JP2003318425A - Method of manufacturing thin film solar battery - Google Patents

Method of manufacturing thin film solar battery

Info

Publication number
JP2003318425A
JP2003318425A JP2002121542A JP2002121542A JP2003318425A JP 2003318425 A JP2003318425 A JP 2003318425A JP 2002121542 A JP2002121542 A JP 2002121542A JP 2002121542 A JP2002121542 A JP 2002121542A JP 2003318425 A JP2003318425 A JP 2003318425A
Authority
JP
Japan
Prior art keywords
roll
heat treatment
thin film
solar cell
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002121542A
Other languages
Japanese (ja)
Other versions
JP4082077B2 (en
Inventor
Shinji Fujikake
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002121542A priority Critical patent/JP4082077B2/en
Publication of JP2003318425A publication Critical patent/JP2003318425A/en
Application granted granted Critical
Publication of JP4082077B2 publication Critical patent/JP4082077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a thin film solar battery which can improve the conversion efficiency through reduction of sheet resistance of a transparent electrode without increase in size of a thin film solar battery manufacturing apparatus and increase of cost of the apparatus. <P>SOLUTION: A photoelectric conversion element, which is formed by forming a metal electrode, a photoelectric conversion layer and a transparent electrode on a flexible film substrate with a stepping roll system or roll-to-roll system, is heated in the form of a roll within a heating furnace under the condition where the flexible substrate having formed the elements up to the transparent electrode is wound around a winding roll. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、可とう性基板上に
薄膜光電変換層を形成してなる薄膜太陽電池に関するも
ので、特にその熱処理方法に関する。
TECHNICAL FIELD The present invention relates to a thin film solar cell in which a thin film photoelectric conversion layer is formed on a flexible substrate, and more particularly to a heat treatment method thereof.

【0002】[0002]

【従来の技術】可とう性基板を用いた薄膜太陽電池とし
ては、a−Si,a−SiGeあるいは微結晶シリコン
等の非単結晶薄膜を主な構成材料とした太陽電池が考え
られる。基板としては、ステンレス等の金属フィルム基
板、あるいはポリイミド、PET等のプラスチックフィ
ルム基板が用いられる。
2. Description of the Related Art As a thin film solar cell using a flexible substrate, a solar cell mainly composed of a non-single crystal thin film such as a-Si, a-SiGe or microcrystalline silicon is considered. As the substrate, a metal film substrate such as stainless steel or a plastic film substrate such as polyimide or PET is used.

【0003】金属電極層、光電変換層、および透明電極
層の成膜方式としては、基板を連続的に搬送しながら、
スパッタリング、CVD等の膜形成を行なうロールツー
ロール成膜方式と、基板を間歇的に搬送しながら複数の
反応室を仕切って成膜するステッピングロール成膜方式
とがある。ロールツーロール装置を用いた例としては、
特開2000−49103号公報に開示された製造装置
および製造方法が挙げられ、この場合、ステンレスフィ
ルム基板を用い、この基板の上に金属電極、a−Si系
薄膜、透明電極がそれぞれロールツーロール成膜方式で
成膜される。一方、ステッピングロール装置を用いた例
としては、特開平6−291349号公報に開示された
製造装置および製造方法が挙げられ、ロールツーロール
方式で金属電極を形成した後に、ステッピングロール方
式によりa−Si系薄膜、透明電極が成膜される。ま
た、特開2000−236105号公報には、開放電
圧、直列抵抗等の電池特性不良を防ぐために、透明電極
まで形成したフィルム基板を、加熱処理室で120〜2
10℃の温度で加熱処理することが開示されている。
The metal electrode layer, the photoelectric conversion layer, and the transparent electrode layer are formed by continuously transferring the substrate,
There are a roll-to-roll film forming method for forming a film such as sputtering and CVD, and a stepping roll film forming method for forming a film by partitioning a plurality of reaction chambers while intermittently transporting the substrate. As an example of using a roll-to-roll device,
There is a manufacturing apparatus and a manufacturing method disclosed in Japanese Patent Laid-Open No. 2000-49103. In this case, a stainless film substrate is used, and a metal electrode, an a-Si thin film, and a transparent electrode are roll-to-roll on the substrate. It is formed by a film forming method. On the other hand, examples of using a stepping roll device include a manufacturing device and a manufacturing method disclosed in JP-A-6-291349. After forming a metal electrode by a roll-to-roll system, a- A Si-based thin film and a transparent electrode are formed. Further, in Japanese Patent Laid-Open No. 2000-236105, in order to prevent defective battery characteristics such as open circuit voltage and series resistance, a film substrate formed with transparent electrodes is used in a heat treatment chamber at 120 to 2
A heat treatment at a temperature of 10 ° C. is disclosed.

