JP4082077B2 - Method for manufacturing thin film solar cell - Google Patents

Method for manufacturing thin film solar cell Download PDF

Info

Publication number
JP4082077B2
JP4082077B2 JP2002121542A JP2002121542A JP4082077B2 JP 4082077 B2 JP4082077 B2 JP 4082077B2 JP 2002121542 A JP2002121542 A JP 2002121542A JP 2002121542 A JP2002121542 A JP 2002121542A JP 4082077 B2 JP4082077 B2 JP 4082077B2
Authority
JP
Japan
Prior art keywords
roll
heat treatment
solar cell
film solar
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002121542A
Other languages
Japanese (ja)
Other versions
JP2003318425A (en
Inventor
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002121542A priority Critical patent/JP4082077B2/en
Publication of JP2003318425A publication Critical patent/JP2003318425A/en
Application granted granted Critical
Publication of JP4082077B2 publication Critical patent/JP4082077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可とう性基板上に薄膜光電変換層を形成してなる薄膜太陽電池に関するもので、特にその熱処理方法に関する。
【0002】
【従来の技術】
可とう性基板を用いた薄膜太陽電池としては、a−Si,a−SiGeあるいは微結晶シリコン等の非単結晶薄膜を主な構成材料とした太陽電池が考えられる。基板としては、ステンレス等の金属フィルム基板、あるいはポリイミド、PET等のプラスチックフィルム基板が用いられる。
【0003】
金属電極層、光電変換層、および透明電極層の成膜方式としては、基板を連続的に搬送しながら、スパッタリング、CVD等の膜形成を行なうロールツーロール成膜方式と、基板を間歇的に搬送しながら複数の反応室を仕切って成膜するステッピングロール成膜方式とがある。ロールツーロール装置を用いた例としては、特開2000−49103号公報に開示された製造装置および製造方法が挙げられ、この場合、ステンレスフィルム基板を用い、この基板の上に金属電極、a−Si系薄膜、透明電極がそれぞれロールツーロール成膜方式で成膜される。一方、ステッピングロール装置を用いた例としては、特開平6−291349号公報に開示された製造装置および製造方法が挙げられ、ロールツーロール方式で金属電極を形成した後に、ステッピングロール方式によりa−Si系薄膜、透明電極が成膜される。また、特開2000−236105号公報には、開放電圧、直列抵抗等の電池特性不良を防ぐために、透明電極まで形成したフィルム基板を、加熱処理室で120〜210℃の温度で加熱処理することが開示されている。
【0004】
透明電極としては、ITO,In23,SnO2,ZnO,CdO,CdIn24,Cd2SnO4,Zn2SnO4,In23−ZnO系のいずれかが用いられる。また、成膜方法としては、スパッタリング、蒸着、イオンプレーティングが考えられるが、大面積への均一成膜、量産性の観点から、スパッタリングが最も一般的に用いられる。
【0005】
【発明が解決しようとする課題】
太陽電池の透明電極には集電ロスを極力低く抑えるため、抵抗率が低いことが要求される。この目的で、例えばITO成膜時の基板温度は、デバイスが熱劣化しない範囲内で極力高温(200℃程度)に設定される。また、さらに抵抗率を低減させる目的で、成膜後に200℃程度の高温で数十分〜数時間熱処理する技術が報告されている。熱処理により、結晶性の変化や結晶粒界からの酸素の脱離等を生じ、処理前に比べて抵抗率が20〜50%低下する。
【0006】
一方で、太陽電池の生産性を向上させた場合、熱処理のための十分な時間を確保することが困難になる。例えば、1台の装置で10MW/年程度の処理を行なう場合、ロールツーロール方式では、1ライン当たりの年間処理長を見積もると約29万mとなり、これによりロールツーロール方式の場合の処理速度は約1m/分以上の搬送速度が必要であり、30分の熱処理を行なうためだけに30m以上の加熱領域を必要とする。また、多室配置のステッピングロール方式では、1ライン当たりの年間処理長を見積もると約7万mとなる。1フレームの長さが約1mだと、年間7万mは年間7万ステップに相当する。年間処理時間=タクトタイム×70000ステップ=稼働率(50%)×365日×24時間×60分であるので、タクトタイム=0.5×365×24×60/70000=3.75分(3.75分毎に1m巻取り)となる。ステッピングロール方式の場合、搬送に0.5〜1分要するため、タクト3.75分時に純粋に加熱処理に使える時間は3分程度となる。ここで30分以上の熱処理を行なおうとすると、熱処理のためだけに10個程度の加熱室が必要となり、大幅な装置コストアップにつながる。
【0007】
本発明の目的は、装置の巨大化ならびに装置のコストアップを招くことの無い薄膜太陽電池の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、
ロールツーロール方式もしくはステッピングロール方式による薄膜太陽電池の製造方法において、
少なくとも第一電極、光電変換層、第二電極を順次形成した可とう性基板が巻取りロールに巻かれた状態で、減圧あるいは大気圧で、ロールツーロール方式もしくはステッピングロール方式の成膜装置とは別置された加熱炉中で、加熱処理を行うこととする。また、加熱処理の温度が160〜250℃、加熱処理時間が30分以上であることが良い。
【0009】
さらに、加熱処理の雰囲気が、窒素、アルゴン等の不活性ガス、または水素等の還元性ガス、またはこれらのガスを含んだ混合ガスであることが良い。
加熱処理(アニール)の効果は、結晶性の向上と粒界からの酸素脱離である。本発明のような200℃程度のアニールプロセスの場合、後者の粒界からの酸素脱離のほうが効果が大きいと考えられる。つまり、結晶の粒界に酸素が吸着しているとキャリアの伝導を阻害するため、取り除く必要がある。この場合、第一の有効な方法として、アルゴン、窒素のような不活性ガスでアニールすることが挙げられる。さらに積極的に酸素を除去するために、水素を含んだ還元性のガスに晒すことが有効となる。
【0010】
【発明の実施の形態】
プラスチックフィルム基板を用い、図1に示す構造のa−Si/a−SiGeタンデムセルを作製する場合を例にとり、本発明の実施例を説明する。
装置としては、図2に示すステッピングロール方式の成膜装置を用い、40cm×80cmのプラスチックフィルム基板太陽電池を製造した。30枚/ロットとして2ロット作製し、一方は通常のプロセス(巻取りロール11に巻取り後に加熱処理を行なわない)で作製・評価し、もう一方は透明電極9まで成膜した後に加熱処理を施して両者のITOシート抵抗および変換効率を比較した。以下、製造方法について説明する。
【0011】
