JPH0677139A - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH0677139A
JPH0677139A JP3169056A JP16905691A JPH0677139A JP H0677139 A JPH0677139 A JP H0677139A JP 3169056 A JP3169056 A JP 3169056A JP 16905691 A JP16905691 A JP 16905691A JP H0677139 A JPH0677139 A JP H0677139A
Authority
JP
Japan
Prior art keywords
substrate
reaction
vacuum
chamber
reacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3169056A
Other languages
Japanese (ja)
Other versions
JPH0673347B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3169056A priority Critical patent/JPH0673347B2/en
Publication of JPH0677139A publication Critical patent/JPH0677139A/en
Publication of JPH0673347B2 publication Critical patent/JPH0673347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve temperature accuracy and mass-produce high quality semiconductor devices by providing a plurality of plasma reacting furnaces arranged in parallel in a common room so as to successively laminate a plurality of films on a substrate and permitting the degree of vacuum in the common room to be higher than the degree of vacuum in the reacting furnace. CONSTITUTION:A first reacting system 1 is provided with a first room 7, and a substrate and a holder 4 reciprocate between a reacting furnace 1 and the first room 7 by a shifting mechanism 12 provided in the first room 7. In the same manner, a second reacting furnace 42 and a third reacting furnace 43 are provided with shifting mechanisms 29 and 41. A common room 7 is provided for the first, second and third rooms and a first and a second preliminary rooms 8 and 35 are provided at the front entrance and rear exit of the common room so as not to introduce oxygen and water in the air into the reacting system. Since the manufacturing device takes the substrate into the vacuum common room 7 from the reacting furnace for each reaction, the vacuum degree in the common room is controlled to be higher than the vacuum degree in the reacting furnace in order to prevent reactive gas of each reacting system from entering into the reacting furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、グローまたはアーク放
電を利用したプラズマ気相法(PCVDと以下いう)に
より、安定して再現性のよい積層被膜を多量に作製する
ための製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing apparatus for producing a stable and reproducible laminated coating film in large quantities by a plasma vapor phase method (hereinafter referred to as PCVD) utilizing glow or arc discharge.

【0002】本発明は、PCVD装置に対し、反応系に
関してはプラズマ気相法における反応性気体が導入され
る反応筒内には電極その他のジグを設けず、被形成面を
有する基板とその基板ホルダ(例えば石英製のボート)
のみを導入し、反応性気体をラミナフロー(層流)とせ
しめることにより被膜厚を均一とし、さらに膜質もバッ
チ内、バッチ間でバラツキの少ない半導体膜を形成させ
るための製造装置に関する。
The present invention relates to a PCVD apparatus, a substrate having a surface to be formed, and a substrate on which the jig is not provided in a reaction cylinder into which a reactive gas in a plasma vapor phase method is introduced in a reaction system. Holder (eg quartz boat)
The present invention relates to a manufacturing apparatus for forming a semiconductor film having a uniform film thickness by introducing only gas and making a reactive gas a laminar flow (laminar flow), and further, forming a semiconductor film with less variation in film quality within and between batches.

【0003】[0003]

【従来の技術】一般にPCVD装置において、特に反応
力の強い珪素を主成分とする反応性気体であるシランま
たは珪素のハロゲン化物気体を用いる場合、反応筒例え
ば石英ガラス管の内壁およびホルダに吸着した酸素(空
気)および水分が珪化物気体と反応して、酸化珪素(低
級酸化珪素)を作り、半導体としての導電性を悪くして
いた。
2. Description of the Related Art Generally, in a PCVD apparatus, when a silane gas or a silicon halide gas, which is a reactive gas containing silicon as a main component, which has a particularly strong reactive power, is used, it is adsorbed on the inner wall of a reaction tube such as a quartz glass tube and a holder. Oxygen (air) and water react with the silicide gas to form silicon oxide (lower silicon oxide), which deteriorates the conductivity as a semiconductor.

【0004】本発明はかかる酸素、水分の反応炉への導
入を防止するため、この反応筒に連結して基板および基
板ホルダを保持または移動する機構を有する室を設け、
その生産性および特性の再現性の向上に務めた製造装置
に関する。
In order to prevent the introduction of such oxygen and moisture into the reaction furnace, the present invention provides a chamber having a mechanism for holding or moving the substrate and the substrate holder, which is connected to the reaction tube,
The present invention relates to a manufacturing device that has improved productivity and reproducibility of characteristics.

【0005】さらに、本発明はプラズマ放電電界が基板
表面に平行に(沿って)印加されるように電極を具備せ
しめ、活性の反応性生成物が被形成表面に垂直方向に衝
突して形成された半導体膜の特性を劣化させてしまうこ
とを防いでいることを他の目的としている。
Further, the present invention comprises electrodes so that a plasma discharge electric field is applied parallel to (along) the substrate surface, and active reactive products are formed by vertically impinging on the surface to be formed. Another purpose is to prevent the characteristics of the semiconductor film from being deteriorated.

【0006】この被形成面上へのスパッタ(損傷)の防
止は、例えば被形成面上にP型半導体層を設け、その上
面にI型(真性または実質的に真性)半導体層を作製し
ようとする時、P型を構成する不純物が1017〜1018
cm-3の濃度にI層に混入してしまい、PI接合を劣化
させてしまう。本発明はかかる欠点を防ぐために示され
たものである。さらに本発明は前記した反応系よりなる
第1の反応系と、これに連結して第1の室を設け、この
第1の室に連結して第2の室を設け、さらにこの第2の
室に連結した第1の反応系と同様の第2の反応系を設け
た製造装置に関する。
In order to prevent the sputtering (damage) on the formation surface, for example, a P-type semiconductor layer is provided on the formation surface and an I-type (intrinsic or substantially intrinsic) semiconductor layer is formed on the upper surface thereof. When, the impurities forming the P-type are 10 17 to 10 18
A concentration of cm −3 is mixed in the I layer, which deteriorates the PI junction. The present invention is presented to prevent such drawbacks. Further, the present invention provides a first reaction system comprising the above-mentioned reaction system, a first chamber connected to the first reaction system, a second chamber connected to the first chamber, and a second chamber connected to the first chamber. The present invention relates to a manufacturing apparatus provided with a second reaction system similar to the first reaction system connected to the chamber.

