuum evacuation to suppress the gas atL taken in from the atmosphere as low as possible. After this process, the wafers are transferred one by one or several wafers as a unit to the subsequent load lock chamber 5b. Here, the wafer is heated by a lamp and gases adsorbed onto the surface are desorbed. After completion of such processing in the load lock chamber 5, the wafer can be introduced into the transfer chamber 5. Transport! ! The wafer is transported to the preprocessing chamber 1 via transport means such as a transport arm 4. In the pre-processing chamber 1, natural oxidation aO ray removal is carried out. However, this process requires that foreign matter and contamination be removed when the wafer is introduced into the system. If there are any foreign matter or contamination left on the wafer at the time t, a foreign matter/contamination removal process s11 must be added in #processing chamber 1.The wafer transferred to the next heat treatment chamber 2 is heated by a lamp. etc., to form oxidized S, or perform annealing treatment i2.At the start of the heat treatment, there should be no foreign matter or contamination deposited on the surface of the surface, and natural oxidation and J1 should be removed and cleaned. :Since the 1R surface is obtained, contamination diffuses during the heat treatment process, and the interface characteristics change, resulting in fF-9 and insulation characteristics deteriorating.
It can be prevented. (9) (The heat treatment process is completed, but
In the hot smoking l system, a reserve room S remains. The last chamber after heat treatment can be used in two ways. One is how it can be used as a spare room. It is a fantasy that the processing chamber will not break down and that cleaning will not be necessary, but it is far from being fully realized. Therefore, in the case of this system, one of the two processing chambers with a higher failure rate or cleaning rate is prepared and used as a spare chamber. However, in the case of this system, only one pre-sl room can be set up for two processing rooms due to the fact that the chamber is a Sg that can only be installed in the royal family, but if mass production is considered, two pre-fa It is necessary to provide a room. In order to increase the number of processing chambers, Figure 4 shows 4 KJI conveyors arranged in series. In the embodiment, the portion for loading and unloading the wafer (load lock chamber) is the same, but the loading chamber and unloading chamber may be provided separately depending on the situation. Another way to use it is to use the preliminary chamber as a film-forming processing chamber. For example, when forming a thick oxide film, heat treatment alone generally takes a long time, compared to thermal oxidation and CVD.
(Chwioal Vapor Depoiiiitio
n) is formed into a St-layered structure. This is 5M
This enables production that balances improvements in characteristics and productivity. Here, each space is provided with double gate pulp, but when performing normal wafer tin salting, the processing chamber 1lI
Open and close only the gate near K and transport it.
Gate pulp near /C remains open, :l
[Only when KA 臠 occurs, both gates pulp and close,
It is now possible to replace the pond chamber without exposing it to dogs*. (In equipment systems such as the present invention, which require low JR with impurity gas a degree, it is impossible to expose the impurities to a level of 200 ml at the time of repair and immediately reduce the impurities to a level that allows for quenching in the laboratory. (Since the processing chamber alone requires vacuum evacuation, it is necessary to replace one chamber in case of failure.)
However, even if double gate pulp is installed, it is not possible to start the quefer processing session immediately after changing the chamber. This is because the space between the double gate pulps is large.
! If the pulp is left open in this state, the impurity gas will contaminate the processing chamber and the like. @maromono xt
- To remove the adsorbed gas from the walls, after replacing the chamber, perform baking in a vacuum or in an atmosphere flowing dry gas to remove the adsorbed gas from the walls. By starting heating after the treatment is completed, highly reliable treatment can be started. @6 Decoy, feeling the heat! ! This figure shows an equipment system in which only the batch processing (badge) method of wafers can be adopted as a fast heat treatment method. The wafers in the washing room 1 in the fIrIs laboratory 1 are carried to the transfer room 14 via a boat 13t.
A heated processing room for 92 badges installed in the transfer room 14 (2 m)
+ 2 Write to b. For example, heat treatment i! Fully heated at 21! While performing [Pre-process], the wafers that have been eaten are sequentially carried into the heat treatment J13i2b. After this infiltration is completed, the hot tin salt chamber 2b starts aSS, while the wafers that have finished the heat treatment in the heat S1 chamber 2& pass through the boat 13t, pass through the transfer chamber 4, and are transferred to the preliminary chamber 3 or , and transport it to loadlock room 5. This configuration can also be used in conjunction with badge processing! It is possible to perform continuous processing without exposing the wafer, which is a physical object, to 9CK. FIG. 7 shows a schematic diagram of a system in which wafers are transferred to the apparatus system of the present invention through a clean tunnel 14, which is a tunnel with a controlled atmosphere. In this case, it is difficult to remove the adsorbed gas in the load lock chamber 5, since the wafer is surrounded by an atmosphere from the beginning. Therefore, the S phase t of ff#L, which receives the wafer from the clean tunnel 14 via the gate pulp, is also directed to the Claude lock chamber 5. The structure of the pond is similar to the structure shown in FIG. In Fig. 3, the atmosphere is controlled for one wafer transfer as in Fig. 7.
An explanatory diagram of the system in the case where = 9 rows and t is shown in the clean tunnel 14 which is a door panel.However, in this system, the transfer chamber is transferred to the clean tunnel 14 via the load lock chamber to I11! f! [Process] The room is pseudo-continued. [Effects of the invention] (1) Preliminary section] After completion - in a controlled atmosphere throughout, KO□,
H2O1 low concentration [K Zeneyu atmosphere to manage the salt substrate pipe. (2) After the pretreatment is completed, the aging time should be kept as short as possible to carry out the aging process II. ′ is followed by 1 and the *ai time is similarly shortened. For treatment of (1) and (2): 0 on the surface of the heat-treated substrate.
The probability that 2°f12o is adsorbed and belongs to the oxidized Xt type can be made very small. Therefore, especially conventional natural oxidation, I! ■When an insulator is formed on a native oxide film, which is induced by the formation of a defective yt-11IAIA element, the breakdown voltage deteriorates (the phenomenon is caused by a special 4C
Aljilization #dog! lJ[K:+ru. ), etc. are prevented by 1,
As a result, the (Pi type property and yield i) of products such as semiconductors are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

纂1図は本発明の熱処理装置システムの第一の実施例の
構成を示す説aA図、第2図は第一の夷1例の熱処理装
置システムにおいて彼処M物であるウニへoa送方向全
示しt説明A1第5図は第一の実施例中の室間に簿人さ
れたゲートバルブの構成を示す説明図、44図は本発明
の熱処理装置システムO第二の実施例の構成金示す説明
図、纂5図は本発明の熱9&理装置システムの第三の実
施例の構成を示す説明図、纂6図は本発明の熱処理装置
システムの第四の実施例の構成を示す説明図、第7図は
本発明の熱処理装置システムO第五の実施例O構M、を
示す説明図、第8図は本発明の熱地m債fiシステムの
第六の実施例Oa成を示す説明図でjll:o3 1・・・切込S室、2・・・熱@’x′M、s・・・予
[室、蚤送室、5・−ロードロック室、6・・・ウェー
・ゲートバルブ、i3m、8b・・・吸 排気用ボー9
−・ヒータ、1コ・・・tri、、11・・・峯送室、
1処M呈、13・・・ボート、14・・−蚤送室、15
リーントンネル 4 ・・・ 7・・・ ト、 2・・・ 〜・・り
Figure 1 is an illustration showing the configuration of the first embodiment of the heat treatment system of the present invention, and Figure 2 is a diagram showing the structure of the first embodiment of the heat treatment system of the present invention. Figure 5 is an explanatory diagram showing the structure of the gate valve installed between the chambers in the first embodiment, and Figure 44 shows the structure of the heat treatment equipment system O of the second embodiment of the present invention. Explanatory diagrams, Figure 5 is an explanatory diagram showing the configuration of a third embodiment of the heat treatment equipment system of the present invention, and Figure 6 is an explanatory diagram showing the configuration of the fourth embodiment of the heat treatment equipment system of the present invention. , FIG. 7 is an explanatory diagram showing the configuration of the fifth embodiment of the heat treatment equipment system O of the present invention, and FIG. 8 is an explanatory diagram showing the configuration of the sixth embodiment Oa of the heat treatment equipment system of the present invention. In the diagram: o3 1... Cut S chamber, 2... Heat@'x'M, s... Pre-chamber, flea feeding chamber, 5... Load lock chamber, 6... Way... Gate valve, i3m, 8b... intake/exhaust bow 9
-・Heater, 1 piece...tri, 11...mine transport chamber,
1st place M presentation, 13...Boat, 14...-Flea delivery room, 15
Lean tunnel 4... 7... t, 2... 〜...ri

Claims (1)