フィルムに金属電極を形成したフィルム基板1をステッピングロール成膜装置に搬入し、まず、プラズマCVD法により6つのプラズマCVD室13でa−Si系膜3〜8の成膜を順次行なった。成膜には、SiH4、a−SiGeの場合はこれにGeH4を加えたものを主ガスとし、H2を希釈ガス、PH3およびB26をそれぞれn型およびp型のドーピングガスとして成膜した。各層の基板温度を150〜250℃とし、まず、膜厚10〜20nmのa−Siのボトムn層3、膜厚100〜150nmのa−SiGeからなるボトムi層4、膜厚10〜20nmのa−SiOからなるボトムp層5を順次成膜した。その上に、膜厚10〜20nmの微結晶シリコンのトップn層6、膜厚150〜200nmのa−Siからなるトップi層7、膜厚10〜20nmのa−SiOからなるトップp層8を成膜した。次に、基板1をスパッタ室16に搬入しDCスパッタリングによりITO膜を成膜した。ヒータ設定温度200℃もしくは基板温度160〜170℃とし、アルゴンあるいはアルゴンに酸素を数%程度添加した混合ガスを導入して圧力を0.133〜1.33Paにコントロールした。その後、ITOターゲット17にDC電圧を印加してマグネトロンスパッタを行い、膜厚65nmのITO薄膜を成膜した。2ロット作製した内の1ロットは通常のプロセスで作製・評価し、もう一方は透明電極9まで成膜した後に加熱処理を実施し、その後、通常のプロセスに戻して評価まで行なった。熱処理方法としては、透明電極9まで形成したロール状のフィルムを別置の常圧の加熱炉(一般的に用いられている箱型の加熱用オーブン)に搬入して行なった。まず、窒素を導入して不活性ガス雰囲気にした後に、雰囲気温度200℃まで昇温し、2時間保持した後に室温まで徐冷して取り出した。通常品および熱処理品のシート抵抗および変換効率推移を図3に示す。尚、透明電極膜厚は65nmとしたため、シート抵抗に6.5×10-6を掛けることにより抵抗率(単位:Ωcm)となる。この結果から、熱処理の効果として透明電極のシート抵抗が減少し、変換効率が増加していることが判る。熱処理品のITOシート抵抗および変換効率はほぼ一定値であり、熱処理の効果が非常に安定していることが判る。尚、通常品および熱処理品のITOシート抵抗平均値はそれぞれ56Ω/□(抵抗率3.6×10-4Ωcm)および30Ω/□(抵抗率2.0×10-4Ωcm)であり、変換効率の平均値はそれぞれ9.4%および9.7%である。別途、ITOシート集電ロスをシミュレーションにより見積もったところ、熱処理前後のITOシート抵抗の減少と変換効率の増加の対応は妥当であることが判った。
【0012】
次に、5セルずつの短いロールを複数準備し、熱処理時間依存性および熱処理温度依存性を調べた。図4は熱処理時の雰囲気温度を200℃とし、時間依存性を調べた結果である。ITOシート抵抗および変換効率とも10分程度で効果が出始め、1時間程度でほぼ安定化していることが判る。この結果から、30分以上の熱処理を行なうことにより十分な効果が得られると考えられる。図5は熱処理時間を2時間とし、雰囲気温度依存性を調べた結果である。温度上昇とともにシート抵抗は減少しているが、250℃付近から変換効率は低下傾向にあることが判る。これは、250℃付近からデバイスの熱劣化が始まっているためだと考えられる。したがって、雰囲気温度に関しては、160〜250℃の範囲で良好な結果が得られると考えられる。
【0013】
以上、プラスチックフィルム基板を用いたa−Si/a−SiGeタンデムセルを例にとり説明したが、基板に関してはステンレス等の金属フィルム基板を用いても良い。また、a−Siシングルセルやa−Siセルと微結晶シリコン等のタンデムセル等の他の構造の太陽電池に適用した場合も有効である。さらに、熱処理によるITOの低抵抗化は、結晶性の向上、あるいは、結晶粒界からの酸素の脱離によると考えられるため、他の金属酸化物に対しても有効である。
【0014】
【発明の効果】
以上に述べたとおり、本発明の薄膜太陽電池の製造方法によれば、大幅な設備コストアップを伴うこと無く、フィルム基板太陽電池の透明電極の熱処理が可能となり、その結果、低抵抗化、変換効率向上、が達成される。
【図面の簡単な説明】
【図1】本発明の製造方法により作製される太陽電池の断面図
【図2】本発明において使用するステッピングロール装置の断面模式図
【図3】熱処理の有無とITOシート抵抗、変換効率の関係を示す図
【図4】熱処理時間とITOシート抵抗、変換効率の関係を示す図
【図5】熱処理温度とITOシート抵抗、変換効率の関係を示す図
【符号の説明】
1 基板
2 金属電極
3 ボトムn層
4 ボトムi層
5 ボトムp層
6 トップn層
7 トップi層
8 トップp層
9 透明電極
10 送りロール
11 巻取りロール
12 共通室
13 CVD室
14 ヒータ
15 RF電極
16 スパッタ室
17ターゲット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film solar cell in which a thin film photoelectric conversion layer is formed on a flexible substrate, and more particularly to a heat treatment method therefor.
[0002]
[Prior art]
As a thin film solar cell using a flexible substrate, a solar cell mainly composed of a non-single crystal thin film such as a-Si, a-SiGe or microcrystalline silicon can be considered. As the substrate, a metal film substrate such as stainless steel or a plastic film substrate such as polyimide or PET is used.
[0003]
The film formation method for the metal electrode layer, the photoelectric conversion layer, and the transparent electrode layer includes a roll-to-roll film formation method for forming a film such as sputtering or CVD while continuously transporting the substrate, and a substrate intermittently. There is a stepping roll film forming method in which a plurality of reaction chambers are partitioned while being transported. As an example using a roll-to-roll apparatus, a manufacturing apparatus and a manufacturing method disclosed in Japanese Patent Application Laid-Open No. 2000-49103 can be cited. In this case, a stainless film substrate is used, and a metal electrode, a- Each of the Si-based thin film and the transparent electrode is formed by a roll-to-roll film forming method. On the other hand, examples of using a stepping roll apparatus include a manufacturing apparatus and a manufacturing method disclosed in JP-A-6-291349. After a metal electrode is formed by a roll-to-roll system, a- A Si-based thin film and a transparent electrode are formed. Japanese Patent Laid-Open No. 2000-236105 discloses that a film substrate formed up to a transparent electrode is heat-treated at a temperature of 120 to 210 ° C. in a heat treatment chamber in order to prevent battery characteristics such as open circuit voltage and series resistance. Is disclosed.