【0004】透明電極としては、ITO,In23,S
nO2,ZnO,CdO,CdIn24,Cd2Sn
4,Zn2SnO4,In23−ZnO系のいずれかが
用いられる。また、成膜方法としては、スパッタリン
グ、蒸着、イオンプレーティングが考えられるが、大面
積への均一成膜、量産性の観点から、スパッタリングが
最も一般的に用いられる。
As the transparent electrode, ITO, In 2 O 3 , S
nO 2 , ZnO, CdO, CdIn 2 O 4 , Cd 2 Sn
Any one of O 4 , Zn 2 SnO 4 , and In 2 O 3 —ZnO system is used. As a film forming method, sputtering, vapor deposition, or ion plating can be considered, but from the viewpoint of uniform film formation on a large area and mass productivity, sputtering is most commonly used.

【0005】[0005]

【発明が解決しようとする課題】太陽電池の透明電極に
は集電ロスを極力低く抑えるため、抵抗率が低いことが
要求される。この目的で、例えばITO成膜時の基板温
度は、デバイスが熱劣化しない範囲内で極力高温(20
0℃程度)に設定される。また、さらに抵抗率を低減さ
せる目的で、成膜後に200℃程度の高温で数十分〜数
時間熱処理する技術が報告されている。熱処理により、
結晶性の変化や結晶粒界からの酸素の脱離等を生じ、処
理前に比べて抵抗率が20〜50%低下する。
The transparent electrode of the solar cell is required to have a low resistivity in order to suppress current collection loss as low as possible. For this purpose, for example, the substrate temperature during ITO film formation is as high as possible (20
It is set to 0 ° C). In addition, a technique has been reported in which, after the film formation, a heat treatment is performed at a high temperature of about 200 ° C. for several tens of minutes to several hours for the purpose of further reducing the resistivity. By heat treatment,
The change in crystallinity and the desorption of oxygen from the crystal grain boundaries occur, and the resistivity decreases by 20 to 50% as compared with that before the treatment.

【0006】一方で、太陽電池の生産性を向上させた場
合、熱処理のための十分な時間を確保することが困難に
なる。例えば、1台の装置で10MW/年程度の処理を
行なう場合、ロールツーロール方式では、1ライン当た
りの年間処理長を見積もると約29万mとなり、これに
よりロールツーロール方式の場合の処理速度は約1m/
分以上の搬送速度が必要であり、30分の熱処理を行な
うためだけに30m以上の加熱領域を必要とする。ま
た、多室配置のステッピングロール方式では、1ライン
当たりの年間処理長を見積もると約7万mとなる。1フ
レームの長さが約1mだと、年間7万mは年間7万ステ
ップに相当する。年間処理時間=タクトタイム×700
00ステップ=稼働率(50%)×365日×24時間
×60分であるので、タクトタイム=0.5×365×
24×60/70000=3.75分(3.75分毎に
1m巻取り)となる。ステッピングロール方式の場合、
搬送に0.5〜1分要するため、タクト3.75分時に
純粋に加熱処理に使える時間は3分程度となる。ここで
30分以上の熱処理を行なおうとすると、熱処理のため
だけに10個程度の加熱室が必要となり、大幅な装置コ
ストアップにつながる。
On the other hand, when the productivity of solar cells is improved, it becomes difficult to secure sufficient time for heat treatment. For example, when processing about 10 MW / year with one device, the roll-to-roll method estimates an annual processing length per line of about 290,000 m, which makes the processing speed of the roll-to-roll method. Is about 1m /
A transport speed of more than a minute is required, and a heating area of 30 m or more is required only for performing a heat treatment for 30 minutes. In the multi-chamber arrangement stepping roll system, the annual processing length per line is estimated to be about 70,000 m. If the length of one frame is about 1 m, 70,000 m per year corresponds to 70,000 steps per year. Annual processing time = tact time x 700
00 steps = operating rate (50%) × 365 days × 24 hours × 60 minutes, so tact time = 0.5 × 365 ×
24 × 60/70000 = 3.75 minutes (1m winding every 3.75 minutes). In case of stepping roll method,
Since 0.5 to 1 minute is required for transportation, the time that can be purely used for heat treatment is about 3 minutes when the takt time is 3.75 minutes. If the heat treatment is performed for 30 minutes or more, about 10 heating chambers are required only for the heat treatment, which leads to a large increase in the cost of the apparatus.