【特許請求の範囲】 1、光、ヒータ等によ、被処理基板の表面近傍の温度を
上昇させることで、例えば、酸化・拡散、アニール等の
熱処理装置システムにおいて、熱処理の前に洗浄処理を
行なう前処理室と前記熱処理室をもち、さらに前記二室
間を被処理物の移動を可能とする機能をもつ搬送室に接
続されたことを特徴とする熱処理装置システム。 2、請求項1に記載の熱処理装置システムにおいて、 前処理終了時から熱処理開始までの時間を T(sec)、その間に前記被処理物が接触している雰
囲気中の(H_2O+O_2)の分圧tP(Pa)とす
る時、P×T≦1.5×10^−^6の関係が成り立つ
ように制御することを特徴とする熱処理装置システム。 3、請求項1または2に記載の熱処理システムにおいて
、前記搬送室は複数の前記前処理室への移送が可能な構
造である熱処理装置システム。 4、請求項1、2または3に記載の熱処理装置システム
において、前記搬送室に複数の前記熱処理室の接続が可
能な第二の搬送室を接続した熱処理装置システム。 5、請求項1、2、3または4に記載の熱処理装置シス
テムにおいて、前記処理室、前記搬送室の前記被処理物
を出し入れする開口部にそれぞれゲートパルプを設けた
熱処理装置システム。 6、請求項1、2、3、4または5に記載の熱処理装置
システムにおいて、処理室、搬送室はすべて独立した排
気系あるいはガス供給系を持っている熱処理装置システ
ム。 7、請求項5または6に記載の熱処理装置システムにお
いて、前記処理室相互間、前記搬送室相互間、あるいは
前記処理室と前記搬送室間に設けたゲートパルプが二重
であり、更に前記ゲートパルプの相互間の空間には排気
用あるいはガス供給用ボートとベーク用ヒータが内蔵さ
れた熱処理装置システム。 8、請求項7に記載の熱処理装置システムにおいて、通
常の熱処理工程では二重ゲートパルプの内どちらか一方
のみ駆動することを特徴とする熱処理装置システム。 9、請求項1、2、3、4、5、6、7または8に記載
の熱処理装置システムにおいて、前記処理室あるいは前
記搬送室のうち少なくとも一室に不活性ガスを連続して
流し続ける熱処理装置システム。 10、請求項1、2、3、4、5、6、7、8または9
に記載の熱処理装置システムにおいて、前記処理室ある
いは前記搬送室の少なくとも一室は真空排気装置をもち
、かつ、室が真空用構造である熱処理装置システム。 11、請求項1、2、3、4、5、6、7、8、9また
は10に記載の熱処理装置システムにおいて、前記処理
室あるいは前記搬送室の少なくとも一室は室のベーキン
グ手段としてヒータを設けた熱処理装置システム。
[Claims] 1. By raising the temperature near the surface of the substrate to be processed using light, a heater, etc., cleaning processing can be performed before heat processing, for example, in a heat processing equipment system for oxidation, diffusion, annealing, etc. What is claimed is: 1. A heat treatment apparatus system, comprising a pretreatment chamber for performing heat treatment and the heat treatment chamber, and further connected to a transfer chamber having a function of allowing movement of the object to be treated between the two chambers. 2. In the heat treatment apparatus system according to claim 1, the time from the end of the pretreatment to the start of the heat treatment is T (sec), during which time the partial pressure tP of (H_2O+O_2) in the atmosphere with which the object to be treated is in contact is A heat treatment apparatus system characterized in that control is performed so that the relationship of P×T≦1.5×10^-^6 holds when (Pa). 3. The heat treatment system according to claim 1 or 2, wherein the transfer chamber has a structure that allows transfer to a plurality of pretreatment chambers. 4. The heat treatment apparatus system according to claim 1, 2 or 3, wherein a second transfer chamber to which a plurality of the heat treatment chambers can be connected is connected to the transfer chamber. 5. The heat treatment apparatus system according to claim 1, 2, 3, or 4, wherein gate pulp is provided at each of the openings of the processing chamber and the transfer chamber through which the object to be processed is taken in and taken out. 6. The heat treatment apparatus system according to claim 1, 2, 3, 4 or 5, wherein the processing chamber and the transfer chamber all have independent exhaust systems or gas supply systems. 7. In the heat treatment apparatus system according to claim 5 or 6, the gate pulp provided between the processing chambers, between the transfer chambers, or between the processing chamber and the transfer chamber is double, and the gate A heat treatment system with a built-in exhaust or gas supply boat and a baking heater in the space between the pulps. 8. The heat treatment apparatus system according to claim 7, wherein only one of the double gate pulps is driven in a normal heat treatment process. 9. The heat treatment system according to claim 1, 2, 3, 4, 5, 6, 7, or 8, wherein the heat treatment is performed by continuously flowing an inert gas into at least one of the processing chamber or the transfer chamber. equipment system. 10.Claim 1, 2, 3, 4, 5, 6, 7, 8 or 9
The heat treatment apparatus system according to 1, wherein at least one of the processing chamber or the transfer chamber has a vacuum evacuation device, and the chamber has a vacuum structure. 11. The heat treatment apparatus system according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, wherein at least one of the processing chamber or the transfer chamber includes a heater as a baking means for the chamber. Heat treatment equipment system installed.
JP19064990A 1990-07-20 1990-07-20 Heat treatment device system Pending JPH0478137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19064990A JPH0478137A (en) 1990-07-20 1990-07-20 Heat treatment device system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19064990A JPH0478137A (en) 1990-07-20 1990-07-20 Heat treatment device system

Publications (1)

Publication Number Publication Date
JPH0478137A true JPH0478137A (en) 1992-03-12

Family

ID=16261599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19064990A Pending JPH0478137A (en) 1990-07-20 1990-07-20 Heat treatment device system

Country Status (1)

Country Link
JP (1) JPH0478137A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304197A (en) * 1992-04-27 1993-11-16 Hitachi Ltd Multi-chamber system
WO2000079580A1 (en) * 1997-12-24 2000-12-28 Asahi Kasei Microsystems Co., Ltd. Method of manufacturing semiconductor device
KR100276376B1 (en) * 1996-05-31 2001-01-15 가네꼬 히사시 Semiconductor manufacturing apparatus and thin film semiconductor device manufacturing method
JP2002058985A (en) * 2000-08-11 2002-02-26 Anelva Corp Heating and cooling apparatus and vacuum processor provided with this device
JP2002141293A (en) * 2000-08-22 2002-05-17 Asm Japan Kk Manufacturing method of semiconductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304197A (en) * 1992-04-27 1993-11-16 Hitachi Ltd Multi-chamber system
KR100276376B1 (en) * 1996-05-31 2001-01-15 가네꼬 히사시 Semiconductor manufacturing apparatus and thin film semiconductor device manufacturing method
WO2000079580A1 (en) * 1997-12-24 2000-12-28 Asahi Kasei Microsystems Co., Ltd. Method of manufacturing semiconductor device
US6593253B1 (en) 1997-12-24 2003-07-15 Asahi Kasei Microsystems Co., Ltd. Method of manufacturing semiconductor device
JP2002058985A (en) * 2000-08-11 2002-02-26 Anelva Corp Heating and cooling apparatus and vacuum processor provided with this device
JP2002141293A (en) * 2000-08-22 2002-05-17 Asm Japan Kk Manufacturing method of semiconductor
JP4753224B2 (en) * 2000-08-22 2011-08-24 日本エー・エス・エム株式会社 Gas line system

Similar Documents

Publication Publication Date Title
JPH05218176A (en) Heat treatment and transfer of article to be treated
JP3120395B2 (en) Processing equipment
US20040052618A1 (en) Semiconductor device producing apparatus and producing method of semiconductor device
JPH0555148A (en) Method and apparatus for multichamber-type single wafer processing
JPH06236854A (en) Thermal treatment apparatus
JPH01319944A (en) Method and apparatus for forming thin film on surface of semiconductor substrate
US20210358780A1 (en) High-throughput, multi-chamber substrate processing system
JPH0478137A (en) Heat treatment device system
US7416405B2 (en) Vertical type of thermal processing apparatus and method of using the same
JPS63109174A (en) Sheet-fed cvd device
JP2003115519A (en) Manufacturing method of semiconductor device, semiconductor manufacturing apparatus, load lock chamber, substrate storage case and stocker
JP2002100574A (en) System for processing substrate
JP4383636B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPH09115985A (en) Wafer transfer chamber and preheating method for wafer
JPS5833828A (en) Semiconductor surface treatment apparatus
JP2683673B2 (en) Vertical heat treatment equipment
JP2003100736A (en) Substrate treatment apparatus
JPS612330A (en) Processing equipment
JP2740849B2 (en) Vertical heat treatment equipment
JP2003142552A (en) Substrate treatment apparatus
JP2001053310A (en) Heat treatment equipment for galss substrate for thin- film solar cell
JPS62221107A (en) Treating apparatus
JPH05144795A (en) Cleaning method
JPH09181060A (en) Thin-film formation device
JPH0294627A (en) Heat treatment