[0004]
As the transparent electrode, any of ITO, In 2 O 3 , SnO 2 , ZnO, CdO, CdIn 2 O 4 , Cd 2 SnO 4 , Zn 2 SnO 4 , and In 2 O 3 —ZnO is used. As a film forming method, sputtering, vapor deposition, and ion plating are conceivable, but sputtering is most commonly used from the viewpoint of uniform film formation over a large area and mass productivity.
[0005]
[Problems to be solved by the invention]
A transparent electrode of a solar cell is required to have a low resistivity in order to keep current collection loss as low as possible. For this purpose, for example, the substrate temperature at the time of ITO film formation is set as high as possible (about 200 ° C.) within a range where the device does not thermally deteriorate. In addition, for the purpose of further reducing the resistivity, a technique of performing heat treatment at a high temperature of about 200 ° C. for several tens of minutes to several hours after film formation has been reported. The heat treatment causes a change in crystallinity, desorption of oxygen from the crystal grain boundaries, and the like, and the resistivity is reduced by 20 to 50% compared to before the treatment.
[0006]
On the other hand, when the productivity of the solar cell is improved, it is difficult to secure sufficient time for the heat treatment. For example, when processing about 10 MW / year with a single device, the roll-to-roll method estimates the annual processing length per line to be about 290,000 m, which allows the processing speed in the roll-to-roll method. Requires a conveying speed of about 1 m / min or more, and requires a heating area of 30 m or more only for heat treatment for 30 minutes. In addition, in the multi-room stepping roll method, the annual processing length per line is estimated to be about 70,000 m. If the length of one frame is about 1 m, 70,000 m per year is equivalent to 70,000 steps per year. Since annual processing time = tact time × 70000 steps = operating rate (50%) × 365 days × 24 hours × 60 minutes, tact time = 0.5 × 365 × 24 × 60/70000 = 3.75 minutes (3 1m winding every 75 minutes). In the case of the stepping roll method, since 0.5 to 1 minute is required for the conveyance, the time that can be used purely for the heat treatment at the tact 3.75 minutes is about 3 minutes. If heat treatment for 30 minutes or longer is performed here, about 10 heating chambers are required only for the heat treatment, leading to a significant increase in apparatus cost.
[0007]
The objective of this invention is providing the manufacturing method of the thin film solar cell which does not cause the enlargement of an apparatus and the cost increase of an apparatus.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention,
In the method for producing a thin film solar cell by a roll-to-roll method or a stepping roll method,
At least a first electrode, a photoelectric conversion layer, while sequentially forming the flexible substrate and the second electrode has him up on take-up roll, at reduced pressure or atmospheric pressure, and the film deposition apparatus of roll-to-roll method or a stepping roll method Is to be heat-treated in a separate heating furnace. Moreover, it is preferable that the temperature of heat processing is 160-250 degreeC, and heat processing time is 30 minutes or more.
[0009]
Furthermore, the atmosphere of the heat treatment is preferably an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, or a mixed gas containing these gases.