【0007】本発明の目的は、装置の巨大化ならびに装
置のコストアップを招くことの無い薄膜太陽電池の製造
方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a thin film solar cell which does not cause the device to become huge and the cost of the device to increase.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、ロールツーロール方式もしくは
ステッピングロール方式による薄膜太陽電池の製造方法
において、可とう性基板上に、少なくとも第一電極、光
電変換層、第二電極を順次形成した薄膜太陽電池素子
を、第二電極まで形成されて可とう性基板が巻取りロー
ルにロール状に巻かれた状態で、ロールごと加熱処理を
行なうこととする。ここで、加熱処理が、減圧あるいは
大気圧で、ロールツーロール製造装置もしくはステッピ
ングロール製造装置とは別置された加熱炉中で行なわれ
ることが良い。また、加熱処理の温度が160〜250
℃、加熱処理時間が30分以上であることが良い。
To achieve the above object, according to the present invention, in a method for manufacturing a thin film solar cell by a roll-to-roll system or a stepping roll system, at least a flexible substrate is provided with at least a first substrate. A thin film solar cell element in which one electrode, a photoelectric conversion layer, and a second electrode are sequentially formed, and in a state in which the flexible substrate is formed up to the second electrode and is wound around a winding roll, heat treatment is performed for each roll. I will do it. Here, the heat treatment may be performed under reduced pressure or atmospheric pressure in a heating furnace that is placed separately from the roll-to-roll manufacturing apparatus or the stepping roll manufacturing apparatus. Further, the temperature of the heat treatment is 160 to 250.
It is preferable that the temperature is 30 ° C. and the heat treatment time is 30 minutes or more.

【0009】さらに、加熱処理の雰囲気が、窒素、アル
ゴン等の不活性ガス、または水素等の還元性ガス、また
はこれらのガスを含んだ混合ガスであることが良い。加
熱処理(アニール)の効果は、結晶性の向上と粒界から
の酸素脱離である。本発明のような200℃程度のアニ
ールプロセスの場合、後者の粒界からの酸素脱離のほう
が効果が大きいと考えられる。つまり、結晶の粒界に酸
素が吸着しているとキャリアの伝導を阻害するため、取
り除く必要がある。この場合、第一の有効な方法とし
て、アルゴン、窒素のような不活性ガスでアニールする
ことが挙げられる。さらに積極的に酸素を除去するため
に、水素を含んだ還元性のガスに晒すことが有効とな
る。
Furthermore, the atmosphere for the heat treatment is preferably an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, or a mixed gas containing these gases. The effects of heat treatment (annealing) are improvement of crystallinity and desorption of oxygen from grain boundaries. In the case of the annealing process at about 200 ° C. as in the present invention, it is considered that the latter desorption of oxygen from the grain boundaries is more effective. In other words, if oxygen is adsorbed on the grain boundaries of the crystal, it will obstruct the conduction of carriers and must be removed. In this case, the first effective method is to anneal with an inert gas such as argon or nitrogen. In order to remove oxygen more positively, exposure to a reducing gas containing hydrogen is effective.

【0010】[0010]

【発明の実施の形態】プラスチックフィルム基板を用
い、図1に示す構造のa−Si/a−SiGeタンデム
セルを作製する場合を例にとり、本発明の実施例を説明
する。装置としては、図2に示すステッピングロール方
式の成膜装置を用い、40cm×80cmのプラスチッ
クフィルム基板太陽電池を製造した。30枚/ロットと
して2ロット作製し、一方は通常のプロセス(巻取りロ
ール11に巻取り後に加熱処理を行なわない)で作製・
評価し、もう一方は透明電極9まで成膜した後に加熱処
理を施して両者のITOシート抵抗および変換効率を比
較した。以下、製造方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described by taking as an example the case where an a-Si / a-SiGe tandem cell having the structure shown in FIG. 1 is manufactured using a plastic film substrate. As the apparatus, a stepping roll type film forming apparatus shown in FIG. 2 was used to manufacture a 40 cm × 80 cm plastic film substrate solar cell. Two lots were made at 30 sheets / lot, and one was made by a normal process (no heat treatment is performed after winding on the winding roll 11).
Evaluation was carried out, and the other was subjected to heat treatment after forming a film up to the transparent electrode 9 to compare the ITO sheet resistance and the conversion efficiency of both. The manufacturing method will be described below.

【0011】フィルムに金属電極を形成したフィルム基
板1をステッピングロール成膜装置に搬入し、まず、プ
ラズマCVD法により6つのプラズマCVD室13でa
−Si系膜3〜8の成膜を順次行なった。成膜には、S
iH4、a−SiGeの場合はこれにGeH4を加えたも
のを主ガスとし、H2を希釈ガス、PH3およびB2 6
それぞれn型およびp型のドーピングガスとして成膜し
た。各層の基板温度を150〜250℃とし、まず、膜
厚10〜20nmのa−Siのボトムn層3、膜厚10
0〜150nmのa−SiGeからなるボトムi層4、
膜厚10〜20nmのa−SiOからなるボトムp層5
を順次成膜した。その上に、膜厚10〜20nmの微結
晶シリコンのトップn層6、膜厚150〜200nmの
a−Siからなるトップi層7、膜厚10〜20nmの
a−SiOからなるトップp層8を成膜した。次に、基
板1をスパッタ室16に搬入しDCスパッタリングによ
りITO膜を成膜した。ヒータ設定温度200℃もしく
は基板温度160〜170℃とし、アルゴンあるいはア
ルゴンに酸素を数%程度添加した混合ガスを導入して圧
力を0.133〜1.33Paにコントロールした。そ
の後、ITOターゲット17にDC電圧を印加してマグ
ネトロンスパッタを行い、膜厚65nmのITO薄膜を
成膜した。2ロット作製した内の1ロットは通常のプロ
セスで作製・評価し、もう一方は透明電極9まで成膜し
た後に加熱処理を実施し、その後、通常のプロセスに戻
して評価まで行なった。熱処理方法としては、透明電極
9まで形成したロール状のフィルムを別置の常圧の加熱
炉(一般的に用いられている箱型の加熱用オーブン)に
搬入して行なった。まず、窒素を導入して不活性ガス雰
囲気にした後に、雰囲気温度200℃まで昇温し、2時
間保持した後に室温まで徐冷して取り出した。通常品お
よび熱処理品のシート抵抗および変換効率推移を図3に
示す。尚、透明電極膜厚は65nmとしたため、シート
抵抗に6.5×10-6を掛けることにより抵抗率(単
位:Ωcm)となる。この結果から、熱処理の効果とし
て透明電極のシート抵抗が減少し、変換効率が増加して
いることが判る。熱処理品のITOシート抵抗および変
換効率はほぼ一定値であり、熱処理の効果が非常に安定
していることが判る。尚、通常品および熱処理品のIT
Oシート抵抗平均値はそれぞれ56Ω/□(抵抗率3.
6×10-4Ωcm)および30Ω/□(抵抗率2.0×
10-4Ωcm)であり、変換効率の平均値はそれぞれ
9.4%および9.7%である。別途、ITOシート集
電ロスをシミュレーションにより見積もったところ、熱
処理前後のITOシート抵抗の減少と変換効率の増加の
対応は妥当であることが判った。
Film base having metal electrodes formed on the film
The plate 1 is carried into the stepping roll film forming apparatus, and first,
In the 6 plasma CVD chambers 13 by the plasma CVD method
-Si-based films 3 to 8 were sequentially formed. For film formation, S
iHFour, A-SiGe, GeHFourAlso added
As the main gas, H2The diluent gas, PH3And B2H 6To
Films are formed as n-type and p-type doping gases, respectively.
It was The substrate temperature of each layer is set to 150 to 250 ° C.
A-Si bottom n layer 3 having a thickness of 10 to 20 nm, film thickness 10
A bottom i layer 4 of 0-150 nm a-SiGe,
Bottom p layer 5 made of a-SiO having a film thickness of 10 to 20 nm
Were sequentially formed. On top of that, a fine film thickness of 10 to 20 nm
Top n layer 6 of crystalline silicon having a film thickness of 150 to 200 nm
a top i layer 7 made of a-Si, having a film thickness of 10 to 20 nm
A top p layer 8 made of a-SiO was formed. Then,
The plate 1 is carried into the sputter chamber 16 and DC sputtered.
An ITO film was formed. Heater set temperature 200 ℃
Is a substrate temperature of 160 to 170 ° C., and argon or
Introduce a mixed gas with oxygen added to the Rugong at a few% to reduce the pressure.
The force was controlled to 0.133 to 1.33 Pa. So
After that, a DC voltage is applied to the ITO target 17 to
Perform ITO sputtering and deposit an ITO thin film with a thickness of 65 nm.
A film was formed. Of the two lots produced, one lot is a normal professional
Fabrication and evaluation by the process, and the other film is formed up to the transparent electrode 9.
Heat treatment, then return to normal process.
Then, the evaluation was performed. As a heat treatment method, a transparent electrode
Rolled film formed up to 9 is heated separately at normal pressure
For furnaces (generally used box-type heating ovens)
It was carried in and carried out. First, nitrogen is introduced and an inert gas atmosphere is introduced.
After enveloping, raise the ambient temperature to 200 ° C and
After holding for a while, it was slowly cooled to room temperature and taken out. Regular item
Fig. 3 shows changes in sheet resistance and conversion efficiency of heat treated products
Show. Since the transparent electrode film thickness was 65 nm, the sheet
6.5 × 10 for resistance-6By multiplying by
Place: Ωcm). From these results,
The sheet resistance of the transparent electrode is reduced and the conversion efficiency is increased.
I know that Heat resistance of ITO sheet resistance
The conversion efficiency is almost constant and the effect of heat treatment is very stable.
You can see that IT for normal products and heat-treated products
O sheet resistance average value is 56Ω / □ (resistivity 3.
6 x 10-FourΩcm) and 30Ω / □ (resistivity 2.0 ×
10-FourΩcm), and the average value of conversion efficiency is
9.4% and 9.7%. Separately, ITO sheet collection
The electric loss was estimated by simulation and the heat
Before and after treatment, the ITO sheet resistance decreased and the conversion efficiency increased.
The response turned out to be valid.

【0012】次に、5セルずつの短いロールを複数準備
し、熱処理時間依存性および熱処理温度依存性を調べ
た。図4は熱処理時の雰囲気温度を200℃とし、時間
依存性を調べた結果である。ITOシート抵抗および変
換効率とも10分程度で効果が出始め、1時間程度でほ
ぼ安定化していることが判る。この結果から、30分以
上の熱処理を行なうことにより十分な効果が得られると
考えられる。図5は熱処理時間を2時間とし、雰囲気温
度依存性を調べた結果である。温度上昇とともにシート
抵抗は減少しているが、250℃付近から変換効率は低
下傾向にあることが判る。これは、250℃付近からデ
バイスの熱劣化が始まっているためだと考えられる。し
たがって、雰囲気温度に関しては、160〜250℃の
範囲で良好な結果が得られると考えられる。
Next, a plurality of short rolls of 5 cells each were prepared, and the heat treatment time dependency and heat treatment temperature dependency were examined. FIG. 4 shows the results of examining the time dependence with the atmospheric temperature during the heat treatment set to 200 ° C. It can be seen that the ITO sheet resistance and the conversion efficiency begin to be effective in about 10 minutes and are almost stabilized in about 1 hour. From this result, it is considered that sufficient effect can be obtained by performing the heat treatment for 30 minutes or more. FIG. 5 shows the results of examining the ambient temperature dependency with the heat treatment time being 2 hours. Although the sheet resistance decreases with increasing temperature, it can be seen that the conversion efficiency tends to decrease from around 250 ° C. It is considered that this is because the thermal deterioration of the device starts at around 250 ° C. Therefore, regarding the ambient temperature, it is considered that good results can be obtained in the range of 160 to 250 ° C.

【0013】以上、プラスチックフィルム基板を用いた
a−Si/a−SiGeタンデムセルを例にとり説明し
たが、基板に関してはステンレス等の金属フィルム基板
を用いても良い。また、a−Siシングルセルやa−S
iセルと微結晶シリコン等のタンデムセル等の他の構造
の太陽電池に適用した場合も有効である。さらに、熱処
理によるITOの低抵抗化は、結晶性の向上、あるい
は、結晶粒界からの酸素の脱離によると考えられるた
め、他の金属酸化物に対しても有効である。
Although the a-Si / a-SiGe tandem cell using a plastic film substrate has been described above as an example, a metal film substrate such as stainless steel may be used as the substrate. In addition, a-Si single cell and a-S
It is also effective when applied to a solar cell having another structure such as an i cell and a tandem cell such as microcrystalline silicon. Further, it is considered that the reduction of the resistance of ITO by the heat treatment is due to the improvement of the crystallinity or the desorption of oxygen from the crystal grain boundaries, so that it is also effective for other metal oxides.

【0014】[0014]

【発明の効果】以上に述べたとおり、本発明の薄膜太陽
電池の製造方法によれば、大幅な設備コストアップを伴
うこと無く、フィルム基板太陽電池の透明電極の熱処理
が可能となり、その結果、低抵抗化、変換効率向上、が
達成される。
As described above, according to the method for manufacturing a thin film solar cell of the present invention, it is possible to heat treat the transparent electrode of the film substrate solar cell without significantly increasing the equipment cost, and as a result, Lower resistance and higher conversion efficiency are achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法により作製される太陽電池の
断面図
FIG. 1 is a sectional view of a solar cell manufactured by a manufacturing method of the present invention.

【図2】本発明において使用するステッピングロール装
置の断面模式図
FIG. 2 is a schematic sectional view of a stepping roll device used in the present invention.

【図3】熱処理の有無とITOシート抵抗、変換効率の
関係を示す図
FIG. 3 is a diagram showing a relationship between presence or absence of heat treatment, ITO sheet resistance, and conversion efficiency.

【図4】熱処理時間とITOシート抵抗、変換効率の関
係を示す図
FIG. 4 is a diagram showing the relationship between heat treatment time, ITO sheet resistance, and conversion efficiency.

【図5】熱処理温度とITOシート抵抗、変換効率の関
係を示す図
FIG. 5 is a diagram showing the relationship between heat treatment temperature, ITO sheet resistance, and conversion efficiency.

【符号の説明】[Explanation of symbols]

1 基板 2 金属電極 3 ボトムn層 4 ボトムi層 5 ボトムp層 6 トップn層 7 トップi層 8 トップp層 9 透明電極 10 送りロール 11 巻取りロール 12 共通室 13 CVD室 14 ヒータ 15 RF電極 16 スパッタ室 17ターゲット 1 substrate 2 metal electrodes 3 bottom n layers 4 bottom i layer 5 Bottom p layer 6 Top n layer 7 Top i layer 8 Top p layer 9 Transparent electrode 10 Feed roll 11 winding roll 12 common room 13 CVD room 14 heater 15 RF electrode 16 Sputtering room 17 targets

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ロールツーロール方式もしくはステッピン
グロール方式による薄膜太陽電池の製造方法において、
可とう性基板上に、少なくとも第一電極、光電変換層、
第二電極を順次形成した薄膜太陽電池素子を、第二電極
まで形成されて可とう性基板が巻取りロールにロール状
に巻かれた状態で、ロールごと加熱処理を行なうことを
特徴とする薄膜太陽電池の製造方法。
1. A method for manufacturing a thin film solar cell by a roll-to-roll system or a stepping roll system,
On the flexible substrate, at least the first electrode, the photoelectric conversion layer,
A thin film solar cell element in which a second electrode is sequentially formed, a thin film characterized in that the flexible substrate is formed up to the second electrode and is wound around a winding roll in a roll shape, and heat treatment is performed for each roll. Method for manufacturing solar cell.
【請求項2】加熱処理が、減圧あるいは大気圧で、ロー
ルツーロール製造装置とは別置された加熱炉中、もしく
はステッピングロール製造装置とは別置された加熱炉中
で行なわれる請求項1記載の薄膜太陽電池の製造方法。
2. The heat treatment is carried out under reduced pressure or atmospheric pressure in a heating furnace separate from the roll-to-roll manufacturing apparatus or in a heating furnace separate from the stepping roll manufacturing apparatus. A method for producing the thin film solar cell described.
【請求項3】加熱処理の温度が160〜250℃、加熱
処理時間が30分以上である請求項1または2記載の薄
膜太陽電池の製造方法。
3. The method for producing a thin film solar cell according to claim 1, wherein the heat treatment temperature is 160 to 250 ° C. and the heat treatment time is 30 minutes or more.
【請求項4】加熱処理の雰囲気が、窒素、アルゴン等の
不活性ガス、または水素等の還元性ガス、またはこれら
のガスを含んだ混合ガスである請求項1ないし3記載の
薄膜太陽電池の製造方法。
4. The thin-film solar cell according to claim 1, wherein the heat treatment atmosphere is an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, or a mixed gas containing these gases. Production method.
JP2002121542A 2002-04-24 2002-04-24 Method for manufacturing thin film solar cell Expired - Fee Related JP4082077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002121542A JP4082077B2 (en) 2002-04-24 2002-04-24 Method for manufacturing thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121542A JP4082077B2 (en) 2002-04-24 2002-04-24 Method for manufacturing thin film solar cell

Publications (2)

Publication Number Publication Date
JP2003318425A true JP2003318425A (en) 2003-11-07
JP4082077B2 JP4082077B2 (en) 2008-04-30

Family

ID=29537407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121542A Expired - Fee Related JP4082077B2 (en) 2002-04-24 2002-04-24 Method for manufacturing thin film solar cell

Country Status (1)

Country Link
JP (1) JP4082077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083436A (en) * 2004-09-16 2006-03-30 Fuji Electric Holdings Co Ltd Method for producing transparent conductive film
CN102668112A (en) * 2010-06-17 2012-09-12 富士电机株式会社 Photoelectric conversion element manufacturing apparatus
US9276163B2 (en) 2010-10-14 2016-03-01 Kaneka Corporation Method for manufacturing silicon-based solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083436A (en) * 2004-09-16 2006-03-30 Fuji Electric Holdings Co Ltd Method for producing transparent conductive film
JP4573162B2 (en) * 2004-09-16 2010-11-04 富士電機システムズ株式会社 Method for producing transparent conductive film
CN102668112A (en) * 2010-06-17 2012-09-12 富士电机株式会社 Photoelectric conversion element manufacturing apparatus
JP5218702B2 (en) * 2010-06-17 2013-06-26 富士電機株式会社 Photoelectric conversion device manufacturing equipment
US9276163B2 (en) 2010-10-14 2016-03-01 Kaneka Corporation Method for manufacturing silicon-based solar cell

Also Published As

Publication number Publication date
JP4082077B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
US10181536B2 (en) System and method for manufacturing photovoltaic structures with a metal seed layer
JP5677973B2 (en) Method for forming a dopant profile
EP1424735B1 (en) Method for forming light-absorbing layer
US20110318941A1 (en) Composition and Method of Forming an Insulating Layer in a Photovoltaic Device
JPH03231472A (en) Manufacture of thin-film transistor
JP3897622B2 (en) Method for producing compound semiconductor thin film
JPH04266019A (en) Film formation
US20120164785A1 (en) Method of making a transparent conductive oxide layer and a photovoltaic device
WO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
US20120298651A1 (en) Apparatus for Forming a Conductive Transparent Oxide Film Layer for Use in a Cadmium Telluride Based Thin Film Photovoltaic Device
JP2003318425A (en) Method of manufacturing thin film solar battery
JP2001044208A (en) Fault compensation of semiconductor element
JPH04133357A (en) Optoelectric transducer
KR20100085769A (en) Cds/cdte thin film solar cells and manufacturing method thereof
TW201037851A (en) Method and apparatus for irradiating a photovoltaic material surface by laser energy
JP2000156517A (en) Manufacture of compound semiconductor thin film and solar battery using the same
JP3006701B2 (en) Thin-film semiconductor solar cells
JP2003282908A (en) Method and device for manufacturing light absorbing layer
US20090266412A1 (en) Solar Cell, Prefabricated Base Part for a Solar Cell and Method for Manufacturing Such a Base Part and a Solar Cell
TW201216367A (en) High-temperature activation process
JPH11195658A (en) Method and device for manufacturing cadmium sulfide film and solar battery using the same
JP2000114566A (en) Photoelectric conversion device
JP2004043910A (en) Process and apparatus for forming deposition film
Kuo et al. A novel low thermal budget thin-film polysilicon fabrication process for large-area, high-throughput solar cell production
JP3416553B2 (en) Method for forming deposited film, method for manufacturing semiconductor element substrate, and method for manufacturing photovoltaic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees