JPH0436448B2 - - Google Patents

Info

Publication number
JPH0436448B2
JPH0436448B2 JP57163729A JP16372982A JPH0436448B2 JP H0436448 B2 JPH0436448 B2 JP H0436448B2 JP 57163729 A JP57163729 A JP 57163729A JP 16372982 A JP16372982 A JP 16372982A JP H0436448 B2 JPH0436448 B2 JP H0436448B2
Authority
JP
Japan
Prior art keywords
reaction vessel
substrate
reaction
plasma
reactive gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57163729A
Other languages
Japanese (ja)
Other versions
JPS5952834A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP57163729A priority Critical patent/JPS5952834A/en
Priority to US06/533,941 priority patent/US4582720A/en
Publication of JPS5952834A publication Critical patent/JPS5952834A/en
Priority to US06/828,790 priority patent/US4640845A/en
Priority to US06/828,908 priority patent/US4642243A/en
Priority to US07/127,602 priority patent/US4832981A/en
Publication of JPH0436448B2 publication Critical patent/JPH0436448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • H01J37/185Means for transferring objects between different enclosures of different pressure or atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は基板上にP型、I型およびN型の導電
型を有する非単結晶半導体を層状に積層して形成
するに際し、それぞれの半導体層をそれぞれに対
応したプラズマ気相反応用反応容器で形成せし
め、かつそれぞれの反応容器を互いに連結して設
けることにより、外気(大気)にふれさせること
なく半導体層を形成せしめるプラズマ気相反応装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION When forming non-single-crystal semiconductors having P-type, I-type, and N-type conductivity on a substrate, each semiconductor layer is exposed to a plasma corresponding to each layer. The present invention relates to a plasma vapor phase reaction apparatus that is formed of gas phase reaction vessels and that is capable of forming a semiconductor layer without being exposed to outside air (atmosphere) by connecting the reaction vessels to each other.

本発明は水素またはハロゲン元素が添加された
非単結晶半導体層、好ましくは珪素、ゲルマニユ
ーム、炭化珪素(SiCのみではなく、本発明にお
いてはSixC1-x0<x<1の総称を意味する)、珪
素ゲルマニユーム(SixGe1-x 0<x<1)珪
化スズ(SixSn1-x0<x<1)であつて、この被
膜中に活性状態の水素またはハロゲン元素を充填
することにより、再結晶中心密度の小さなPIお
よびN型の導電型を有する半導体層を複数層形成
し、その積層境界にて接合例えばPN接合、PI接
合、NI接合またはPIN接合を形成するとともに、
それぞれの半導体層に他の隣接する半導体層から
の不純物が混入して接合特性を劣化させることな
く形成するとともに、またそれぞれに半導体層を
形成する工程間に大気特に酸素にふれさせて、半
導体の一部が酸化されることにより、層間絶縁物
が形成されることのないようにした連続生産を行
なうためのプラズマ気相反応用製造装置に関す
る。
The present invention is directed to a non-single crystal semiconductor layer to which hydrogen or a halogen element is added, preferably silicon, germanium, or silicon carbide (not only SiC, but in the present invention means the general term SixC 1-x 0<x<1). , silicon germanium (SixGe 1-x 0<x<1) and tin silicide (SixSn 1-x 0<x<1), which can be recrystallized by filling this film with hydrogen or halogen elements in an active state. Forming a plurality of semiconductor layers having conductivity types of PI and N type with a small center density, forming a junction such as a PN junction, a PI junction, an NI junction, or a PIN junction at the lamination boundary, and
Each semiconductor layer is formed without contaminating impurities from other adjacent semiconductor layers and deteriorating the junction characteristics, and the semiconductor layer is exposed to air, particularly oxygen, between the steps of forming each semiconductor layer. The present invention relates to a plasma gas phase applied manufacturing apparatus for continuous production in which interlayer insulators are not formed due to partial oxidation.

さらに本発明は、かかる多数の反応容器を連結
したマルチチアンバー方式のプラズマ反応装置に
おいて、一度に多数の基板を同時にその被膜成長
速度を大きくしたいわゆる多量生産方式に関す
る。
Furthermore, the present invention relates to a so-called mass production system in which a large number of substrates are simultaneously grown at a high film growth rate in a multi-chamber type plasma reactor in which a large number of reaction vessels are connected.

このため、反応性気体が反応容器内にすべてに
分散してしまうことを防ぎ、基板の被形成面を利
用して、筒状の空間に被形成面を1つの側に有す
る基板を裏面を互いに密接して、一定の距離例え
ば2〜6cm代表的には3〜4cm離して平行に配列
し、この基板が林立した筒状空間においてのみプ
ラズマ放電を行なわしめ、加えて反応性気体を選
択的に導びき、結果として反応性気体の収集効率
を従来の1〜3%よりその20〜60倍の40〜70%に
まで高めたことを特徴としている。
For this reason, the reactive gas is prevented from being dispersed throughout the reaction vessel, and by using the formation surface of the substrate, the substrates having the formation surface on one side are placed in a cylindrical space with their back surfaces mutually placed. The substrates are arranged in parallel at a certain distance, for example, 2 to 6 cm, typically 3 to 4 cm, and plasma discharge is performed only in the cylindrical space in which the substrates are arranged. As a result, the collection efficiency of reactive gases has been increased from 1 to 3% in the conventional method to 40 to 70%, which is 20 to 60 times higher.

本発明はかくの如くに反応性気体を基板が配置
されている筒状空間に林立した筒状空間に選択的
に導入せしめ、その領域に主として選択的にプラ
ズマ放電させるとともに、反応性気体をその空間
に主として選択的に流入せしめるべきガイドを設
けたことを特徴としている。さらに本発明におい
ては、かかる条件を満しながらも互いに横方向に
連結したマルチチアンバー間を基板が移動するに
際し何らの支障にならないように、電極、反応性
ガスの導入口および排気口を設け、さらに加熱赤
外線を設けたことを特徴としている。
In this way, the present invention selectively introduces a reactive gas into the cylindrical space that stands in the cylindrical space in which the substrate is arranged, selectively discharges plasma primarily in that region, and at the same time, the reactive gas is selectively introduced into the cylindrical space where the substrate is arranged. It is characterized by the provision of a guide that allows the flow to flow mainly selectively into the space. Furthermore, in the present invention, electrodes, reactive gas inlets, and exhaust ports are provided so as to satisfy these conditions and not cause any hindrance when the substrate moves between the multi-chambers that are laterally connected to each other. It is also characterized by the provision of heating infrared rays.

かくの如くにマルチチアンバー方式を基本条件
としているため、それぞれの反応容器内での被膜
の特性の向上に加えて、チアンバー内壁に不要の
反応生成物が付着することを防ぎ、逆に加えて供
給した反応性気体の被膜になる割合即ち集収効率
を高めるため、チムニー(煙突)状に反応性気体
を基板の配置されている筒状空間を設け、基板の
被形成面が実質的にチムニーの内壁を構成せしめ
たことを特徴とするプラズマ気相反応装置に関す
る。
Since the multi-chamber method is used as a basic condition, it not only improves the properties of the coating within each reaction vessel, but also prevents unnecessary reaction products from adhering to the inner walls of the chamber. In order to increase the rate at which the supplied reactive gas forms a film, that is, the collection efficiency, a chimney-shaped cylindrical space is provided in which the reactive gas is placed where the substrate is placed, so that the surface on which the substrate is formed is substantially the same as the chimney. The present invention relates to a plasma vapor phase reactor characterized in that it has an inner wall.

また本発明は、反応容器を積層する半導体層の
数だけ連設したプラズマ反応用製造装置に関す
る。
The present invention also relates to a plasma reaction manufacturing apparatus in which reaction vessels are successively arranged in equal numbers to the number of semiconductor layers to be laminated.

従来非単結晶半導体例えばアモルフアス珪素の
プラズマ気相反応において、その製造装置の放電
方式は13.56MHz等の高周波を一対の面状の平板
電極を平行平板型電極方式として設け、その一方
の電極上に被形成面を有する基板を配置させ、基
板の一主面側のみ選択的に被膜成長をさせたもの
であつた。さらにかかる方法においては、反応性
気体の導入に関しても、電極の他方より被形成面
に垂直方向にふき出す方式、また反応容器内に単
に反応性気体のガスを導入し、反応容器全体に反
応性気体を充満させ、特に反応性気体に一方向へ
のガス流を構成させることなく供給する方式が知
られている。しかしこの従来より知られているこ
れらの方式においては、被膜の成長速度が0.1〜
2Å/秒と小さい。特に反応性気体を反応容器内
全体に充満させる方式においては、0.1〜0.4Å/
秒ときわめて小さく、加えて反応生成物がフレー
ク状にチアンバー内壁に付着し、それらが基板上
に落下してピンホールの発生を誘発してしまつ
た。
Conventionally, in the plasma vapor phase reaction of non-single crystal semiconductors such as amorphous silicon, the discharge method of the manufacturing equipment is to provide a pair of planar flat plate electrodes as a parallel plate type electrode system to transmit a high frequency such as 13.56 MHz, A substrate having a surface to be formed was placed, and a film was selectively grown only on one principal surface of the substrate. Furthermore, in this method, regarding the introduction of the reactive gas, there is a method in which the reactive gas is blown out from the other side of the electrode in a direction perpendicular to the surface to be formed, and a method in which the reactive gas is simply introduced into the reaction container, and the reactive gas is spread throughout the reaction container. It is known to fill with gas, in particular to supply reactive gases without forming a unidirectional gas flow. However, in these conventionally known methods, the film growth rate is 0.1~
It is as small as 2 Å/sec. In particular, in a method in which the entire reaction vessel is filled with reactive gas,
In addition, reaction products adhered to the inner wall of the chamber in the form of flakes, which fell onto the substrate and induced pinholes.

また基板を電極間に1まいのみ電極と平行に配
置し、その一主面上のみに半導体層を形成する。
このため量産性が全く十分でなく、その代表的な
応用例である太陽電池を作製した時、その製造原
価は10cm□の基板の大きさにて5000円をこえ、さ
らにその内の4000円以上は設備償却費という全く
非常識な現状であつた。
Further, the substrate is arranged parallel to the electrodes only once between the electrodes, and a semiconductor layer is formed only on one principal surface of the substrate.
For this reason, mass production is not sufficient at all, and when producing a solar cell, which is a typical application example, the manufacturing cost exceeds 5,000 yen for a 10 cm square substrate, and within that amount, it costs more than 4,000 yen. The current situation was completely absurd, with equipment depreciation costs.

このため10cm□の基板の大きさでその10〜30倍
の生産性を同じ大きさの反応容器にて作製するた
めの製造装置が強く求められていた。
For this reason, there is a strong need for a manufacturing device that can produce substrates with a substrate size of 10 cm square with 10 to 30 times the productivity in a reaction vessel of the same size.

本発明はかかる目的を満たすためなされたもの
である。
The present invention has been made to meet this objective.

半導体装置は単に真性の半導体のみではなくP
型、N型の半導体層をその設計事項に従つて自由
に重ね合わせて接合を有せしめ得ることがその工
学的応用を広げるものである。
Semiconductor devices are not just intrinsic semiconductors;
The fact that type and N type semiconductor layers can be freely stacked and bonded according to the design matters expands its engineering applications.

このため、かかる異種導電型の半導体層を同一
反応容器で作ることは、その生産性が向上して
も、それぞれの導電型用の不純物が互いに半導体
層内でスパツタ効果により混合してしまう。その
ためPN、PI、NIまたはPIN接合を少なくとも1
つ有する半導体層を複数層積層するに際し、その
界面で接合を十分構成させようとした時、それぞ
れの導電型用の反応容器を前記したように独立分
離せしめることがきわめて重要である。
For this reason, even if the productivity is improved when semiconductor layers of different conductivity types are formed in the same reaction vessel, impurities for each conductivity type will mix with each other within the semiconductor layer due to the sputter effect. Therefore, at least one PN, PI, NI or PIN junction
When stacking a plurality of semiconductor layers, it is extremely important to separate the reaction vessels for each conductivity type independently, as described above, in order to form a sufficient junction at the interface.

本発明はかかる分離独立方式に加えて、さらに
その不純物の混合を排除させ、接合特性の向上を
計つたものである。すなわち例えば1つのPIN接
合を積層して形成させようとする時、第1の半導
体層としてのP型半導体層を形成させた場合、そ
の半導体層の形成の際同時にこの不純物の吸着が
反応容器の内壁また基板ホルダー表面におきる。
本発明においてはこれら基板上の被形成面以外の
壁面、表面からの不純物の再放出を防ぎ、また供
給系、排気系からの一度吸着した反応性気体の第
2の半導体層の形成に際し、離脱混入することを
防ぐため、反応容器のみではなく、反応性気体の
供給系、排気系もそれぞれ独立に各反応容器に対
応して設けられている。また基板ホルダーに関し
ても、基板のみが実質的に反応生成物の付着被膜
化がおきるように、基板の被形成面側のみプラズ
マ化された反応性気体が導びかれるように設けて
いる。
In addition to such a separate and independent method, the present invention aims to improve bonding characteristics by eliminating the mixing of impurities. That is, for example, when trying to form one PIN junction by stacking a P-type semiconductor layer as the first semiconductor layer, the adsorption of impurities in the reaction vessel occurs at the same time as the semiconductor layer is formed. Occurs on the inner wall or the surface of the substrate holder.
In the present invention, impurities are prevented from being re-released from walls and surfaces other than the surface on which they are formed on the substrate, and reactive gases once adsorbed from the supply system and exhaust system are released when forming the second semiconductor layer. In order to prevent contamination, not only reaction vessels but also reactive gas supply systems and exhaust systems are provided independently for each reaction vessel. The substrate holder is also provided in such a way that the plasma-converted reactive gas is guided only to the surface of the substrate on which the reaction product is to be formed, so that only the substrate is substantially coated with reaction products.

本発明はかかる欠点を防ぐため、反応性気体の
導入口、排気口においてガイドを設け、この間の
基板の被形成面により実質的に作られた筒状空間
のみに選択的にプラズマ反応を発生せしめること
によりチアンバー(反応容器)内の全空間に反応
生成物が拡散し広がることを防いだものである。
かかる本発明の構造のプラズマ気相反応装置とす
ることにより、形成された不純物のそれぞれの半
導体層から他の半導体層への混合を排除し、その
混合部を200〜300Åと約1/10〜1/5にするととも
に、結晶学的にP型の半導体層上に連続してシヨ
ートレンジオーダの結晶性(秩序性)を有する真
性または実質的に真性の半導体層をも成長し得た
ことを特徴としている。またP、N型半導体層を
形成してPN接合を設けても、単なるオーム抵抗
特性ではなく、逆方向リークが5Vにて1μA以下
のダイオード特性を有せしめた効果を有した。
In order to prevent such drawbacks, the present invention provides guides at the reactive gas inlet and outlet, and selectively generates a plasma reaction only in the cylindrical space substantially created by the formation surface of the substrate between the guides. This prevents the reaction product from diffusing and spreading throughout the entire space within the chamber (reaction vessel).
By providing a plasma vapor phase reactor having such a structure according to the present invention, mixing of formed impurities from each semiconductor layer to another semiconductor layer can be eliminated, and the mixing area can be reduced to 200 to 300 Å, approximately 1/10 to 1/10. In addition to reducing the size to 1/5, it was also possible to grow an intrinsic or substantially intrinsic semiconductor layer having crystallinity (order) in the short range order continuously on a crystallographically P-type semiconductor layer. It is characterized by Furthermore, even when P- and N-type semiconductor layers were formed to provide a PN junction, it had the effect of providing diode characteristics with reverse leakage of 1 μA or less at 5 V, rather than mere ohmic resistance characteristics.

かくすることにより、その接合またその近傍に
集中している再結合中心の密度を十分小さくさせ
ることができた。即ち再結合中心は不純物の混合
によりアクセプタ、ドナーにならない価の不純
物とV価の不純物が相互作用して深いトラツプレ
ベルを作るが、かかるトラツプセンタ(再結合中
心)を混合部の厚さをうすくすることにより少な
くし、また結晶学的に成長させることにより真性
半導体の不対結合手の存在濃度を従来の1018
1019cm-3より約1/100の1016〜1017cm-3にしたこと
を特徴としている。
By doing so, it was possible to sufficiently reduce the density of recombination centers concentrated at or near the junction. In other words, the recombination center is formed by mixing impurities, and the V-valent impurity interacts with the valent impurity that does not become an acceptor or donor, creating a deep trap level. By crystallographic growth, the concentration of dangling bonds in an intrinsic semiconductor can be reduced from 10 to 18
It is characterized by having a value of 10 16 to 10 17 cm -3 , which is about 1/100 of 10 19 cm -3 .

以下に本発明の実施例を図面に従つて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

実施例 1 第1図に従つて本発明のプラズマ気相反応装置
の実施例を説明する。
Example 1 An example of the plasma vapor phase reactor of the present invention will be described with reference to FIG.

この図面はPI接合、NI接合、PN接合、PIN接
合、PINIP接合、NIPIN接合またはPINPIN…
…PIN接合等の基板上の半導体に異種導電型また
は同種導電型でありながらも形成される半導体の
主成分または化学量論比の異なる半導体層をそれ
ぞれの半導体層をその前の工程において形成され
た半導体層の影響を受けることを防ぐため、前の
半導体層を形成した反応容器に連設した他の独立
した反応容器で第2の半導体層を形成して、前の
半導体層上に積層した接合を作るとともに、さら
に多層に自動かつ連続的に形成するための装置で
ある。
This drawing is PI junction, NI junction, PN junction, PIN junction, PINIP junction, NIPIN junction or PINPIN…
...Semiconductor layers of different conductivity types or the same conductivity type but with different main components or stoichiometric ratios are formed on a semiconductor on a substrate such as a PIN junction, and each semiconductor layer is formed in a previous process. In order to prevent the second semiconductor layer from being affected by the semiconductor layer, a second semiconductor layer was formed in another independent reaction vessel connected to the reaction vessel in which the previous semiconductor layer was formed, and was laminated on the previous semiconductor layer. This is a device that not only creates bonds but also automatically and continuously forms multiple layers.

図面においては特にPIN接合を構成する3つの
P、IおよびN型の半導体層を積層して形成する
第1および第2の予備室を有するマルチチアンバ
ー(ここでは3つの反応容器)方式のプラズマ気
相反応装置の装置例を示す。
In the drawings, a multi-chamber (here, three reaction vessels) type plasma is shown, which has first and second preliminary chambers formed by stacking three P, I, and N type semiconductor layers constituting a PIN junction. An example of a gas phase reactor is shown.

図面における系、、は3つの各反応容器
6,7,8を有し、それぞれ独立して反応性気体
の導入手段17,18,19と排気手段20,2
1,22とを有し、反応性気体が供給系または排
気系から逆流または他の系からの反応性気体の混
入を防いでいる。
The system in the drawing has three reaction vessels 6, 7, 8, each independently equipped with reactive gas introduction means 17, 18, 19 and exhaust means 20, 2.
1 and 22 to prevent reactive gas from flowing back from the supply system or exhaust system or from mixing with reactive gas from other systems.

この装置は入口側には第1の予備室5が設けら
れ、とびら42より基板ホルダ(ホルダ又は基板
支持体ともいう)74に基板4,4′を挿着し、
この予備室に配置させた。この被形成面を有する
基板は被膜形成を行なわない裏面を互いに接し、
2〜10cm好ましくは3〜5cmの間隙を有して林立
させている。この間隙は基板の反応性気体の流れ
方向の長さが10cm、15cm、20cmと長くなるにつれ
て、3〜4cm、4〜5cm、5〜6cmと広げた。さ
らにこの第1の予備室5を真空ポンプ35にてバ
ルブ34を開けて真空引をした。この後予め真空
引がされている反応容器6,7,8にゲート弁4
4を開けて基板およびホルダを移した。例えば予
備室5より容器6に移し、さらにゲート弁44を
閉じることにより移動させたものである。この時
反応容器6に保持されていた基板2′は反応容器
7に、また反応容器7に保持されていた基板2は
反応容器8に、また反応容器8に保持されていた
基板は第2の出口側の予備室9に同時にゲート弁
45,46,47を開けて移動させた。基板及び
支持体を移動させる手段は種々ある公知のものの
なかから適宜採用できる。第2の予備室に移され
た基板はゲート弁47が閉じられた後41より窒
素が導入されて大気圧にされ、43のとびらより
外に出した。
This device is provided with a first preliminary chamber 5 on the entrance side, and the substrates 4 and 4' are inserted into a substrate holder (also referred to as a holder or substrate support) 74 through a door 42.
I placed it in this spare room. The substrates having the surface to be formed have their back surfaces on which the film is not formed in contact with each other,
They are arranged in a forest with gaps of 2 to 10 cm, preferably 3 to 5 cm. This gap widened to 3-4 cm, 4-5 cm, and 5-6 cm as the length of the substrate in the flow direction of the reactive gas increased to 10 cm, 15 cm, and 20 cm. Furthermore, this first preliminary chamber 5 was evacuated using a vacuum pump 35 by opening a valve 34. After this, the gate valve 4 is inserted into the reaction vessels 6, 7, and 8, which have been evacuated in advance.
4 was opened and the substrate and holder were transferred. For example, the sample is transferred from the preliminary chamber 5 to the container 6, and further transferred by closing the gate valve 44. At this time, the substrate 2' held in the reaction vessel 6 is transferred to the reaction vessel 7, the substrate 2 held in the reaction vessel 7 is transferred to the reaction vessel 8, and the substrate held in the reaction vessel 8 is transferred to the second reaction vessel 7. The gate valves 45, 46, and 47 were simultaneously opened and moved to the preliminary chamber 9 on the exit side. The means for moving the substrate and the support may be appropriately selected from among various known means. After the gate valve 47 was closed, the substrate transferred to the second preliminary chamber was brought to atmospheric pressure by introducing nitrogen through 41, and was taken out through the door 43.

即ちゲート弁の動きはとびら42,43が大気
圧で開けられた時はゲート弁44,45,46,
47は閉じられ、各チアンバーにおいてはプラズ
マ気相反応が行なわれる。また逆にとびら42,
43が閉じられていて予備室5,9が十分真空引
された時は、ゲート弁44,45,46,47が
開き、各チアンバーの基板、ホルダは隣りのチア
ンバーに移動する機構を有している。
That is, the movement of the gate valves is as follows: when the doors 42, 43 are opened at atmospheric pressure, the gate valves 44, 45, 46,
47 is closed, and a plasma gas phase reaction takes place in each chamber. On the other hand, door 42,
43 is closed and the preliminary chambers 5, 9 are sufficiently evacuated, the gate valves 44, 45, 46, 47 are opened, and the substrates and holders of each chamber are moved to the adjacent chamber. There is.

系における第1の反応容器6でのP型半導体
層を形成する場合を以下に記す。
The case of forming a P-type semiconductor layer in the first reaction vessel 6 in the system will be described below.

反応系(反応容器6を含む)は10-3〜10torr
好ましくは0.01〜1torr例えば0.1torrとした。
The reaction system (including reaction vessel 6) is 10 -3 to 10 torr
Preferably it is 0.01 to 1 torr, for example 0.1 torr.

反応性気体は珪化物気体24に対してはシラン
(SinH2o+2n1 特にSiH)、ジクロールシラン
(SiH2Cl2)、トリクロールシラン(SiHCl2)、四
フツ化珪素(SiF4)等があるが、取扱いが容易な
シランを用いた。価格的にはジクロールシランの
方が安価であり、これを用いてもよい。
For the silicide gas 24, reactive gases include silane (SinH 2o+2 n1, especially SiH), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 2 ), silicon tetrafluoride (SiF 4 ), etc. However, we used silane, which is easy to handle. Dichlorosilane is cheaper and may be used.

本実施例のSixC1-x(0<x<1)を形成するた
め炭化物気体23に対してはメタン(CH4)を用
いた。CF4のような炭化物気体であつても、また
四塩化炭素(CCl4)のような塩化炭素であつて
もよい。
Methane (CH 4 ) was used for the carbide gas 23 to form SixC 1-x (0<x<1) in this example. It may be a carbide gas such as CF 4 or a carbon chloride such as carbon tetrachloride (CCl 4 ).

炭化珪素(SixC1-x 0<x<1)に対しては、
P型の不純物としてボロンを水素にて2000PPM
に希釈されたジボランより25より供給した。ま
たガリユームをTMG(Ga(CH33)により1019
9×1021cm-3の濃度になるように加えてもよい。
For silicon carbide (SixC 1-x 0<x<1),
2000PPM of boron with hydrogen as a P-type impurity
diborane diluted to 25%. In addition, galiyum was treated with TMG (Ga(CH 3 ) 3 ) at 10 19 ~
It may be added to a concentration of 9×10 21 cm −3 .

キヤリアガス39は反応中は水素(H2)を用
いたが、反応開始の前後は窒素(N2)を液体窒
素により利用した。これらの反応性気体はそれぞ
れの流量計33およびバルブ32をへて、反応性
気体の導入口17より高周波電源の負電極61を
へて反応容器6に供給された。反応性気体は70
のガイドをへて筒状空間を構成する基板1および
ホルダ74内に導入され、負電極61と正電極5
1間を電気エネルギ例えば13.56MHzの高周波エ
ネルギを加えて反応せしめ、基板上に反応生成物
を被膜形成せしめた。
As the carrier gas 39, hydrogen (H 2 ) was used during the reaction, but nitrogen (N 2 ) was used in the form of liquid nitrogen before and after the start of the reaction. These reactive gases passed through the respective flowmeters 33 and valves 32, and were supplied to the reaction vessel 6 through the reactive gas inlet 17 and the negative electrode 61 of the high frequency power source. Reactive gas is 70
The negative electrode 61 and the positive electrode 5 are introduced into the substrate 1 and the holder 74 forming a cylindrical space.
Electrical energy, such as high frequency energy of 13.56 MHz, was applied between 1 and 1 to cause a reaction, and a reaction product was formed as a film on the substrate.

基板は100〜400℃例えば200℃に赤外線ヒータ
11,11′により加熱した。
The substrate was heated to 100-400°C, for example 200°C, by infrared heaters 11, 11'.

この赤外線ヒータは赤外線イメージ炉ともい
い、棒状を有するため上方のヒータと下方のヒー
タとが互いに直交する方向に配置して、この反応
容器内における特に筒状空間を200±10℃好まし
くは±5℃以内に設置した。このヒータは上側ま
たは下側のみでは反応性気体の流れ方向に200〜
120℃と80℃をも不均一を生じ、全く実用になら
なかつた。また互いに直交させることにより、基
板間の温度分布も±10℃以内とすることができ
た。この後、前記したが、この容器に前記した反
応性気体を導入し、さらに10〜50Wに高周波エネ
ルギ14を供給してプラズマ反応をおこさせた。
This infrared heater is also called an infrared image furnace, and since it has a rod shape, the upper heater and the lower heater are arranged perpendicularly to each other, so that the cylindrical space in the reaction vessel can be heated to 200±10°C, preferably ±5°C. It was installed within ℃. This heater only has a 200~200°
Temperatures of 120°C and 80°C also caused non-uniformity and were not practical at all. Furthermore, by making the substrates orthogonal to each other, the temperature distribution between the substrates could be kept within ±10°C. Thereafter, as described above, the above-described reactive gas was introduced into the container, and high-frequency energy 14 of 10 to 50 W was further supplied to cause a plasma reaction.

かくしてP型半導体層はB2H6/SiH4=0.5%、
CH4/(SiH4+CH4)=0.5の条件にて、この反応
系で約100Åの厚さを有する薄膜として形成さ
せた。Eg=2.0eV、σ=1×10-4〜3×10-3(Ω
em)-1であつた。
Thus, the P-type semiconductor layer has B 2 H 6 /SiH 4 =0.5%,
A thin film having a thickness of about 100 Å was formed using this reaction system under the conditions of CH 4 /(SiH 4 +CH 4 )=0.5. Eg=2.0eV, σ=1×10 -4 ~3×10 -3
em) It was -1 .

従来炭化珪素は一般に珪素のみに比べて大きな
高周波エネルギを必要とする。そのため、電界が
被形成面に垂直方向の場合、被形成面に設けられ
た透明導電膜(ITOまたは酸化スズの600〜800Å
の電極用被膜)はスパツタされて、酸化スズが金
属スズに変わつて透明でなく白濁しやすい。
Conventional silicon carbide generally requires greater high frequency energy than silicon alone. Therefore, when the electric field is perpendicular to the surface to be formed, a transparent conductive film (ITO or tin oxide with a thickness of 600 to 800 Å
(electrode coatings) are sputtered, and the tin oxide turns into metallic tin, making them less transparent and more likely to become cloudy.

そのためにはプラズマ電界を被形成面に概略平
行にすると良く、この電界による反応生成物は表
面にそつて移動するため、スパツク効果による白
濁化は30〜50W加えても見られず、垂直電界の場
合が2〜5Wが限界だつたことに比べて、特性歩
留りおよび製造歩留りを向上させた。
To achieve this, it is best to make the plasma electric field approximately parallel to the surface to be formed, and since the reaction products caused by this electric field move along the surface, clouding due to the spaght effect is not seen even when 30 to 50 W is applied, and the vertical electric field Compared to the case where the limit was 2 to 5 W, the characteristic yield and manufacturing yield were improved.

基板は導体基板(ステンレス、チタン、窒化チ
タン、その他の金属)、半導体(珪素、炭化珪素、
ゲルマニユーム)、絶縁体(アルミナ、ガラス、
有機物質)または複合基板(ガラス絶縁基板上に
酸化スズ、ITO等の導電膜が単層またはITO上に
SnO2が形成された2層膜が形成されたもの、絶
縁基板上に選択的に導体電極が形成されたもの、
絶縁基板上にPまたはN型の半導体が形成された
もの)を用いた。本実施例のみならず本発明のす
べてにおいてこれらを総称して基板という。もち
ろんこの基板は可曲性であつてもまた固い板であ
つてもよい。
Substrates include conductor substrates (stainless steel, titanium, titanium nitride, and other metals), semiconductors (silicon, silicon carbide,
germanium), insulators (alumina, glass,
Organic materials) or composite substrates (conductive films such as tin oxide or ITO on a glass insulating substrate or a single layer on ITO)
One in which a two-layer film with SnO 2 is formed, one in which conductive electrodes are selectively formed on an insulating substrate,
A P- or N-type semiconductor formed on an insulating substrate was used. These are collectively referred to as a substrate not only in this embodiment but also in all of the present invention. Of course, this substrate may be flexible or a rigid plate.

かくして1〜5分間プラズマ反応させて、P型
不純物としてホウ素またはガリユームが添加され
た炭化珪素膜を作製した。さらにこの第1の半導
体層上に基板を前記した操作順序に従つて第2の
反応容器7に移動し、ここで真性の半導体層を約
5000Åの厚さに形成させた。
In this manner, a plasma reaction was performed for 1 to 5 minutes to produce a silicon carbide film doped with boron or gallium as a P-type impurity. Further, the substrate on this first semiconductor layer is moved to the second reaction vessel 7 according to the above-described operation sequence, and here the intrinsic semiconductor layer is deposited about
It was formed to a thickness of 5000 Å.

すなわち第1図における反応系において、半
導体の反応性気体としてシランを28より、また
水素等のキヤリアガスを必要に応じて27,26
より供給して、一対を構成する電極18,21に
て系と同様に高周波電源15より13.56MHzの
高周波エネルギを供給した。基板は250℃にヒー
タ12,12により加熱した。反応性気体は基板
2の被形成面にそつて上方より下方に流れ、真空
ポンプ37に至る。系において43の出口側よ
りみたたて断面図を第2図に示す。
In other words, in the reaction system shown in FIG.
Similarly to the system, high frequency energy of 13.56 MHz was supplied from the high frequency power supply 15 to the electrodes 18 and 21 forming the pair. The substrate was heated to 250° C. by heaters 12, 12. The reactive gas flows from above to below along the surface of the substrate 2 to be formed, and reaches the vacuum pump 37 . A sectional view of the system viewed from the outlet side of 43 is shown in FIG.

第2図を概説する。 Figure 2 is outlined.

第2図において反応容器7はのぞき窓48電波
漏えい防止用銅網49、裏側にマイクロ波供給用
の石英窓55導波管54、さらにマイクロ波また
はミリ波用電源56を具備している。基板2の被
形成面にそつて平行に反応性気体26,27,2
8および高周波15の電界が配されるように設け
てある。
In FIG. 2, the reaction vessel 7 is equipped with a viewing window 48, a copper mesh 49 for preventing leakage of radio waves, a quartz window 55 for supplying microwaves on the back side, a waveguide 54, and a power supply 56 for microwaves or millimeter waves. Reactive gases 26, 27, 2 are applied parallel to the formation surface of the substrate 2.
8 and a high frequency electric field 15 are arranged.

さらに高周波に加えて1GHz以上の周波数例え
ば2.45GHzのマイクロ波が供給されている。
Furthermore, in addition to high frequencies, microwaves with a frequency of 1 GHz or higher, for example 2.45 GHz, are supplied.

第2図において、反応性気体は66より導入さ
れ、石英管導入口より網状または多孔状の電極6
7をへて導出させた。反応性気体の導出口18、
基板2、ホルダ(基板支持体)74、排気口2
1、一対の電極67,68の相関関係について
は、第3図にさらにその斜視図(前半分を切断し
てある)で示している。
In FIG. 2, the reactive gas is introduced from the quartz tube inlet into the mesh or porous electrode 6.
7 and derived it. reactive gas outlet 18;
Substrate 2, holder (substrate support) 74, exhaust port 2
1. The correlation between the pair of electrodes 67 and 68 is further shown in a perspective view (with the front half cut away) in FIG.

さらに好ましい例を示すと、第3図において基
板2は裏面を互いに合せてさしこみ式になつたホ
ルダ74に垂直方向(鉛直方向)に互いに一定の
間隙例えば3cmにて平行に配置されていると良
い。ホルダは石英よりなり、上側に円板状のデイ
スクとこれに連結した基板用みぞ95を有してい
る。デイスクは4つのサポータ80,80′によ
り空間に保持され、サポータ80,80′は軸7
9,79′の回転に従つて回転し、その結果デイ
スクを3〜10回/分の速度で回転し、反応性気体
の均質化を促進させている。
To show a more preferable example, in FIG. 3, it is preferable that the substrates 2 are placed parallel to each other with a fixed gap of, for example, 3 cm, in a vertical direction (vertical direction) in a holder 74 which is an insertion type with their back sides aligned with each other. . The holder is made of quartz and has a disk-shaped disk on the upper side and a substrate groove 95 connected to the disk. The disk is held in space by four supports 80, 80', which are connected to the shaft 7.
9,79' rotations, thereby rotating the disk at a rate of 3 to 10 times per minute to promote homogenization of the reactive gases.

反応性気体は導出口18より1〜3mmの穴73を
へて網状電極(穴約5〜10mm)67をへて、下方
向にふき出させている。ホルダのガイド70によ
り反応性気体の82方向への放出を防ぐため、8
1の間隙は1cm以下好ましくは2〜5mmとした。
そして反応性気体は基板2,2の被形成面および
基板2をたてるためのみぞ95を保持するための
壁96とによつて、筒状に構成し、即ち煙突状に
設けられた中空を83,85の方向に層状に流さ
せると良い。即ち上ぶた93とガイド70とを合
わせたフードと、下ぶた94とガイド71とを合
わせたフードとの間に基板ホルダで基板支持体を
配してプラズマを閉じ込める閉空間を作つた。石
英の側壁96はみぞ95より外側に10〜20mm離れ
て設け、反応性気体の側壁96でのみだれの発生
を防ぎ、そのことにより基板2の端部での被膜の
膜厚の均一性をより促進させた。
The reactive gas is blown out downward from the outlet 18 through a hole 73 of 1 to 3 mm, then to a mesh electrode (hole of about 5 to 10 mm) 67. The guide 70 of the holder prevents the release of reactive gas in the 82 direction.
1, the gap was 1 cm or less, preferably 2 to 5 mm.
The reactive gas is formed into a cylindrical shape by the formation surfaces of the substrates 2, 2 and the wall 96 for holding the groove 95 for raising the substrate 2, that is, a chimney-shaped hollow. It is preferable to flow it in layers in the directions of 83 and 85. That is, a substrate support is placed between a hood made up of the upper lid 93 and the guide 70 and a hood made of the lower lid 94 and the guide 71, using a substrate holder, to create a closed space that confines the plasma. The quartz sidewall 96 is placed 10 to 20 mm away from the groove 95 to prevent reactive gas from sagging on the sidewall 96, thereby improving the uniformity of the coating thickness at the edge of the substrate 2. promoted.

また排気系に関しても、84からの反応性気体
の流入を少なくし、85を選択的に優先させるた
め、ガイド71と基板下端との間隙を1cm以下に
合せて設けた。即ち82,84のガス流のコンダ
クタンスを83,85の約1/5以下好ましくは1/3
0〜1/100にすることにより、筒状空間に選択的に
反応性気体を導き入れた。正電極68と基板下端
との距離はガイドの高さを調節して設けた。
Regarding the exhaust system, in order to reduce the inflow of reactive gas from 84 and selectively give priority to 85, the gap between guide 71 and the bottom end of the substrate was set to 1 cm or less. In other words, the conductance of the gas flow of 82, 84 should be about 1/5 or less, preferably 1/3 of that of 83, 85.
By setting the ratio to 0 to 1/100, reactive gas was selectively introduced into the cylindrical space. The distance between the positive electrode 68 and the lower end of the substrate was determined by adjusting the height of the guide.

さらに負電極67と基板上端即ちデイスク74
との距離も同様にガイド70により調節した。
Furthermore, the negative electrode 67 and the upper end of the substrate, that is, the disk 74
Similarly, the distance between the guide 70 and the guide 70 was adjusted.

第3図より明らかな如く、電極はその外周辺側
を石英のガイド70、上ぶた93、ガイド71、
下ぶた94によつて囲まれており、電極とチアン
バー(特にステンレスチアンバー)の内壁との寄
生放電の防止に務めた。さらに反応性気体の導入
口18の内径と負電極が概略同一の大きさを有
し、また排気口21の内径と正電極とが概略同一
の大きさを有するため、高周波放電を行なうと、
この筒状空間即ち反応性気体の被形成面にそつて
流れて空間を優先的にプラズマ放電させている。
その結果、反応性気体のプラズマ化率がきわめて
大きくなり、ひいては反応容器(ベルジヤー)の
内壁に過剰の反応生成物がピンホール発生の原因
となるフレーク状に付着してしまうことを防ぐこ
とができた。
As is clear from FIG. 3, the electrode has a quartz guide 70, an upper lid 93, a guide 71,
It is surrounded by a lower lid 94, which serves to prevent parasitic discharge between the electrode and the inner wall of the chamber (particularly the stainless steel chamber). Furthermore, since the inner diameter of the reactive gas inlet 18 and the negative electrode have approximately the same size, and the inner diameter of the exhaust port 21 and the positive electrode have approximately the same size, when high-frequency discharge is performed,
It flows along this cylindrical space, that is, the surface on which the reactive gas is formed, preferentially causing plasma discharge in the space.
As a result, the plasma conversion rate of the reactive gas becomes extremely high, and it is possible to prevent excessive reaction products from adhering to the inner wall of the reaction vessel (belgear) in the form of flakes, which can cause pinholes. Ta.

以上の如き第3図の構成に加えて、その番号が
対応した第2図においては、赤外線ランプ12,
12′が上方向、下方向に設け、基板の均質化を
促進させると良い。
In addition to the configuration of FIG. 3 as described above, in FIG. 2 with corresponding numbers, infrared lamps 12,
12' are preferably provided in the upper and lower directions to promote homogenization of the substrate.

第3図の構成は第1図における系,におけ
る反応容器6,8での電極、基板、ホルダ、反応
性気体導出口、排気口においても同様の構成を有
せしめた。かくして第3図において基板および基
板ホルダは何らの支障なく77の系の方向より
到り、また78の方向の系の方向に移動させる
ことができた。
The structure shown in FIG. 3 is similar to that of the electrodes, substrates, holders, reactive gas outlets, and exhaust ports in the reaction vessels 6 and 8 in the system shown in FIG. Thus, in FIG. 3, the substrate and substrate holder were able to arrive from the system direction 77 and move in the system direction 78 without any problem.

図面では250℃において3Å/秒の成長速度を
高周波電界を20Wとしシランを30c.c./分加えると
得ることができた。結果として従来の平行平板型
の電極方式において0.1〜1Å/秒に比べて、同
一反応容器において、例えば前者が10cm□1まい
であるのに対し、10cm□8まいを被膜の成長速度
が従来を0.5Å/秒とすると6倍になり、合計48
倍の多量生産が可能となつた。また従来50cmを作
製する空間においては、20cm×50cmの基板を間隙
5cmとし、20配列同時に可能となり、被形成面積
は実質的に20×50×20=2×104cm2と同様に8倍
にすることができ、電極間距離は従来の4cmより
25〜27cmになつたため、反応性気体のイオン化率
も向上し、被膜成長速度も4Å/秒を得ることが
できるため、結果として64倍の成長速度を実質的
に有するきわめて理想的な多量生産方式であるこ
とがわかつた。
In the drawing, a growth rate of 3 Å/sec at 250°C could be obtained by using a high frequency electric field of 20 W and adding silane at 30 c.c./min. As a result, compared to 0.1 to 1 Å/sec in the conventional parallel plate type electrode system, the film growth rate in the same reaction vessel is 10 cm □ 8 Å/sec compared to 10 cm □ 1 Å/sec in the former case. If it is 0.5 Å/sec, it will be 6 times, totaling 48
It has become possible to produce double the amount. Furthermore, in the conventional space for fabricating 50 cm substrates, 20 cm x 50 cm substrates can be arranged at the same time with a gap of 5 cm, making it possible to arrange 20 at the same time, and the area to be formed is essentially 8 times as large as 20 x 50 x 20 = 2 x 10 4 cm 2 . The distance between the electrodes is shorter than the conventional 4 cm.
Since the length is 25 to 27 cm, the ionization rate of the reactive gas is improved, and the film growth rate is 4 Å/sec. As a result, it is an extremely ideal mass production method that effectively has a growth rate 64 times faster. It turns out that it is.

かくして形成された半導体層は、プラズマ状態
の距離が長いため、光伝導度も2×10-4〜7×
10-3(Ωcm)-1、暗伝導度3×10-7〜1×10-9(Ω
cm)-1を有していた。
Since the semiconductor layer thus formed has a long plasma state distance, its photoconductivity also ranges from 2×10 -4 to 7×
10 -3 (Ωcm) -1 , dark conductivity 3×10 -7 to 1×10 -9
cm) -1 .

またかくして型半導体層を系にて約5000Å
の厚さに形成させた後、基板は前記した操作に従
つて系の反応容器8に移され、N型半導体層が
形成された。このN型半導体層には、第1図にお
いてフオスヒンをPH3/SiH4=1.0%とし31よ
りまたシランを30より、またキヤリアガスの水
素を29よりSiH4/H2=50として供給し系と
同様にして200Åの厚さにN型の微結晶性または
繊維構造を有する多結晶の半導体層を形成させた
ものである。その他反応装置については系と同
様である。
In this way, the type semiconductor layer is approximately 5000 Å thick in the system.
After forming the substrate to a thickness of , the substrate was transferred to the reaction vessel 8 of the system according to the operations described above, and an N-type semiconductor layer was formed. To this N-type semiconductor layer, as shown in FIG. 1, phosphin was supplied from 31 at PH 3 /SiH 4 =1.0%, silane was supplied from 30, and carrier gas hydrogen was supplied from 29 at SiH 4 /H 2 =50 to form a system. Similarly, an N-type microcrystalline or polycrystalline semiconductor layer having a fiber structure was formed to a thickness of 200 Å. Other reaction equipment is the same as the system.

かかる工程の後、第2の予備室9より外にPIN
接合を構成して出された基板上にアルミニユーム
電極を真空蒸着法により約1μの厚さに作り、ガ
ラス基板上に(ITO+SnO2)表面電極−(PIN半
導体)(Al裏面電極)を構成させた。
After this process, enter the PIN from the second preliminary room 9.
An aluminum electrode with a thickness of about 1 μm was made by vacuum evaporation on the substrate that had been formed by forming the bond, and an (ITO + SnO 2 ) surface electrode - (PIN semiconductor) (Al back electrode) was formed on the glass substrate. .

その光電変換装置としての特性は7〜9%平均
8%を10cm□の基板でAM1(100mW/cm2)にて
真性効率特性として有し、ハイブリツド型にした
15cm×40cmの基板においても、6〜7%を真性効
率で得ることができた。この効率の向上は光が入
射する側のPI接合がきわめて面的に構成され、
またアモルフアス半導体またはセミアモルフアス
半導体等の非単結晶半導体においても、P型半導
体層上にI型半導体層を成長積層させたことによ
るもので、また開放電圧は0.88〜0.9Vであつた
が、短絡電流は20〜22mA/cm2と大きく、また
FFも0.70〜0.78と大きく、PIN型の半導体層内部
における再結合中心の密度が従来の方法に比べ1/
10〜1/50になつたことによる電流増加が大きな特
性改良につながつたものと推定される。
Its properties as a photoelectric conversion device are 7 to 9%, with an average of 8% as an intrinsic efficiency characteristic at AM1 (100mW/cm 2 ) on a 10cm□ substrate, making it a hybrid type.
Even on a 15 cm x 40 cm substrate, we were able to obtain an intrinsic efficiency of 6 to 7%. This improvement in efficiency is due to the extremely planar structure of the PI junction on the side where light enters.
Also, in non-single crystal semiconductors such as amorphous semiconductors or semi-amorphous semiconductors, an I-type semiconductor layer is grown and laminated on a P-type semiconductor layer, and the open circuit voltage is 0.88 to 0.9V. The short circuit current is large at 20-22mA/ cm2 , and
FF is also large at 0.70 to 0.78, and the density of recombination centers inside the PIN type semiconductor layer is 1/1 compared to the conventional method.
It is estimated that the increase in current due to the reduction in current by 10 to 1/50 has led to a significant improvement in characteristics.

かくの如く本発明のプラズマ反応装置は形成さ
れる半導体において生産性を30〜70倍も向上さ
せ、また特性も従来の5〜7%の変換効率に比べ
30%も向上させるきわめて独創的なものである。
As described above, the plasma reactor of the present invention improves the productivity of semiconductors formed by 30 to 70 times, and also has improved characteristics compared to the conventional conversion efficiency of 5 to 7%.
This is an extremely original product that improves performance by 30%.

参考例 1 この実施例は実施例1の変形であり、第2図に
対応した図面を第4図に示してある。その他は第
1図〜第3図と同様である。
Reference Example 1 This example is a modification of Example 1, and a drawing corresponding to FIG. 2 is shown in FIG. 4. Other details are the same as in FIGS. 1 to 3.

第4図はI型半導体層を形成するプラズマ反応
容器のたて断面図であり、図面において反応性気
体26,27,28は導入口66をへて導出口1
8より横方向に噴き出されている。また排出口も
21をへて76よりロータリーポンプ37に至つ
ている。基板2は鉛直方向に立てて林立させ、ホ
ルダ74により空間に保持されている。反応性気
体はガイド70,71により横型の筒状空間に選
択的に流れるようにしている。高周波電源15は
負電極67正電極72を有し、赤外線ランプは1
2,12′と上下に設けられ、均熱化を促進させ
た。
FIG. 4 is a vertical sectional view of a plasma reaction vessel in which an I-type semiconductor layer is formed.
It is ejected laterally from 8. Further, the discharge port also passes through 21 and reaches the rotary pump 37 from 76. The substrates 2 are arranged vertically in a row and are held in space by a holder 74. Guides 70 and 71 allow the reactive gas to flow selectively into the horizontal cylindrical space. The high frequency power source 15 has a negative electrode 67 and a positive electrode 72, and the infrared lamp has one
2 and 12' were installed above and below to promote uniform heating.

この実施例においては、基板2ホルダ74の系
〜への移動が容易であるという特性を有す
る。しかし反応性気体が温度の上昇気流により上
方に多く流れ、基板の上側が厚くなりやすい。こ
のため基板を18〜21の方向に配置させること
が必要になるが、この作業が構造上困難であると
いう欠点を有していた。また反応性気体の飛翔距
離が基板2の横方向であり、長いため反応性気体
の導入口側と排出口側とで得られた電気特性にバ
ラツキが発生してしまい、多量生産には実施例1
と同様にすぐれたものであつたが、高品質の特性
を大面積に均質に得るという点では欠点を有して
いた。
This embodiment has the characteristic that the substrate 2 holder 74 can be easily moved to the system. However, a large amount of reactive gas flows upward due to the rising temperature, and the upper side of the substrate tends to become thicker. For this reason, it is necessary to arrange the substrate in the direction of 18 to 21, but this has the drawback of being structurally difficult. In addition, since the flight distance of the reactive gas is long in the lateral direction of the substrate 2, variations occur in the electrical characteristics obtained on the reactive gas inlet side and outlet side. 1
However, it had a drawback in that it could not uniformly obtain high-quality characteristics over a large area.

参考例 2 第5図は他の参考例を示す。Reference example 2 FIG. 5 shows another reference example.

第5図Aは実施例1の第3図に対応して図面の
概要を示したものである。第5図Aにおいて反応
性気体の導入口66より18、負電極67をへて
排気口21、正電極68、排気系74に至るが、
基板2はテーパ状を有し、基板の導入口側より排
気口側に向つてせまくなり、その形成される膜の
均一化をさらに促進させたものである。
FIG. 5A shows an outline of the drawing corresponding to FIG. 3 of the first embodiment. In FIG. 5A, the reactive gas flows from the inlet 66 through the negative electrode 67 to the exhaust port 21, the positive electrode 68, and the exhaust system 74.
The substrate 2 has a tapered shape and becomes narrower from the inlet side to the exhaust port side of the substrate, further promoting uniformity of the formed film.

Aにおいてはフレークが被形成面に弱干付着し
やすいため、Bにおいては反応性気体の導出口を
下方向より排気口を上方向に設けることも可能で
ある。
In case A, the flakes tend to adhere slightly to the surface on which they are formed, so in case B, it is also possible to provide the outlet for the reactive gas upward rather than the outlet downward.

かくすると、フレークが被形成面に付くことが
なく、即ちピンホールによる製造歩留りも向上
し、加えて被膜の膜質も反応性気体の流れ方向に
おいて均質な結果を得た。しかし第1図の製造装
置に比べてその生産性は約1/2になつてしまつた。
In this way, flakes were not attached to the surface to be formed, that is, the manufacturing yield due to pinholes was improved, and in addition, the film quality of the film was homogeneous in the flow direction of the reactive gas. However, the productivity was about half that of the manufacturing equipment shown in Figure 1.

以上の本発明の実施例においては、PIN接合を
1つ有するものとした。しかしPINIP型のフオト
トランジスタ、PINPIN………PINのタンデム構
造の光電変換装置等多くの応用もその半導体層の
数に従つて反応容器をさらに連結すればよく、本
発明の技術思想において、これらも含まれること
はいうまでもない。
In the embodiments of the present invention described above, one PIN junction is provided. However, for many applications such as PINIP type phototransistors, PINPIN......PIN tandem structure photoelectric conversion devices, it is sufficient to further connect reaction vessels according to the number of semiconductor layers, and the technical idea of the present invention also covers these applications. Needless to say, it is included.

本発明において形成される非単結晶半導体被膜
中の結晶構造がアモルフアスであれ多結晶であ
れ、その構造には制限を受けない。本発明は形成
された複数の積層された半導体被膜がP型、N型
またはI型を少なくともPI、PNまたはNI接合を
ひとつ有する半導体であることが重要である。ま
たこの半導体としての導電特性のリーク特性の軽
減のため、その接合面においてそれぞれを混合さ
せない高品質な被膜を多量生産することが大きな
特徴である。
Regardless of whether the crystal structure in the non-single crystal semiconductor film formed in the present invention is amorphous or polycrystalline, there is no restriction on the structure. In the present invention, it is important that the plurality of stacked semiconductor films formed are P-type, N-type or I-type semiconductors having at least one PI, PN or NI junction. In addition, in order to reduce the leakage characteristics of the conductive properties of this semiconductor, a major feature is to mass-produce a high-quality coating that does not mix each other at the bonding surface.

さらにこの珪素または炭素の不対結合手を水素
によりSi−H、C−Hにて中和するのではなくSi
−Cl、C−Clとハロゲン化物特に塩化物気体を用
いて実施してもよいことはいうまでもなく、この
濃度は10原子%以下、例えば2〜5原子%が好ま
しかつた。
Furthermore, instead of neutralizing the dangling bonds of silicon or carbon with hydrogen by Si-H or C-H,
It goes without saying that -Cl, C-Cl and a halide gas, particularly a chloride gas, may be used, but the concentration is preferably 10 atomic % or less, for example 2 to 5 atomic %.

形成させる半導体の種類に関しては、実施例1
に示したが、族のSi、Ge、SixC1-x(0<x<
1)、SixGe1-x(0<x<1)、SixSn1-x(0<x
<1)のみでになく、これ以外にGaAs、
GaAlAs、BP、Cds等の化合物半導体であつても
よいことはいうまでもない。
Regarding the type of semiconductor to be formed, see Example 1.
However, in the group Si, Ge, SixC 1-x (0<x<
1), SixGe 1-x (0<x<1), SixSn 1-x (0<x
<1) In addition to this, GaAs,
It goes without saying that it may be a compound semiconductor such as GaAlAs, BP, or Cds.

本発明で形成された炭化珪素被膜に対しフオト
エツチ技術を用いて選択的にPまたはN型の不純
物を混入または拡散してPN接合を部分的に作
り、この接合を利用してトランジスタ、ダイオー
ド、W−N−W(WIDE−NALLOW−WIDE)構
造のPIN接合型の可視光レーザ、発光素子または
光電変換素子を作つてもよい。特に光入射光側の
エネルギバンド巾を大きくしたヘテロ接合構造を
有するいわゆるW−N(WIDE TO NALLOW)
と各反応室にて導電型のみではなく生成物を異な
らせてそれぞれ独立して作製して積層させること
が可能になり、工業的にきわめて重要なものであ
ると信ずる。
P- or N-type impurities are selectively mixed or diffused into the silicon carbide film formed according to the present invention using photo-etch technology to partially form PN junctions, and this junction can be used to create transistors, diodes, W A PIN junction type visible light laser, light emitting element, or photoelectric conversion element having a -N-W (WIDE-NALLOW-WIDE) structure may be made. The so-called W-N (WIDE TO NALLOW) has a heterojunction structure with a particularly large energy band width on the incident light side.
This makes it possible to independently manufacture and stack products of different conductivity types in each reaction chamber, which we believe is extremely important industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明を実施するための半導
体膜形成用製造装置の概略を示す。第3図は第2
図の装置の一部の斜視図を示す。第4図は第2図
に対応した参考例である。第5図は本発明の第3
図に対応した他の参考例である。
1 and 2 schematically show a manufacturing apparatus for forming a semiconductor film for carrying out the present invention. Figure 3 is the second
Figure 2 shows a perspective view of a portion of the illustrated apparatus; FIG. 4 is a reference example corresponding to FIG. 2. FIG. 5 shows the third embodiment of the present invention.
This is another reference example corresponding to the figure.

Claims (1)

【特許請求の範囲】 1 反応容器内に固定された一対の電極とその外
側のフードと、該一対の電極との間に、対抗する
被形成面間の距離を等間隔に保ち複数の基板を保
持する手段を有した上記複数の基板を囲む移動可
能な基板支持体を設けることにより、前記一対の
フードと前記基板支持体とによりプラズマを閉じ
込める閉空間を構成せしめ該閉空間への反応性気
体の供給系と前記閉空間からの反応性気体の排出
系とを備えた反応容器を開閉するゲート弁を介し
て複数個連接せしめた、基板上に被膜を積層する
装置であつて、第1の反応容器中の一対の電極の
間に上記基板支持体をプラズマ領域内に配される
ようにして前記のプラズマを閉じ込めて反応容器
内壁に被膜が作製されないように配置する手段
と、その後前記閉空間に反応性気体を導入する手
段とによりプラズマを発生させ、上記被形成面上
に第1の被膜を形成させる手段を具備するととも
に、第1の反応容器における被膜形成後の基板を
保持した上記基板支持体及び基板を、該支持体を
保持するジグとゲート弁を開ける手段 とにより隣接する第2の反応容器に移動させる手
段と前記ゲート弁を閉じる手段と第2の反応容器
中における一対の電極及びその外側の一対のフー
ドの間に前記基板支持体を第1の反応容器中にお
けると同様に配置することにより前記第1の被膜
上に第2の被膜を形成する手段を具備したことを
特徴とするプラズマ気相反応装置。 2 特許請求の範囲第1項における反応容器を、
P型半導体層を形成させるための反応容器と、I
型半導体層を形成させるための反応容器と、N型
半導体層を形成させるための反応容器として連接
せしめ、各反応容器の連設部にはそれぞれの反応
容器に導入される反応性気体がプラズマ気相反応
中に他の反応容器に混入することを防ぐゲート弁
が設けられたプラズマ気相反応装置。
[Scope of Claims] 1. A plurality of substrates are placed between a pair of electrodes fixed in a reaction container, a hood outside the reaction container, and the pair of electrodes, with the distances between opposing surfaces to be formed kept at equal intervals. By providing a movable substrate support that surrounds the plurality of substrates and having holding means, the pair of hoods and the substrate support form a closed space that confines plasma, and a reactive gas is introduced into the closed space. An apparatus for laminating a film on a substrate, the apparatus comprising a plurality of reaction vessels connected via gate valves for opening and closing the reaction vessels, each of which is equipped with a supply system for a reaction vessel and a discharge system for a reactive gas from the closed space, the apparatus comprising: means for arranging the substrate support in a plasma region between a pair of electrodes in the reaction vessel so as to confine the plasma and prevent formation of a film on the inner wall of the reaction vessel, and then the closed space; and means for generating plasma by introducing a reactive gas into the substrate to form a first film on the surface to be formed, and holding the substrate after the film has been formed in the first reaction vessel. means for moving the support and the substrate to an adjacent second reaction vessel using a jig for holding the support and means for opening the gate valve; means for closing the gate valve; and a pair of electrodes in the second reaction vessel. and means for forming a second coating on the first coating by arranging the substrate support between a pair of hoods on the outside thereof in the same manner as in the first reaction vessel. Plasma gas phase reactor. 2. The reaction vessel in claim 1,
a reaction vessel for forming a P-type semiconductor layer;
A reaction vessel for forming an N-type semiconductor layer and a reaction vessel for forming an N-type semiconductor layer are connected, and the reactive gas introduced into each reaction vessel is connected to the connected part of each reaction vessel as a plasma gas. A plasma gas phase reactor equipped with a gate valve to prevent the gas from entering other reaction vessels during the phase reaction.
JP57163729A 1982-09-20 1982-09-20 Plasma vapor reactor Granted JPS5952834A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57163729A JPS5952834A (en) 1982-09-20 1982-09-20 Plasma vapor reactor
US06/533,941 US4582720A (en) 1982-09-20 1983-09-20 Method and apparatus for forming non-single-crystal layer
US06/828,790 US4640845A (en) 1982-09-20 1986-02-13 Method and apparatus for forming non-single-crystal layer
US06/828,908 US4642243A (en) 1982-09-20 1986-02-13 Method and apparatus for forming non-single-crystal layer
US07/127,602 US4832981A (en) 1982-09-20 1987-11-30 Method and apparatus for forming non-single crystal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57163729A JPS5952834A (en) 1982-09-20 1982-09-20 Plasma vapor reactor

Publications (2)

Publication Number Publication Date
JPS5952834A JPS5952834A (en) 1984-03-27
JPH0436448B2 true JPH0436448B2 (en) 1992-06-16

Family

ID=15779550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57163729A Granted JPS5952834A (en) 1982-09-20 1982-09-20 Plasma vapor reactor

Country Status (1)

Country Link
JP (1) JPS5952834A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232612A (en) * 1985-04-08 1986-10-16 Semiconductor Energy Lab Co Ltd Gaseous phase reaction device
US5512102A (en) * 1985-10-14 1996-04-30 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD system under magnetic field
US5188672A (en) * 1990-06-28 1993-02-23 Applied Materials, Inc. Reduction of particulate contaminants in chemical-vapor-deposition apparatus

Also Published As

Publication number Publication date
JPS5952834A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
US4492716A (en) Method of making non-crystalline semiconductor layer
US4398343A (en) Method of making semi-amorphous semiconductor device
CN103959484B (en) Manufacture the method and apparatus of silicon heterogenous solar cell
US7919398B2 (en) Microcrystalline silicon deposition for thin film solar applications
US7741144B2 (en) Plasma treatment between deposition processes
EP0099257B1 (en) Apparatus for uniformly heating a substrate
US20130012030A1 (en) Method and apparatus for remote plasma source assisted silicon-containing film deposition
JPH0419703B2 (en)
KR20080033955A (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
JPS6043819A (en) Method for vapor-phase reaction
US20090130827A1 (en) Intrinsic amorphous silicon layer
US4464415A (en) Photoelectric conversion semiconductor manufacturing method
US6103138A (en) Silicon-system thin film, photovoltaic device, method for forming silicon-system thin film, and method for producing photovoltaic device
JPH0436448B2 (en)
JPH0458173B2 (en)
JPH0436449B2 (en)
JPS5916328A (en) Plasma vapor reaction device
JPH08195348A (en) Semiconductor device manufacturing equipment
JPH0522376B2 (en)
JPH0244141B2 (en)
JPH06184755A (en) Method and device for forming deposition film
JPH0522375B2 (en)
JPH0586645B2 (en)
US20110275200A1 (en) Methods of dynamically controlling film microstructure formed in a microcrystalline layer
JPH0463537B2 (en)