The effect of the heat treatment (annealing) is improvement of crystallinity and oxygen desorption from the grain boundary. In the case of the annealing process at about 200 ° C. as in the present invention, it is considered that the latter effect of oxygen desorption from the grain boundary is more effective. In other words, if oxygen is adsorbed on the crystal grain boundaries, the conduction of the carriers is hindered, so it must be removed. In this case, the first effective method includes annealing with an inert gas such as argon or nitrogen. Furthermore, in order to actively remove oxygen, it is effective to expose to a reducing gas containing hydrogen.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described by taking as an example the case of producing an a-Si / a-SiGe tandem cell having a structure shown in FIG. 1 using a plastic film substrate.
As the apparatus, a 40 cm × 80 cm plastic film substrate solar cell was manufactured by using a stepping roll type film forming apparatus shown in FIG. Two lots are produced as 30 sheets / lot. One is produced and evaluated by a normal process (no heat treatment is performed after winding on the take-up roll 11), and the other is subjected to heat treatment after film formation up to the transparent electrode 9. The ITO sheet resistance and conversion efficiency of both were compared. Hereinafter, the manufacturing method will be described.
[0011]
The film substrate 1 having a metal electrode formed on the film was carried into a stepping roll film forming apparatus, and first, a-Si based films 3 to 8 were sequentially formed in six plasma CVD chambers 13 by plasma CVD. For film formation, in the case of SiH 4 and a-SiGe, a gas obtained by adding GeH 4 to the main gas is used, H 2 is a dilution gas, and PH 3 and B 2 H 6 are n-type and p-type doping gases, respectively. As a film formation. The substrate temperature of each layer is set to 150 to 250 ° C. First, the bottom n layer 3 of a-Si having a thickness of 10 to 20 nm, the bottom i layer 4 made of a-SiGe having a thickness of 100 to 150 nm, and the thickness of 10 to 20 nm. A bottom p layer 5 made of a-SiO was sequentially formed. Furthermore, a top n layer 6 of microcrystalline silicon having a thickness of 10 to 20 nm, a top i layer 7 made of a-Si having a thickness of 150 to 200 nm, and a top p layer 8 made of a-SiO having a thickness of 10 to 20 nm. Was deposited. Next, the substrate 1 was carried into the sputtering chamber 16 and an ITO film was formed by DC sputtering. The heater set temperature was 200 ° C. or the substrate temperature was 160 to 170 ° C., and the pressure was controlled to 0.133 to 1.33 Pa by introducing argon or a mixed gas obtained by adding about several percent of oxygen to argon. Thereafter, a DC voltage was applied to the ITO target 17 to perform magnetron sputtering to form an ITO thin film having a thickness of 65 nm. Of the two lots produced, one lot was produced and evaluated by a normal process, and the other was formed up to the transparent electrode 9 and then subjected to heat treatment, and then returned to the normal process and evaluated. As a heat treatment method, a roll-shaped film formed up to the transparent electrode 9 was carried into a separate normal-pressure heating furnace (a generally used box-shaped heating oven). First, after introducing nitrogen into an inert gas atmosphere, the temperature was raised to 200 ° C., kept for 2 hours, and then slowly cooled to room temperature and taken out. FIG. 3 shows changes in sheet resistance and conversion efficiency of normal products and heat-treated products. Since the film thickness of the transparent electrode is 65 nm, the resistivity (unit: Ωcm) is obtained by multiplying the sheet resistance by 6.5 × 10 −6 . From this result, it can be seen that the sheet resistance of the transparent electrode is reduced and the conversion