【0007】かかる製造装置においては、まず第1の室
にて真空引され、酸素、水分が除去された雰囲気にて第
1の反応炉に基板およびホルダが移動機構により挿入さ
れ、この反応炉にて一導電型例えばP型の導電型を有す
る半導体が形成された。さらにこの半導体が形成された
基板を再び第1の室に引出し、さらにこれに連結した第
2の室へ同様に酸素、水分の全くない真空中にて移動さ
れる。さらにこの第2の室より第2の反応炉に基板およ
びホルダーを導入させ、第1の室とは異なる導電型また
は異なる添加物またはその異なる濃度(不純物または添
加物)にて第2の半導体層を第1の半導体層上に形成さ
せることができる。
In such a manufacturing apparatus, first, a substrate and a holder are inserted into a first reaction furnace by a moving mechanism in an atmosphere in which oxygen and moisture are removed by vacuuming in the first chamber, and then the reaction furnace is inserted into the first reaction furnace. As a result, a semiconductor having one conductivity type, for example, P-type conductivity is formed. Further, the substrate on which the semiconductor is formed is again drawn out to the first chamber, and further moved to the second chamber connected to the first chamber in the same vacuum without oxygen and moisture. Further, the substrate and the holder are introduced into the second reactor from the second chamber, and the second semiconductor layer is formed with a conductivity type different from that in the first chamber or a different additive or a different concentration (impurity or additive) thereof. Can be formed on the first semiconductor layer.

【0008】この際、第1の反応炉の内壁に付着した不
純物が第2の半導体層を形成させる際付着することが全
くないため、きわめて精度高く、導電率導電性またはE
g(エネルギバンド巾)等を制御することができるよう
になった。
At this time, since impurities attached to the inner wall of the first reaction furnace are not attached at the time of forming the second semiconductor layer, the conductivity is very high and the conductivity or E
It has become possible to control g (energy band width) and the like.

【0009】さらに、本発明はさらにこの独立した反応
炉を三系統設け、これらを共通した室すなわち第1、第
2および第3の室で互いに連結した製造装置において、
特に第1の反応炉にてP型半導体層を、第2の反応炉に
てI型半導体層を、さらに第3の反応炉にてN型半導体
層を形成して、PIN型のダイオード特に光電変換装置
を作製せんとする時、特に有効である。
Further, according to the present invention, there are provided three independent reactors, which are connected to each other in a common chamber, that is, a first chamber, a second chamber and a third chamber.
In particular, a P-type semiconductor layer is formed in the first reaction furnace, an I-type semiconductor layer is formed in the second reaction furnace, and an N-type semiconductor layer is further formed in the third reaction furnace. This is particularly effective when manufacturing a conversion device.

【0010】本発明は積層するその層の数により共通し
た室を介して反応炉をその積層する膜の順序に従って設
けることにより、その段数を2段または3段のみではな
く、4〜10段にすることができる。
According to the present invention, the reactors are arranged according to the order of the films to be laminated through a chamber common to the number of layers to be laminated, so that the number of stages is not only two or three but four to ten. can do.

【0011】かくしてPIN、PINPIN、PINI
PIN、NIPIN、PINIP、・・・・等の接合構
造に作ることができる。
Thus, PIN, PINPIN, PINI
A junction structure such as PIN, NIPIN, PINIP, ... Can be formed.

【0012】また、この半導体層の作製の際、IV価の
元素例えば珪素に炭素またはゲルマニュームを添加し、
その添加量を制御することにより、添加量に比例、対応
した光学的エネルギバンド巾(Eg)を有せしめること
ができる。例えばPIN接合をEgp、Egi、Egn
(Egp>Egi≦Egn)としたW−N−W(広いE
g−せまいEg−広いEg)として設けることを可能と
した。
When the semiconductor layer is manufactured, carbon or germanium is added to an IV-valent element such as silicon,
By controlling the amount of addition, it is possible to provide the optical energy band width (Eg) proportional to the amount of addition and corresponding. For example, PIN junction is Egp, Egi, Egn
(Egp> Egi ≦ Egn) W-N-W (wide E
g-small Eg-wide Eg).

【0013】また、さらにこのPIN接合を二つ積層し
て設けたPINPIN構造において、Egp1 、Egi
1 、Egn1 、Egp2 、Egi2 、Egn2 (Egp
1 >Egn1 ≧Egi1 ≧Egp2 ≧Egi2 ≧Egn
2 )として設け、Egp1 (2.0〜2.4eV)、E
gn1 (1.7〜2.1eV)をSix 1-x (0<x
<1)、Egi1 、Egp1 (1.6〜1.8eV)を
Siにより、Egi2、Egn2 (1.0〜1.5e
V)をSix Ge1-x (0<x<1)として設けること
が可能である。かかるタンデム構造とするには反応系を
6系統設ければよい。
In addition, in the PINPIN structure in which two PIN junctions are further stacked, Egp 1 and Egi
1 , Egn 1 , Egp 2 , Egi 2 , Egn 2 (Egp
1 > Egn 1 ≧ Egi 1 ≧ Egp 2 ≧ Egi 2 ≧ Egn
2 ), Egp 1 (2.0 to 2.4 eV), E
gn 1 (1.7 to 2.1 eV) is converted into Si x C 1-x (0 <x
<1), Egi 1 , Egp 1 (1.6 to 1.8 eV) by Si, Egi 2 , Egn 2 (1.0 to 1.5 eV)
V) can be provided as Si x Ge 1-x (0 <x <1). To form such a tandem structure, six reaction systems may be provided.

【0014】また、NIPまたはPIN接合としたMI
S・FET、バイポーラトランジスタにおいては反応系
を2系統とし、第1の反応系により基板上にNまたはP
層を、第2の反応系により次のI層を、さらに第1の反
応系に基板ホルダをもどして、第3番目のNまたはP層
を作製する三層構造を2系統にて作ることが可能であ
る。
Also, MI with NIP or PIN junction
There are two reaction systems for S-FET and bipolar transistor, and N or P is formed on the substrate by the first reaction system.
A layer can be returned to the next I layer by the second reaction system, and the substrate holder can be returned to the first reaction system to form a third N or P layer in a three-layer structure in two systems. It is possible.

【0015】これら本発明は、反応炉を互いに連結する
のではなく、それぞれ独立した反応系を共通する室に連
結せしめ、この室を介して基板上に独立した半導体層を
形成させることを目的としている。
The purpose of these inventions is not to connect the reaction furnaces to each other, but to connect independent reaction systems to a common chamber and form an independent semiconductor layer on the substrate through the chambers. There is.

【0016】従来、PCVD装置に関しては、上下に平
行平板上に容量結合の電極を設け、その一方の電極例え
ば下側のカソード電極上に基板を配置し、下方向より加
熱する方法が知られている。しかし、この方法において
は、反応炉は一室であるためP型、I型およびN型半導
体層を積層せんとすると、その一回目の製造の後のN型
半導体層の不純物が2回目の次の工程のP型半導体層中
に混入してしまい、再結合中心となってダイオード特性
を劣化させ、さらにその特性が全くばらついてしまっ
た。このため光電変換装置を作ろうとしても、その解放
電圧Voc0.2〜0.6Vしか得られず、短絡電流を
数mA/cm2 しか流すことができなかった。
Conventionally, as for the PCVD apparatus, there is known a method in which capacitive coupling electrodes are provided on the upper and lower parallel flat plates, the substrate is placed on one of the electrodes, for example, the lower cathode electrode, and heating is performed from below. There is. However, in this method, since the reaction furnace has one chamber, if the P-type, I-type, and N-type semiconductor layers are not stacked, the impurities in the N-type semiconductor layer after the first production will be the second one. It was mixed in the P-type semiconductor layer in the step of (2), became a recombination center and deteriorated the diode characteristics, and further the characteristics were completely dispersed. Therefore, even if an attempt was made to make a photoelectric conversion device, only the release voltage Voc of 0.2 to 0.6 V was obtained, and the short-circuit current could only flow a few mA / cm 2 .

【0017】加えてこの平行平板型の装置においては、
電界は基板表面に垂直方向であるため、P型層の後I層
を作らんとしても、このI層中にP層の不純物が混入し
やすく、ダイオード特性が出ない場合がしばしば見られ
た。
In addition, in this parallel plate type apparatus,
Since the electric field is in the direction perpendicular to the surface of the substrate, even if the I layer is formed after the P type layer, impurities in the P layer are easily mixed in the I layer, and the diode characteristics often do not appear.

【0018】さらに、この反応装置は特に予備室を有し
ていないため、1回製造するごとに反応炉の内壁を大気
(空気)にふれさせるため、酸素、水分が吸着し、その
吸着酸化物が反応中バックグラウンドレベルに存在する
ため、電気伝導度が暗伝導度で10-11 〜10-8(Ωc
m)-1、AM1での光伝導度も10-6〜10-4(Ωc
m)-1でしかなかった。しかしこの吸着物が全く存在し
ない装置を使った本発明においては、暗伝導度10-6
10-4、AM1での光伝導度は、1×10-3〜9×10
-2(Ωcm)-1と約100倍も高く、半導体的性質を有
せしめることができた。
Further, since this reactor does not have a preliminary chamber, oxygen and moisture are adsorbed by adsorbing oxygen and moisture on the inner wall of the reaction furnace every time it is manufactured so as to expose it to the atmosphere (air). Exists in the background level during the reaction, the electric conductivity is 10 -11 to 10 -8 (Ωc in terms of dark conductivity).
m) -1 , photoconductivity at AM1 is also 10 -6 to 10 -4 (Ωc)
m) It was only -1 . However, in the present invention using the device in which the adsorbate is not present at all, the dark conductivity is 10 −6 to
The photoconductivity at 10 −4 and AM1 is 1 × 10 −3 to 9 × 10.
It was as high as -2 (Ωcm) -1 , about 100 times higher, and was able to have semiconductor properties.

【0019】[0019]

【発明が解決しようとする課題】本発明は、かくの如く
従来多数用いられている平行平板型の一室反応炉のPC
VD装置のあらゆる欠点を除去せんとしたものである。
DISCLOSURE OF THE INVENTION The present invention is a PC of a parallel plate type one-chamber reaction furnace, which has been widely used as described above.
It is intended to eliminate all the drawbacks of the VD device.

【0020】さらに、この従来の方式をさらに改良した
ものに、本発明人の出願になる独立分離型の反応装置が
知られている。この装置は、「半導体装置作製方法」昭
和53年12月10日(特願昭53−152887)お
よびその分割出願「半導体装置作製方法」(特願昭56
−055608)に詳しく述べられている。さらに、
「被膜作製方法」昭和54年8月16日(特願昭54−
104452)にもその詳細が述べられている。
Further, as a further improved version of this conventional system, an independent separation type reaction device filed by the present inventor is known. This device is manufactured by "Semiconductor device manufacturing method" December 10, 1978 (Japanese Patent Application No. 53-152887) and its divisional application "Semiconductor device manufacturing method" (Japanese Patent Application No. 56-56).
-055608). further,
"Coating method" August 16, 1979 (Japanese Patent Application No. 54-
The details are also described in 104452).

【0021】これらの発明は、例えばPIN接合を有す
るダイオードを作製せんとする場合、P型半導体層用の
第1の反応系、I型半導体用の第2の反応系、さらにN
型半導体層用の第3の反応系をそれぞれの反応炉(ベル
ジャー)をゲイトバルブにて連結したものである。かく
することによりP層の不純物がI層に混入することがな
く、またN層の不純物がI層、P層に混入することがな
い。いわゆる各半導体層での不純物制御を完全に精度よ
く行なうことができるという特徴を有する。さらにこの
P層用の反応炉の前またはN層用反応炉のあとに連結し
て予備室を設け、いわゆる外部よりの酸素、水蒸気の混
入を防止しようとしたものである。
According to these inventions, for example, when a diode having a PIN junction is to be manufactured, a first reaction system for a P-type semiconductor layer, a second reaction system for an I-type semiconductor, and an N-type reaction system.
The third reaction system for the type semiconductor layer is formed by connecting the respective reaction furnaces (bell jars) with a gate valve. By doing so, the impurities of the P layer are not mixed in the I layer, and the impurities of the N layer are not mixed in the I layer and the P layer. It is characterized in that the so-called semiconductor layers can be completely and accurately controlled. Further, a preliminary chamber is provided in front of the P layer reactor or after the N layer reactor to prevent so-called oxygen and water vapor from entering from the outside.

【0022】しかし、かかる本発明人の発明になる縦型
のベルジャー式またはその変形の反応炉を互いに連結し
た方式においては、基板の温度制御が十分に行えない。
すなわち300±20℃程度の温度範囲を有してしまっ
ていた。このため形成される被膜のバラツキが大きく、
好ましくなかった。加えてひとつの反応炉に充填できる
基板の数量が例えば10×10cm正方形で1〜10枚
であった。このため生産性がきわめて低く、いわゆる低
価格、多量生産とはいえなかった。
However, the temperature control of the substrate cannot be sufficiently performed in such a system in which the vertical bell jar type or the modified reaction furnaces thereof which are invented by the present inventor are connected to each other.
That is, it had a temperature range of about 300 ± 20 ° C. For this reason, there is a large variation in the formed film,
Not good. In addition, the number of substrates that can be filled in one reaction furnace was, for example, 1 to 10 square 10 × 10 cm. For this reason, the productivity was extremely low, and it could not be said that it was a so-called low price and mass production.

【0023】[0023]

【課題を解決するための手段】本発明はかかる本発明人
の独立分離型の半導体装置製造装置をさらに改良し、温
度精度も300±1℃以下におさえ、加えて1回のロー
ディング数量を50〜500枚にすることを可能とした
低価格、高品質の半導体装置を多量に製造せんとするも
のである。
The present invention further improves the independence type semiconductor device manufacturing apparatus of the present inventor, the temperature accuracy is suppressed to 300 ± 1 ° C. or less, and the loading quantity per loading is 50. It is intended to manufacture a large amount of low-priced, high-quality semiconductor devices capable of producing ~ 500 pieces.

【0024】本発明に係るプラズマ処理装置は、減圧可
能な共通室と、被膜の積層形成に対応して該共通室に対
し並列に配置され、該共通室に各々ゲート弁手段を介し
て気密連結された複数のプラズマ反応炉と、前記複数の
プラズマ反応炉のそれぞれに対し前記共通室内の基板を
搬入搬出する手段と、前記複数のプラズマ反応炉のそれ
ぞれにて被膜を形成する手段と、前記基板上に前記複数
の被膜を順次積層形成するために、前記共通室内で基板
を前記複数のプラズマ反応炉に沿って一方向に移動し、
前記搬入搬出手段の一つから他へ基板を移送する機構を
有し、前記共通室内の真空度が前記複数のプラズマ反応
炉内の真空度より高くなるように構成されている。
The plasma processing apparatus according to the present invention is arranged in parallel with the common chamber capable of depressurizing and the common chamber corresponding to the laminated formation of the coating, and each of the common chambers is hermetically connected via the gate valve means. A plurality of plasma reaction furnaces, a means for loading and unloading a substrate in the common chamber to and from each of the plurality of plasma reaction furnaces, a means for forming a film in each of the plurality of plasma reaction furnaces, and the substrate Moving the substrate in one direction along the plurality of plasma reactors in the common chamber to sequentially form the plurality of coatings on top of each other;
A mechanism for transferring the substrate from one of the carrying-in / carrying-out means to the other is provided, and the degree of vacuum in the common chamber is higher than the degree of vacuum in the plurality of plasma reactors.

【0025】さらに、本発明に係るプラズマ処理装置
は、前記共通室内の真空度が0.001〜0.01to
rrで、前記複数のプラズマ反応炉内の真空度が0.0
5〜0.6torrになるように構成されている。
Further, in the plasma processing apparatus according to the present invention, the degree of vacuum in the common chamber is 0.001 to 0.01 to.
rr, the degree of vacuum in the plurality of plasma reactors is 0.0
It is configured to be 5 to 0.6 torr.

【0026】[0026]

【実施例】以下に図面に従ってその実施例を示す。Embodiments of the present invention will be described below with reference to the drawings.

【0027】図1は本発明の横型、独立分離式のプラズ
マCVD装置すなわち半導体装置製造装置の概要を示
す。
FIG. 1 shows an outline of a horizontal type, independent separation type plasma CVD apparatus of the present invention, that is, a semiconductor device manufacturing apparatus.

【0028】図面において第1の反応系(1)は円筒状
の反応管(5)例えば透明石英(アルミナその他のセラ
ミックでもよい)であり、その直径は100〜300m
mφとした。さらにこの反応炉(5)の外側に一対のプ
ラズマ放電を行なわしめる電極(2)、(2′)を配置
した。この電極は例えばステンレス綱よりなり、この電
極をおおって抵抗加熱ヒータ(3)を設け、指示温度5
0〜350℃例えば300℃に対し±1℃の精度にて制
御されている。
In the drawing, the first reaction system (1) is a cylindrical reaction tube (5), for example, transparent quartz (which may be alumina or other ceramic), and its diameter is 100 to 300 m.
mφ. Further, a pair of electrodes (2) and (2 ') for performing plasma discharge were arranged outside the reaction furnace (5). This electrode is made of, for example, stainless steel, and a resistance heater (3) is provided to cover the electrode, and the indicated temperature 5
It is controlled with an accuracy of ± 1 ° C. for 0 to 350 ° C., for example 300 ° C.

【0029】基板および基板ホルダは(4)で略記して
おり、反応性気体は(6)よりホモジナイザ(26)を
経て供給される。一対の電極は供給用電源(13)によ
り高周波(10KHz〜100MHz代表的には13.
56MHz)が5〜200Wの強さにて供給される。反
応後の不要の生成物およびヘリューム、水素等のキャリ
アガスは、排気口(63)より反応管内の圧力調整用バ
ルブ(14)を経て真空引ポンプ(15)にて排出され
る。
The substrate and the substrate holder are abbreviated as (4), and the reactive gas is supplied from (6) through the homogenizer (26). The pair of electrodes receives high frequency (10 KHz to 100 MHz, typically 13.
56 MHz) with a strength of 5 to 200 W. Unnecessary products after the reaction and carrier gases such as helium and hydrogen are discharged from the exhaust port (63) through the pressure adjusting valve (14) in the reaction tube by the vacuum pump (15).

【0030】反応筒(5)は反応中は反応圧力は0.0
5〜0.6torr代表的には0.3torrに保持さ
れ、反応性気体の実効流速を数十m/秒にまで速めた。
The reaction pressure of the reaction tube (5) is 0.0 during the reaction.
It was maintained at 5 to 0.6 torr, typically 0.3 torr, and the effective flow velocity of the reactive gas was increased to several tens m / sec.

【0031】この第1の反応炉に加え、図面では入口側
に基板およびホルダ(4)を反応炉内に挿入または内よ
り炉外に引出す移動機構(12)を有する第1の室
(7)が設けられている。
In addition to the first reactor, a first chamber (7) having a moving mechanism (12) on the inlet side in the drawing, in which a substrate and a holder (4) are inserted into or pulled out of the reactor. Is provided.

【0032】この室は大気圧にする場合は(14)より
高純度空気が供給され、通気はバルブ(39)を経てロ
ータリーポンプ(37)にて0.01torr以下、好
ましくは0.001〜0.01torrに真空引がされ
ている。また、この基板およびホルダ(11)は予備室
(8)より移動され、この第1の予備室(8)は(1
3)より空気が導入され大気圧となり、真空引がバルブ
(40)、ポンプ(38)によりなされ、室1(7)と
概略等圧の十分な低真空とさせた。そして、基板および
ホルダ(10)がホルダ(11)に移される。さらに、
このホルダ(11)は第1の反応炉(4)に移され、所
定の半導体膜を基板上に形成させた。
When this chamber is at atmospheric pressure, high-purity air is supplied from (14), and ventilation is performed by a rotary pump (37) through a valve (39) at 0.01 torr or less, preferably 0.001 to 0. A vacuum is drawn at 0.01 torr. The substrate and the holder (11) are moved from the preparatory chamber (8), and the first preparatory chamber (8) is (1
Air was introduced from 3) to atmospheric pressure, and vacuuming was performed by the valve (40) and the pump (38) to make a sufficiently low vacuum of approximately equal pressure to the chamber 1 (7). Then, the substrate and the holder (10) are transferred to the holder (11). further,
This holder (11) was transferred to the first reaction furnace (4) and a predetermined semiconductor film was formed on the substrate.

【0033】さらに、この被膜を形成させた後、基板お
よびホルダ(4)は共通室(7)に到り、外部に取り出
すものは予備室(35)より外部に取り出すことができ
る。
Further, after forming this film, the substrate and the holder (4) reach the common chamber (7), and the one to be taken out can be taken out from the preliminary chamber (35).

【0034】また、さらにこの上に半導体層を作ろうと
する場合、共通室(7)におけるシャッタ(32)を開
け、第2の室(30)に移動させる。このシャッタ(3
2)および次段のシャッタ(33)は必ずしも必要では
なく、その場合は共通の室を反応炉に連続して複数ケ設
けることになる。またさらに基板およびホルダは第2の
反応系(42)に移され、第2の半導体層(例えばI
層)を第1の半導体層(例えばP層)を形成する履歴に
無関係に独立して積層して作ることができた。
When a semiconductor layer is to be formed on this, the shutter (32) in the common chamber (7) is opened and moved to the second chamber (30). This shutter (3
2) and the shutter (33) in the next stage are not always necessary, and in that case, a plurality of common chambers are continuously provided in the reaction furnace. Still further, the substrate and holder are transferred to the second reaction system (42) and the second semiconductor layer (eg I
Layers) could be independently laminated regardless of the history of forming the first semiconductor layer (eg P layer).

【0035】この第2の反応炉も反応性気体の導入口
(27)より反応性気体が入り、キャリアガス、不純物
は排気口、バルブ(19)、真空引ポンプ(20)を経
て外部に放出される。
Also in this second reactor, the reactive gas is introduced through the reactive gas inlet port (27), and the carrier gas and impurities are discharged to the outside through the exhaust port, the valve (19) and the vacuum pump (20). To be done.

【0036】さらに、この第2の半導体膜が形成された
後、第2の予備室(35)を経て外部に取り出されても
よいが、この図面では、さらに第3の反応系(43)を
経て、第3の半導体層例えばN層半導体層を形成し、さ
らにこの三層が形成された基板およびホルダ(34)は
真空引をされた第2の予備室(35)を経て、空気管
(13)より空気の導入によって大気圧にさせた後、ゲ
ートバルブ(36)をあけて外部にとり出される。
Further, after the second semiconductor film is formed, it may be taken out through the second preliminary chamber (35), but in this drawing, the third reaction system (43) is further added. After that, a third semiconductor layer, for example, an N-layer semiconductor layer is formed, and the substrate and the holder (34) on which the three layers are formed are passed through a second preliminary chamber (35) that is evacuated, and then an air pipe ( After being brought to atmospheric pressure by introducing air from 13), it is taken out to the outside by opening the gate valve (36).

【0037】以上の概要より明らかな如く、本発明は第
1の反応系には第1の室があり、この室に設けられた移
動機構(12)により基板およびホルダ(4)は反応炉
(1)と第1の室(7)との間を往復する。
As is clear from the above outline, in the present invention, the first reaction system has the first chamber, and the moving mechanism (12) provided in this chamber causes the substrate and the holder (4) to move to the reactor ( Reciprocates between 1) and the first chamber (7).

【0038】また同様に、第2の反応炉(42)、第3
の反応炉(43)、基板およびホルダの保持および移動
機構(29)、(41)を有している。
Similarly, the second reactor (42), the third reactor
The reactor (43), the substrate and holder holding and moving mechanisms (29) and (41).

【0039】この第1、第2、第3の室は共通させて共
通室(7)として設けており、この共通室の前後の入口
側および出口側に第1、第2の予備室を空気中の酸素、
水分が反応系に混入しないように設けてある。
The first, second and third chambers are commonly provided as a common chamber (7), and first and second auxiliary chambers are provided with air on the inlet side and the outlet side before and after the common chamber. Oxygen inside,
It is provided so that water does not enter the reaction system.

【0040】この製造装置においては、各反応ごとに反
応炉より一度真空引された共通室(7)に引出されるた
め、各反応系の反応性気体が全くそれぞれの反応炉に混
入されることがない。この点を確実にするためには、共
通室の真空度が反応炉内の真空度より高くなるように制
御すればよい。具体的には、共通室の真空度を0.00
1〜0.01torrに、反応炉内の真空度を0.05
〜0.6torrに維持するのが好ましい。
In this manufacturing apparatus, since each reaction is drawn out from the reaction furnace to the common chamber (7) which is evacuated once, the reactive gas of each reaction system must be completely mixed into each reaction furnace. There is no. In order to ensure this point, the degree of vacuum in the common chamber may be controlled to be higher than the degree of vacuum in the reaction furnace. Specifically, the degree of vacuum in the common chamber is 0.00
The degree of vacuum in the reaction furnace is 0.05 to 1 to 0.01 torr.
It is preferably maintained at ˜0.6 torr.

【0041】特に、基板の出入れの際は、各反応炉と共
通室との間のしきりゲイトバルブ(52)、(53)、
(54)を開とし、基板およびホルダ(11)が(1
1′)(11″)の位置へ移動の際以外は、このしきり
バルブが完全に閉の状態であるため、従来の説明にて本
発明人により示された各反応系が互いに1つのゲイトバ
ルブで連結されている場合に比べて、さらに不純物のオ
ートドーピングが少なくなった。
In particular, when the substrate is taken in and out, the gate gate valves (52), (53) between each reaction furnace and the common chamber,
(54) is opened, and the substrate and holder (11) are set to (1
Since the threshold valve is completely closed except when it is moved to the position 1 ') (11 "), each reaction system shown by the inventor in the conventional description is one gate valve. The auto-doping of impurities was further reduced as compared with the case of being connected by.

【0042】さらに加えて、以上の説明においては、基
板のホルダは各反応室を基板と共に移動させた。しかし
この移動は基板のみとし、ホルダは第1の反応炉用のホ
ルダ(11)、第2の反応炉用ホルダ(11′)第3の
反応炉用ホルダ(11″)をそれぞれ専用に配置せしめ
ることが本発明の製造装置においては可能である。かく
することにより、各反応室間の不純物の混入特にホルダ
表面に付着しているPN型またはEg可変用不純物、添
加物の混入を完全に除去することができ、多量生産用と
して全く画期的なものである。
In addition, in the above description, the substrate holder moved each reaction chamber together with the substrate. However, this movement is performed only for the substrate, and the holders are arranged so that the holder (11) for the first reaction furnace, the holder (11 ') for the second reaction furnace, and the holder (11 ") for the third reaction furnace are exclusively arranged. In the manufacturing apparatus of the present invention, it is possible to completely remove the mixing of impurities between the reaction chambers, especially the mixing of the PN type or Eg varying impurities and additives adhering to the holder surface. It is possible, and it is a completely epoch-making thing for mass production.

【0043】図2は図1の製造装置を補かんするもので
ある。すなわち第1、第2、第3の反応炉に対して供給
される反応性気体は供給系(6)、(27)、(28)
よりそれぞれ供給される。その反応性気体は図2
(A)、(B)および(C)に対応して示されている。
FIG. 2 complements the manufacturing apparatus of FIG. That is, the reactive gas supplied to the first, second and third reaction furnaces is the supply system (6), (27), (28).
Supplied by each. The reactive gas is shown in FIG.
It is shown corresponding to (A), (B) and (C).

【0044】図2(A)においては水素で希釈したジボ
ラン(43)、シラン(44)反応炉内壁のエッチング
用ガス例えばCF4 (O2 =0〜5%)またはNF3
炭化物の添加物である珪素と炭素とが化合した反応性気
体例えばTMS(テトラメチルシランSi(C
3 4 )(46)およびキャリアガスである水素また
はヘリューム(47)が配置されている。
In FIG. 2A, diborane (43) diluted with hydrogen, a gas for etching the inner wall of the silane (44) reactor such as CF 4 (O 2 = 0 to 5%) or NF 3 ,
Reactive gas in which silicon, which is an additive of carbide, and carbon are combined, such as TMS (tetramethylsilane Si (C
H 3 ) 4 ) (46) and carrier gas hydrogen or helium (47) are arranged.

【0045】これらは流量計(マスフロメータ)(5
0)、電磁バルブ(51)を経て供給系(6)より第1
の反応炉に供給される。この場合はSix 1-x (0.
2≦x≦1)で作られ、導電型はP型としている。かく
することにより1.7〜2.5eVのEgを有するP型
のアモルファスまたはセミアモルファス構造を含む非単
結晶半導体を基板上に100〜300Aの厚さに形成さ
せた。
These are flow meters (mass flow meters) (5
0), first through the electromagnetic valve (51) from the supply system (6)
Is supplied to the reactor. In this case, Si x C 1-x (0.
2 ≦ x ≦ 1), and the conductivity type is P type. As a result, a non-single-crystal semiconductor having a P-type amorphous or semi-amorphous structure having an Eg of 1.7 to 2.5 eV was formed on the substrate to a thickness of 100 to 300 A.

【0046】被膜の作製は本発明人の出願になる特許願
(「プラズマ気相法」昭和56年10月14日、特願昭
56−103627)に詳しく述べられているが、例え
ば250〜330℃特に300℃0.1〜0.3tor
rプラズマ発生用電流13.56MHz5〜100W被
膜形成時間10秒〜10分とした。反応炉内壁は5〜3
0回作製するとフレイク(薄片)が発生するので、かか
る場合にはCF4 またはNF3 によりプラズマエッチン
グして除去すればよい。図2(B)はI層のアモルファ
スまたは5〜100Aの大きさの微結晶性を含有するセ
ミアモルファスまたはマイクロポリクリスタルよりなる
非単結晶半導体膜を作製する場合を示している。
The preparation of the coating film is described in detail in a patent application filed by the present inventor (“Plasma vapor phase method”, October 14, 1981, Japanese Patent Application No. 56-103627), for example, 250 to 330. ℃ especially 300 ℃ 0.1-0.3tor
r Plasma generation current 13.56 MHz 5 to 100 W Film formation time was 10 seconds to 10 minutes. The inner wall of the reactor is 5 to 3
Since a flake (thin piece) is generated when it is manufactured 0 times, in such a case, it may be removed by plasma etching with CF 4 or NF 3 . FIG. 2B shows a case where a non-single-crystal semiconductor film formed of an amorphous I layer or a semi-amorphous or micropolycrystal containing microcrystallites having a size of 5 to 100 A is manufactured.

【0047】すなわち、シラン(45)CF4 (O2
0〜5%)、キャリアガスであるヘリューム(49)よ
りなり5〜20%にヘリュームにて希釈されたシランに
より光伝導度1×10-3〜9×10-2(Ωcm)-1、特
に5〜20×10-3(Ωcm)-1の値を有する珪素の非
単結晶半導体を0.4〜1μの厚さに作製した。
That is, silane (45) CF 4 (O 2 =
0-5%), helium (49), which is a carrier gas, and silane diluted with helium to 5-20% has a photoconductivity of 1 × 10 −3 to 9 × 10 −2 (Ωcm) −1 , particularly A non-single-crystal silicon semiconductor having a value of 5 to 20 × 10 −3 (Ωcm) −1 was manufactured to a thickness of 0.4 to 1 μm.

【0048】また、図2(C)は(A)とは逆にN型不
純物であるフオスヒン(48)、シラン(43)、エッ
チング用ガス(45)、TMS(46)、キャリアガス
(40)を提供し、100〜500AのN型半導体層を
作製した。
Contrary to (A), FIG. 2 (C) shows N-type impurities such as phosphine (48), silane (43), etching gas (45), TMS (46) and carrier gas (40). And an N-type semiconductor layer of 100 to 500 A was prepared.

【0049】かくして、図3に示す如き基板上にPIN
型のダイオ−ドまたは光電変換装置を作り、その特性を
調べた。
Thus, the PIN on the substrate as shown in FIG.
A type diode or photoelectric conversion device was made and its characteristics were investigated.

【0050】図3(A)においては、ステンレスの如き
金属基板またはカプトンの如きフレキシブルフイルム上
にステンレス膜が形成された基板(70)上にP型半導
体層(71)、I型半導体層(72)、N型半導体層
(74)よりなる半導体層(73)を作製し、この上面
にITOの如き透光性透明導電膜を600〜800A、
ρs=10〜25Ω/□を作製した。従来の一室式の平
行平板型ではAM1(100mW/cm2 )にて6〜
7.5%/3×3mm正方形しか得られなかったが、本
発明人の出願になるたて型の独立分離式においては、
7.5〜9.5%/3×3mm正方形が得られた。しか
し本発明では、ホルダを各反応炉独立式にした場合、最
高16%/3×3mm正方形、一般に12〜15%の高
い変換効率の太陽電池を作ることができた。
In FIG. 3A, a P-type semiconductor layer (71) and an I-type semiconductor layer (72) are provided on a metal substrate such as stainless steel or a substrate (70) having a stainless film formed on a flexible film such as Kapton. ), A semiconductor layer (73) made of an N-type semiconductor layer (74) is prepared, and a transparent transparent conductive film such as ITO is provided on the upper surface of the semiconductor layer (73) at 600 to 800 A,
ρs = 10 to 25Ω / □ was prepared. The conventional one-chamber parallel plate type has an AM1 (100 mW / cm 2 ) of 6 to
Although only 7.5% / 3 × 3 mm square was obtained, in the independent separation type of the vertical mold, which was filed by the present inventor,
7.5-9.5% / 3 x 3 mm squares were obtained. However, in the present invention, when the holder is made independent of each reactor, a solar cell with a high conversion efficiency of up to 16% / 3 × 3 mm square, generally 12 to 15%, can be manufactured.

【0051】また、ホルダを各反応炉共通にした場合、
9.0〜12.5%の高い効率であった。
Further, when the holder is common to all reactors,
The efficiency was as high as 9.0 to 12.5%.

【0052】これは酸素、水分等の酸化物気体の外部か
らの混入防止、各半導体表面等への不純物混入を防止し
たことにある。
This is because an oxide gas such as oxygen and water is prevented from being mixed in from the outside, and impurities are prevented from being mixed into the surface of each semiconductor.

【0053】さらに重要なことは、1回のバッチにおい
て10×10cm正方形の基板を50〜500枚もロー
ディング可能であり、10×10cm正方形1枚に対す
る設備消却費は従来の50〜500円であったものが、
0.2〜2円と約1/100に下げることが可能となっ
た点で光電変換装置の流布のためきわめて重要であっ
た。
More importantly, 50 to 500 10 × 10 cm square substrates can be loaded in one batch, and the equipment cancellation cost for one 10 × 10 cm square is 50 to 500 yen, which is the conventional cost. What
It was extremely important for the spread of the photoelectric conversion device in that it could be reduced to 0.2 to 2 yen, about 1/100.

【0054】図3(B)はガラスの如き透光性基板(7
6)上にITO(500〜800A)(78)および酸
化スズまたは酸化アンチモン(79)(100〜300
A)よりなる低シート抵抗(ρ3 =5〜20Ω/□高耐
熱性)の透明導電膜(77)上にP型半導体層(7
1)、I型層(72)、N型層(74)およびアルミニ
ュームまたはITOよりなる裏面電極(75)を設けた
ものである。かかる構造においても変換効率10〜13
%を得ることができた。
FIG. 3B shows a transparent substrate (7) such as glass.
6) ITO (500-800A) (78) and tin oxide or antimony oxide (79) (100-300) on
The P-type semiconductor layer (7) is formed on the transparent conductive film (77) of A) having a low sheet resistance (ρ 3 = 5 to 20 Ω / □ high heat resistance).
1), an I-type layer (72), an N-type layer (74) and a back electrode (75) made of aluminum or ITO. Even in this structure, the conversion efficiency is 10 to 13.
I was able to get%.

【0055】このため、この構造をガラス基板上に集積
化しまた同時にPIN型の逆流防止ダイオードを設ける
ことにより民生用の太陽電池を従来と同一出力を得る場
合、従来より1/2の面積でかつ価格は200〜250
円を20〜30円にまで下げ、10cm2 の面積にて1
00〜130円で作ることが可能になった。
For this reason, when this structure is integrated on a glass substrate and a PIN type backflow prevention diode is provided at the same time to obtain the same output as a conventional solar cell, the area is half that of the conventional one. Price is 200-250
Decrease the circle to 20-30 yen, and use 1 in an area of 10 cm 2.
It is possible to make it for 100 yen.

【0056】図4は本発明のプラズマCVD法で特にグ
ロー放電法を用いる反応炉に配置される基板、電極およ
び基板のローディングの関係を示す。
FIG. 4 shows the relationship between the substrate, the electrodes and the loading of the substrate which are arranged in the reaction furnace using the glow discharge method in the plasma CVD method of the present invention.

【0057】図面において図4(A)は電極(2)、
(2′)を水平方向に平行に、また基板(61)の裏面
を互いに密接して、表面は基板間を20〜40mmの間
隔で設けた。また、その配置はやはり水平に設けたもの
である。
In the drawing, FIG. 4A shows an electrode (2),
(2 ') was provided in parallel with the horizontal direction, the back surfaces of the substrates (61) were in close contact with each other, and the front surfaces were provided at intervals of 20 to 40 mm between the substrates. The arrangement is also horizontal.

【0058】反応炉(1)の反応筒(5)は直径100
〜300mmφ代表的には180mmφを有し、その長
さは200〜400cmを有するため、10×10cm
正方形の基板に図面の如き8枚ではなく各段20枚を1
0〜30列配置させることができた。このため1回の製
造バッチで50〜600枚を作ることができ、従来の平
行平板式では全く考えられない量の半導体装置を一度に
作ることができた。
The reaction tube (5) of the reaction furnace (1) has a diameter of 100.
~ 300 mmφ typically has 180 mmφ and its length is 200-400 cm, so 10 × 10 cm
Instead of 8 sheets as shown in the drawing, 20 sheets for each step are placed on a square substrate.
It was possible to arrange 0 to 30 rows. For this reason, it is possible to manufacture 50 to 600 sheets in one manufacturing batch, and it is possible to manufacture a semiconductor device at once in an amount that cannot be considered by the conventional parallel plate system.

【0059】図4(B)は電極(2)、(2′)を垂直
方向に、また基板(61)の表面(被形成面)を垂直方
向に、裏面を互いに密接させて設けたものである。その
他は(A)と同様である。ホルダへの基板のローディン
グは(A)、(B)を互いに交互に行なってもよい。
In FIG. 4B, the electrodes (2) and (2 ') are provided in the vertical direction, the front surface (formation surface) of the substrate (61) is provided in the vertical direction, and the back surfaces thereof are in close contact with each other. is there. Others are the same as in (A). The loading of the substrate on the holder may be performed by alternately performing (A) and (B).

【0060】図4(C)はアーク放電法またはグロー放
電法を用いたプラズマCVD法である。
FIG. 4C shows a plasma CVD method using an arc discharge method or a glow discharge method.

【0061】図面では図1(A)の1つの反応炉を示し
たものである。すなわち放電電極(2)、(2′)を反
応筒方向に有し、基板(61)はホルダ(60)にロー
デイングされ、反応管(5)の外側には加熱用ヒータ
(3)が設けられている。アーク放電とするには一方の
電極より熱電子を放出させた。反応性気体は供給系
(6)より導入され、不要の反応性成物およびキャリア
ガスは排出系(63)より外部に放出される。この不要
の反応生成物は低温になる領域で粉末状になるため、反
応炉(5)の中(内壁)にこれらが発生することを防ぐ
ため、ヒータ(3)は(65)に示す如く反応管のすべ
てをおおうようにした。
The drawing shows one reactor of FIG. 1 (A). That is, it has discharge electrodes (2) and (2 ') in the reaction tube direction, the substrate (61) is loaded on the holder (60), and the heater (3) for heating is provided outside the reaction tube (5). ing. To make arc discharge, thermoelectrons were emitted from one electrode. The reactive gas is introduced from the supply system (6), and unnecessary reactive products and carrier gas are discharged to the outside from the discharge system (63). Since this unnecessary reaction product becomes powdery in the region where the temperature becomes low, the heater (3) reacts as shown in (65) in order to prevent generation of these in the reaction furnace (5) (inner wall). I tried to cover all of the tubes.

【0062】かくすることにより、粉末状の反応生成物
を反応筒に残留させることはなくなり、歩留の向上にな
った。図1また図1また図4(A)、(B)においても
同様にすると、さらに生産性の向上に役立った。
By doing so, the powdery reaction product was not left in the reaction tube, and the yield was improved. The same applies to FIG. 1 and FIGS. 1 and 4 (A) and 4 (B), which is further useful for improving productivity.

【0063】[0063]

【発明の効果】以上の説明より明らかな如く、本発明は
プラズマ気相法に対し多量生産を可能にする横型反応方
式を採用し、さらにそれらに共通室を設け連続的に製造
する構造とすることによりバッチ方式と連続方式とを結
合させることが可能となった。このためこの思想を基礎
とし、2つの反応系、4〜8の反応系等を作ることがで
き、初めてPCVD装置で大量生産可能な方式を開発す
ることができた。
As is clear from the above description, the present invention adopts a horizontal reaction system which enables mass production in comparison with the plasma vapor phase method, and further has a common chamber for the continuous reaction system. This made it possible to combine the batch system and the continuous system. Therefore, based on this idea, two reaction systems, 4 to 8 reaction systems, etc. could be made, and for the first time a system capable of mass production with a PCVD apparatus could be developed.

【0064】さらに、この半導体製造装置において、単
にPINの光電変換装置のみではなく、N(N型半導
体)(0.1〜1μ)−I(真性半導体)(0.2〜2
μ)−I(絶縁体)(0.5〜1μ)のIGFET(縦
チャネル型の絶縁ゲイト型電界効果半導体装置)を、ま
たはそれを集積化した構造を作ることが可能である。さ
らに、この反応炉に横方向に巾2〜20cmの50〜1
00cmの長い半導体基板を配置し、その上面全面にフ
ォトセンサアレーその他の半導体装置を作ることも可能
である。以上本発明の半導体製造装置の工学的効果はき
わめて著しいものであると信じる。
Furthermore, in this semiconductor manufacturing apparatus, not only the PIN photoelectric conversion device but also N (N-type semiconductor) (0.1 to 1 μ) -I (intrinsic semiconductor) (0.2 to 2)
[mu] -I (insulator) (0.5 to 1 [mu]) IGFET (vertical channel type insulated gate field effect semiconductor device) or a structure in which it is integrated can be manufactured. Furthermore, in this reaction furnace, a width of 2 to 20 cm, 50 to 1
It is also possible to dispose a semiconductor substrate having a long length of 00 cm and fabricate a photosensor array or other semiconductor device on the entire upper surface thereof. As described above, it is believed that the engineering effect of the semiconductor manufacturing apparatus of the present invention is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置製造装置の実施例を示す。FIG. 1 shows an embodiment of a semiconductor device manufacturing apparatus of the present invention.

【図2】図1を補かんする反応性気体のガス系の実施例
を示す。
FIG. 2 shows an example of a gas system of a reactive gas that supplements FIG.

【図3】本発明により作られた光電変換装置の縦断面図
を示す。
FIG. 3 shows a vertical sectional view of a photoelectric conversion device made according to the present invention.

【図4】図1の反応炉の部分を示す実施例である。4 is an example showing a portion of the reaction furnace of FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

3 ヒータ 4 基板ホルダ 5 反応炉 12 移動機構 13 電源 33 シャッタ 37 ロータリーポンプ 3 Heater 4 Substrate Holder 5 Reactor 12 Moving Mechanism 13 Power Supply 33 Shutter 37 Rotary Pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 減圧可能な共通室と、被膜の積層形成に
対応して該共通室に対し並列に配置され、該共通室に各
々ゲート弁手段を介して気密連結された複数のプラズマ
反応炉と、前記複数のプラズマ反応炉のそれぞれに対し
前記共通室内の基板を搬入搬出する手段と、前記複数の
プラズマ反応炉のそれぞれにて被膜を形成する手段と、
前記基板上に前記複数の被膜を順次積層形成するため
に、前記共通室内で基板を前記複数のプラズマ反応炉に
沿って一方向に移動し、前記搬入搬出手段の一つから他
へ基板を移送する機構を有し、前記共通室内の真空度が
前記複数のプラズマ反応炉内の真空度より高くなるよう
に構成されたことを特徴とするプラズマ処理装置。
1. A common chamber capable of decompressing, and a plurality of plasma reactors arranged in parallel to the common chamber corresponding to the stacking of coatings and airtightly connected to the common chamber via gate valve means. A means for loading and unloading the substrate in the common chamber with respect to each of the plurality of plasma reaction furnaces, and means for forming a film in each of the plurality of plasma reaction furnaces,
In order to sequentially form the plurality of coating films on the substrate, the substrate is moved in one direction along the plurality of plasma reactors in the common chamber, and the substrate is transferred from one of the loading / unloading means to the other. The plasma processing apparatus is characterized in that the vacuum degree in the common chamber is higher than the vacuum degree in the plurality of plasma reaction furnaces.
【請求項2】 前記共通室内の真空度が0.001〜
0.01torrで、前記複数のプラズマ反応炉内の真
空度が0.05〜0.6torrになるように構成され
たことを特徴とする請求項1記載のプラズマ処理装置。
2. The degree of vacuum in the common chamber is 0.001 to
The plasma processing apparatus according to claim 1, wherein the degree of vacuum in the plurality of plasma reactors is set to 0.05 to 0.6 torr at 0.01 torr.
JP3169056A 1991-06-14 1991-06-14 Plasma processing device Expired - Lifetime JPH0673347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3169056A JPH0673347B2 (en) 1991-06-14 1991-06-14 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3169056A JPH0673347B2 (en) 1991-06-14 1991-06-14 Plasma processing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56192292A Division JPS5893321A (en) 1981-11-30 1981-11-30 Manufacturing apparatus for semiconductor device

Publications (2)

Publication Number Publication Date
JPH0677139A true JPH0677139A (en) 1994-03-18
JPH0673347B2 JPH0673347B2 (en) 1994-09-14

Family

ID=15879525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3169056A Expired - Lifetime JPH0673347B2 (en) 1991-06-14 1991-06-14 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0673347B2 (en)

Also Published As

Publication number Publication date
JPH0673347B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US4492716A (en) Method of making non-crystalline semiconductor layer
JPH0512850B2 (en)
US6413794B1 (en) Method of forming photovoltaic element
JPH0370367B2 (en)
WO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
JPH08195348A (en) Semiconductor device manufacturing equipment
JP3069682B2 (en) How to clean the reaction chamber
JPH0677139A (en) Plasma processing device
JPH0673348B2 (en) Cleaning method for plasma processing apparatus
JP2626705B2 (en) Coating method
JPH0831420B2 (en) Coating production equipment
JP3070309B2 (en) Manufacturing method of thin film solar cell
JP2918194B2 (en) Plasma processing apparatus and plasma processing method
JPH0337730B2 (en)
JP3068276B2 (en) Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor
JPH0524976A (en) Method for doping semiconductor and apparatus therefor
JP2573108B2 (en) Plasma processing method
JPH0812848B2 (en) Semiconductor device manufacturing method
JPH06184755A (en) Method and device for forming deposition film
JP2815711B2 (en) Thin-film semiconductor device manufacturing equipment
JPS62219970A (en) Manufacture of thin film semiconductor element
JPH0436448B2 (en)
TW202118079A (en) Method of forming a semiconductor structure and semiconductor structure
JPH0524977A (en) Method and device for doping semiconductor
CN112908846A (en) Method for forming semiconductor structure and semiconductor structure