efficiency is increased as a result of the heat treatment. It can be seen that the ITO sheet resistance and the conversion efficiency of the heat-treated product are almost constant values, and the effect of the heat treatment is very stable. The average ITO sheet resistance values of normal products and heat treated products are 56Ω / □ (resistivity 3.6 × 10 −4 Ωcm) and 30Ω / □ (resistivity 2.0 × 10 −4 Ωcm), respectively. The average efficiency is 9.4% and 9.7%, respectively. Separately, when the ITO sheet current collection loss was estimated by simulation, it was found that the correspondence between the decrease in the ITO sheet resistance before and after the heat treatment and the increase in the conversion efficiency was appropriate.
[0012]
Next, a plurality of short rolls each having 5 cells were prepared, and the heat treatment time dependency and the heat treatment temperature dependency were examined. FIG. 4 shows the results of investigating time dependence with the atmospheric temperature during heat treatment set to 200 ° C. It can be seen that both the ITO sheet resistance and the conversion efficiency start to take effect in about 10 minutes and are almost stabilized in about 1 hour. From this result, it is considered that a sufficient effect can be obtained by performing the heat treatment for 30 minutes or more. FIG. 5 shows the results of examining the temperature dependence of the heat treatment time of 2 hours. Although the sheet resistance decreases as the temperature rises, it can be seen that the conversion efficiency tends to decrease from around 250 ° C. This is considered to be because the thermal deterioration of the device starts from around 250 ° C. Therefore, regarding the atmospheric temperature, it is considered that good results can be obtained in the range of 160 to 250 ° C.
[0013]
As described above, an a-Si / a-SiGe tandem cell using a plastic film substrate has been described as an example, but a metal film substrate such as stainless steel may be used as the substrate. It is also effective when applied to solar cells having other structures such as a-Si single cells or a-Si cells and tandem cells such as microcrystalline silicon. Furthermore, the reduction in resistance of ITO by heat treatment is considered to be due to the improvement of crystallinity or the desorption of oxygen from the crystal grain boundaries, and is therefore effective for other metal oxides.
[0014]
【The invention's effect】
As described above, according to the method for manufacturing a thin-film solar cell of the present invention, heat treatment of the transparent electrode of the film substrate solar cell is possible without significantly increasing the equipment cost, resulting in low resistance and conversion. Improved efficiency is achieved.
[Brief description of the drawings]
1 is a cross-sectional view of a solar cell produced by the manufacturing method of the present invention. FIG. 2 is a schematic cross-sectional view of a stepping roll apparatus used in the present invention. FIG. 3 is a relationship between the presence or absence of heat treatment, ITO sheet resistance, and conversion efficiency. FIG. 4 is a diagram showing the relationship between heat treatment time, ITO sheet resistance, and conversion efficiency. FIG. 5 is a diagram showing the relationship between heat treatment temperature, ITO sheet resistance, and conversion efficiency.
DESCRIPTION OF SYMBOLS 1 Substrate 2 Metal electrode 3 Bottom n layer 4 Bottom i layer 5 Bottom p layer 6 Top n layer 7 Top i layer 8 Top p layer 9 Transparent electrode 10 Feed roll 11 Winding roll 12 Common chamber 13 CVD chamber 14 Heater 15 RF electrode 16 Sputtering chamber 17 target

Claims (3)

ロールツーロールもしくはステッピングロール方式による薄膜太陽電池の製造方法において、
少なくとも第一電極、光電変換層、第二電極を順次形成した可とう性基板が巻取りロールに巻かれた状態で、減圧あるいは大気圧で、ロールツーロール方式もしくはステッピングロール方式の成膜装置とは別置された加熱炉中で、加熱処理を行うことを特徴とする薄膜太陽電池の製造方法。
In the method of manufacturing a thin film solar cell by roll-to-roll or stepping roll method,
At least a first electrode, a photoelectric conversion layer, while sequentially forming the flexible substrate and the second electrode has him up on take-up roll, at reduced pressure or atmospheric pressure, and the film deposition apparatus of roll-to-roll method or a stepping roll method Is a method for manufacturing a thin-film solar cell, wherein heat treatment is performed in a separately installed heating furnace .
加熱処理の温度が160〜250℃、加熱処理時間が30分以上であることを特徴とする請求項1記載の薄膜太陽電池の製造方法。 The method for producing a thin-film solar cell according to claim 1 , wherein the temperature of the heat treatment is 160 to 250 ° C and the heat treatment time is 30 minutes or more . 加熱処理の雰囲気が、窒素、アルゴン等の不活性ガス、または水素等の還元性ガス、またはこれらのガスを含んだ混合ガスであることを特徴とする請求項1または2記載の薄膜太陽電池の製造方法。The thin film solar cell according to claim 1 or 2 , wherein the atmosphere of the heat treatment is an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, or a mixed gas containing these gases . Production method.
JP2002121542A 2002-04-24 2002-04-24 Method for manufacturing thin film solar cell Expired - Fee Related JP4082077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002121542A JP4082077B2 (en) 2002-04-24 2002-04-24 Method for manufacturing thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121542A JP4082077B2 (en) 2002-04-24 2002-04-24 Method for manufacturing thin film solar cell

Publications (2)

Publication Number Publication Date
JP2003318425A JP2003318425A (en) 2003-11-07
JP4082077B2 true JP4082077B2 (en) 2008-04-30

Family

ID=29537407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121542A Expired - Fee Related JP4082077B2 (en) 2002-04-24 2002-04-24 Method for manufacturing thin film solar cell

Country Status (1)

Country Link
JP (1) JP4082077B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573162B2 (en) * 2004-09-16 2010-11-04 富士電機システムズ株式会社 Method for producing transparent conductive film
US20120233831A1 (en) * 2010-06-17 2012-09-20 Fuji Electric Co., Ltd Photoelectric conversion element manufacturing apparatus
WO2012050186A1 (en) 2010-10-14 2012-04-19 株式会社カネカ Method of producing crystalline silicon-based photovoltaic cell

Also Published As

Publication number Publication date
JP2003318425A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
US5378639A (en) Method for manufacturing a thin-film photovoltaic conversion device
JP5785931B2 (en) Method and apparatus for delivering controllable sodium to thin film photovoltaic materials
EP2381485B1 (en) Treatment of thin film layers photovoltaic module
EP1424735B1 (en) Method for forming light-absorbing layer
US20110318941A1 (en) Composition and Method of Forming an Insulating Layer in a Photovoltaic Device
US8647912B2 (en) Solar cell and method for manufacturing solar cell
JP4082077B2 (en) Method for manufacturing thin film solar cell
WO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
AU2011202979B8 (en) Apparatus and methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
EP1986242B1 (en) Method of manufacturing a photovoltaic element using hot wire CVD
JP2003282600A (en) Method and device for manufacturing light-absorbing layer
US6362020B1 (en) Process of forming deposited film, process of producing semiconductor element substrate, and process of producing photovoltaic element
JP4320525B2 (en) Method and apparatus for producing light absorption layer
KR20100085769A (en) Cds/cdte thin film solar cells and manufacturing method thereof
JP4562152B2 (en) Substrate processing method
US20170236710A1 (en) Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers
US20210111300A1 (en) Thin film deposition systems and deposition methods for forming photovoltaic cells
WO2014074982A2 (en) Methods of annealing a conductive transparent oxide film layer for use in a thin film photovoltaic device
JPH06204537A (en) Thin film semiconductor solar cell
EP2002483A1 (en) Solar cell, prefabricated base part for a solar cell and method for manufacturing such a base part and a solar cell
JP3542510B2 (en) Method for forming non-single-crystal semiconductor film and photovoltaic element, and apparatus for forming non-single-crystal semiconductor film
JP2003188396A (en) Method and apparatus for forming light absorption layer
JP2004043910A (en) Process and apparatus for forming deposition film
JP2012015323A (en) Method of manufacturing cis-based film
JPH11243220A (en) Manufacture of silicon based thin-film photoelectric converter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees