JPS584470B2 - ヒカリケツゴウハンドウタイソウチ オヨビ ソノセイホウ - Google Patents

ヒカリケツゴウハンドウタイソウチ オヨビ ソノセイホウ

Info

Publication number
JPS584470B2
JPS584470B2 JP50039155A JP3915575A JPS584470B2 JP S584470 B2 JPS584470 B2 JP S584470B2 JP 50039155 A JP50039155 A JP 50039155A JP 3915575 A JP3915575 A JP 3915575A JP S584470 B2 JPS584470 B2 JP S584470B2
Authority
JP
Japan
Prior art keywords
light
glass
emitting element
semiconductor
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50039155A
Other languages
English (en)
Other versions
JPS51114886A (en
Inventor
亀井達弥
栗原保敏
三吉忠彦
小川卓三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP50039155A priority Critical patent/JPS584470B2/ja
Priority to US05/668,404 priority patent/US4058821A/en
Priority to DE19762613885 priority patent/DE2613885A1/de
Publication of JPS51114886A publication Critical patent/JPS51114886A/ja
Publication of JPS584470B2 publication Critical patent/JPS584470B2/ja
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、半導体発光素子と半導体受光素子とを光学的
に結合して成る光結合半導体装置及びその製法に関する
最近、新しい固体素子として、半導体発光素子と半導体
受光素子と光学的に且つ一体的に結合した光結合半導体
装置(以下、フオトカプラと略称する。
)が注目されており、固体リレーや伝送線のアイソレー
ションなどに広く使用されるに至っている。
特に、フオトカプラを同一基板上に複数個並設したフォ
トカプラアレイやフオトカプラと集積回路とを組合せた
回路装置などに論理回略又は通話回略に極めて有用であ
ると考えられている。
このフオトカプラを製造するに当っては、次の諸点を考
慮することが重要である。
(1)発光素子と受光素子との距離を100μm程度以
上離して両者間の絶縁耐圧を大きくし、また両者間の静
電容量を小さくして静電結合による誤動作を防ぐこと。
(2)発光素子から放射される光を集光して受光素子の
受光部を集中的に照射し、それによって迷光による誤動
作を防止し、且つ発光素子−受光素子間の光伝達効率を
高めること。
これらの点を満足するフオトカプラは現在のところ存在
していない。
公知のフオトカプラは、例えば発光素子と受光素子とを
それぞれの発光面及び受光面が存在する面を相対向して
配置し、両面間に透光性の樹脂或いはガラスを介在させ
た構造となっている。
この構造のフオトガプラは、発光素子と受光素子との対
向している面間全体に樹脂或いはガラスが介在している
ため、発光素子からの光が受光素子の光感度の高い受光
面だけでなく、発光素子に対向している面全体に照射さ
れることになり、結局受光面に照射される光量が少なく
なり、光結合対率が低いという欠点がある。
この欠点を除去するためには、発光素子と受光素子と受
光素子との対向面間に樹脂或いはガラスを介在させる場
合に金型を使用して、樹脂或いはガラスと受光素子との
接着面を所望の個所に限定することが考えられる。
ところが、例えばフォトカプラアレイやフオトカプラ付
集積回路を製作するに当っては、集積密度を高くする必
要上から受光素子の受光面の大きさは100μm×10
0μm程度と極めて小さく制限される。
このような場合に金型を使用すると、発光素子,金型,
受光素子の三者の位置合せを精度よく行うことは極めて
困難であり、これがフォトカプラの量産歩留りを悪くす
る最大の原因になる。
本発明は、上述した従来技術の欠点を克服し、高安定且
つ高信頼の光結合半導体装置を提供し、併せて該半導体
装置を歩留りよく量産的に製造する方法を提供すること
を目的とするものである。
この目的を達成するため、本発明の特徴とするところは
、半導体受光素子の受光領域をおおう透光性ガラスなど
からなる保護被膜被膜が形成され、この保護被勝には光
ガイド用絶縁層の一部又は全部を構成するためのガラス
塊なとの透光性絶縁物がぬれ付着された点にある。
以下、実施例について本発明を詳述する。
第1図(a)〜(f)は、本発明の実施例によるフォト
カプラの製造工程を示すものである。
これについて説明すると、まず、第1図aに示すように
、シリコン基板の表面の一部分に拡散法などにより形成
されたPN接合を含む受光領域2をそなえた受光素子1
を用意し、この素子表面に、同図bに示すように、ガラ
ス膜5を形成する。
このガラス膜5は、基板表面の酸化、CVD法、塗布等
公知の方法によって形成する。
次に、このガラス膜5を、同図Cに示すようにフォトエ
ッチングにより部分的に除去し、受光領域をおおうよう
にガラス膜5を残す。
ひきつづいて、同図旧こ示すように、残存ガラス膜5上
にガラス塊6を載置し、ガラス塊の溶融温度(ガラス塊
に用いたガラスの作業温度程度)に加熱する。
ガラス塊6は、同図eに示すようにとけてガラス膜5に
ぬれ付着する。
この場合、ガラス塊6は、ガラス膜以外の素子表面部分
がガラスにぬれにくいことと、溶融ガラスに表面張力が
作用することとにより、同図eに示す如く断面半円状に
ガラス膜5にだけ被着される。
この後は、溶融ガラスを冷却により固化させる。
最後に、同図fに示すように、受光領域2に固定された
ガラス塊6が下になるようにして、半導体発光素子4に
重ね、且つ適当な透光性絶縁物からなる絶縁層3を図示
の如く形成し、ガラス塊6と発光素子4との間を光学的
蚤こ結合する。
上記のような製法になると、ガラス膜5の加工にはフォ
トエッチングなどの技術を用いることができるため、加
工精度良く受光領域表面をガラス被覆することができる
また、同一素子基板又はウエハ内の多数の受光領域に同
時にガラス被膜を被着しうるため量産性も高い。
なお、受光領域の面積が大きい場合には、ガラス被膜の
形成は、ガラスペーストを印刷した後焼付ける方法によ
っても行うことができる。
一方、ガラス塊6は加熱により溶融して自然にガラス被
膜5上を流れるため、ガラス塊はガラス被膜上にさえあ
れば、どの位置においても加熱溶融によって自然にガラ
ス被膜の表面と接着し、ガラス被膜の形とガラス塊の大
きさとで走るほぼ一定の形をとる。
従って、受光領域2とガラス塊6との位置合せにはあま
り精度は必要でない。
また、ガラス塊6と透光性絶縁層3との位置合せにもあ
まり精度は必要でなく、発光素子4を被覆した絶縁層3
とガラス塊6とが接してさえいれば、発光素子4から出
た光は透光性絶縁層3とガラス塊6とで形成される光ガ
イド内を通って受光領域2に達する。
このように、本発明による製法においては、発光素子−
受光素子間の光ガイド形成時の厳密な位置合せが要求さ
れないため、光ガイドの形成が容易で、量産性が高く且
つ歩留りが良い。
また、受光領域と光ガイドとの光学的結合状態が極めて
良好なため、発光素子−受光素子間の光の伝達効率は高
く、光ガイド取付位置の不備による誤動作のおそれもな
い。
また、受光素子表面の受光領域上にガラス被膜を形成す
る方法としては、化学気相沈着(ケミカルペーパーデポ
ジション)法、スパッタリング法、塗布法、印刷法など
を利用しうる。
場合によっては、素子表面上に熱酸化の方法によりシリ
コン酸化物層を形成し、これを、被着ガラスに代え、又
は被着ガラスとともに保護被膜として用いることができ
る。
ガラス被膜などから構成される保護被膜の厚さは、受光
素子との熱膨腸係数の差によって割れを生じない程度で
あれば任意に定めることができる。
ガラス塊を溶融したときにガラスが受光領域外に流れ出
すのを防ぐためには、そのガラスにぬれる保護被膜は、
受光領域上にのみ形成するのが望ましく、該保護被膜を
素子表面に全面的に形成する場合には受光領域上のみ他
の部分より厚くして段差を形成するのが望ましい。
この段差の大きさは、溶融時のガラスの粘度に関係する
が、通常の溶融条件(ガラス粘度104Poises程
度)では1μmあればよい。
また、保護被膜上にのせるガラス塊としては、フォトカ
プラ使用時に固体状になるものであれば、保護被膜にの
せる際には固体状でも液状でも更にはガラス粉末のペー
スト状でも使用できる。
さらに、ガラス塊の大きさや形状も、溶融して光ガイド
を作るのに適当であればよく、特に決った形のもの例え
ば球形のものを用いることは必ずしも必要でない。
なお、ガラス塊としてガラス粉末を使用する場合には、
溶融時にガラス中に気泡が残り易く、該気泡により光が
散乱されて光の伝達効率が低下するため、ガラス中に気
泡を残さないようにする必要がある。
そのために溶融温度をガラスの作業点より300℃位高
くすると、ガラスの粘度が低下して(約102Pois
es)、ガラスが受光領域外へ流れやすくすることを留
意する必要がある。
ガラス塊6を発光素子4へ接続する透光性絶縁層3の材
料としては、ガラス、シリコンゴム、エポキシ樹脂など
を用いることができる。
本発明のフォトカプラにおいて、ガラス塊の熱膨張係数
と受光素子のそれと一致させ、透光性絶縁吻としてガラ
スより弾力性のある有機樹脂を用いれば、発光素子との
熱膨張係数の違いに基づく熱サイクル時の熱ストレスが
有機樹脂に吸収され熱応力が緩和されるので好都合であ
る。
また本発明によるフォトカプラは、受光領域表面がガラ
ス被膜などの保護被膜でほぼ完全に不活性化されており
、且つ光ガイド用絶縁層が直接的ではなく該保護被膜を
介して受光領域に光学的に結合される構成となっている
ため、特性が安定で劣化が少なく、熱的ストレスにも強
いなどの優れた効果を奏する。
次に、本発明の具体的適用例をいくつか述べる。
〔例 1〕 表面の一部分にプレーナ型フオトトランジスタからなる
受光領域(面積0.15×0.15mm2)を形成した
シリコンウエハを、N2ガスで希釈したSiH4ガス及
び02ガスの雰囲気中で約430℃に加熱して、ウエハ
表面に、約1μmの厚さにSiO2膜を熱生成させる。
次に、フォトエッチング技術により受光領域表面以外の
部分のSiO2膜を除去し、残存SiO2膜上に第1図
dについて説明したように直径0.15mmのガラス球
(イノテツク製ガラスIP−750)を乗せ、730℃
に加熱してガラス球を溶融する。
溶融したガラスはSiO2膜上を流れてSiO2膜の全
面に接着し、SiO2膜上に凸状のガラス塊となる。
次に、シリコンウエハを、受光領域を含む0.6×0.
6mm2の大きさのチツプに切断し、断面形状で第1図
eに示すような構造の受光素子を得る。
第2図に示すように、上記手順で形成された受光素子1
の裏面を、表面が金メッキされたFe−Ni−Co合金
製のステム7aの該表面に固着し、素子表面の電極を金
からなる接続線8aを介してワイヤボンデイング法によ
りステムリードに接続する。
一方、0.4mm角のシリコンドープGa−As発光ダ
イオードからなる発光素子4を発光面を上に向けてステ
ム7bにAu−Ge合金半田を用いて固着し、発光面側
の電極を金からなる接続線8bによりステム7bのリー
ドに第2図の如く接続する。
さらに、第2図に示すように、発光素子4を有するステ
ム7bと受光素子1を有するステム7aとを向い合せて
配置し、発光素子との間にエポキシ樹脂を充填して熱硬
化させ光ガイド用絶縁層3を形成する。
この場合、発光素子4とガラス塊6との間のエポキシ樹
脂は、その表面張力、接着力および重力の影響でガラス
塊6から発光面にたれ下った形になり、発光素子の放射
光を集光してガラス塊6及び受光領域2へ伝達するのに
適した形になる。
以上のように、本例の方法で必要とされる位置合せ工程
は、(a)ガラス塊をガラス塊(SiO2膜)にのせる
工程と、(b)受光素子を発光素子に向い合せて設置す
る工程との2つであるが、そのいずれの工程にもあまり
高い位置合せ精度は必要でなく、しかも、光伝達効率が
高い光ガイドを作ることができる。
〔例 2〕 第3図aに示すように、前記例1と同様な方法で、受光
領域2上にガラス膜5及びガラス塊6が形成された受光
素子1を用意する。
なお、16は素子面に環状に形成された電極層である。
他方、メタライズ層10,11を有するセラミック基板
9の表面上には、メタライズ層13を介して半田層14
が形成された環状セラミック部材12を固着し且つ該部
材の中央孔により形成される凹所の底面のメタライズ層
11上に前述した如き発光素子4を固着する。
そして、発光素子4の発光面側の電極を接続線15によ
りメタライズ層10に接続する。
しかる後、前記凹所内にシリコンゴム(例えばGE製シ
リコンゴムEJC−245)を充填し、加熱により固化
して光ガイド用絶縁層3を形成する。
次に、第3図bに示すように、受光素子1をその電極層
16が半田層14に接触するようにセラミック基板9上
のセラミック部材12に重ね合せて加熱して電極層16
と半田層14とを接着する。
これと同時に、シリコンゴムからなる絶縁層3にガラス
塊6を図示の如く結合させる,この場合、シリコンゴム
は、固化した状態でもかなりの弾性をもっているため、
ガラス塊6及びシリコンゴム製絶縁層3の高さを適当に
調整しておくだけで、受光素子1の基板9側への押付け
の際にガラス塊を絶縁層に密着して結合させることがで
き、光伝達効率が良好な光ガイドを形成することができ
る。
このような方法によると、セラミック基板への受光素子
の固定と、ガラス塊−絶縁層間の接着とを同時に行うこ
とができるため、基板へ受光素子を固定した後にガラス
塊と発光素子との間に透光性絶縁物を介挿させる方法に
比べてフォトカプラの組立が容易である。
また、シリコンゴムからなる絶縁層は、なだらかな凸状
になっているため、ガラス塊が該絶縁層の最頂部から若
干ずれて接着されることがあっても光の伝達効率はあま
り変わらない。
本方法により得られたフオトカプラの発光素子−受光素
子間の光伝達効率は約40%であつた。
〔例 3〕 第4図aに示すように、1チップ内に2つの受光領域2
a,2bを有し、各領域(面積02×0.2mm2)に
はそれぞれフオトサイリスタが形成されたシリコン受光
素子1において、前記例1と同様な方法で各領域をおお
うガラス膜5a,5bを形成し、各ガラス膜にガラス塊
6a,6bをそれぞれ固着する。
また、受光素子の電極層16には半田層17を付着させ
る。
他方、メタライズ層10,11a,1lbを表面に有す
るセラミック基板9には、2つの孔及びメタライズ層1
3を有するセラミック部材12を固着し、それらの孔に
対応して形成される各凹所内には、メタライズ層11a
,11bにそれぞれ接続されるように発光素子4a,4
bをそれぞれ設置する。
各発光素子の発光面側の電極を各接続線15a,15b
によりメタライズ層10に接続する。
この後、各凹所内には前記例2と同様にシリコンゴムを
充填し絶縁層3a,3bを形成する。
次に、第4図bに示すように、受光素子1をセラミック
基板9に重ね合せ、半田層17をメタライズ層13に、
またガラス塊6a,6bを絶縁層3a,3bにそれぞれ
密着させる。
この状態では、シリコンゴムとガラス塊とはよく接触し
、シリコンゴムは、その表面張力の影響のため、各発光
素子から放射光を集光して各ガラス塊に導くに好適な形
状になる。
最後に、加熱処理により、半田層及び各メタライズ層を
一旦溶融させ必要な電気接続を完了させるとともに絶縁
層3a,3bを固化させる。
この方法で得られたフオトカプラにおいては、各発光素
子から出る光はシリコンゴムとガラスからなる光ガイド
で効果的に集光されて対応する受光領域に効果的に照射
されるから、光の伝達効率が高く、また迷光による誤動
作もほとんど問題にならない。
また、受光素子として全面がSiO2熱酸化膜で被覆さ
れ、かつ受光領域表面のみ厚さ1μmのCVD・SiO
2膜で被覆された試料を用い、上記実施例と同様な方法
でフオトカプラを試作した。
この実施例では受光領域上のSiO2膜とその他の部分
とで段差があるため、フオトカプラの試作上問題は起ら
なかった。
〔例 4〕 第5図aに示すように、受光領域2a,2bにそれぞれ
フオトサイリスタを形成し且つ各受光領域表面上にSi
H4,PH3,O2のガスを送ってリンガラス膜5a,
5bを形成して成るシリコン受光素子1をステム7に固
定し、各受光領域の電極を各接続線8a,8bによりそ
れぞれのステムリードに接続する。
一方、表面にメタライズ層10,11a,11bが形成
されたセラミック基板9上には、2つの孔を有するセラ
ミック部材12を載置し、各孔により画成される凹所内
にそれぞれ発光素子4a,4bをそれぞれメタライズ層
11a,11bに接触するように設置し、各発光素子の
発光面側の電極を接続線15a,15bによりメタライ
ズ層10に接続する。
次に各凹所内にガラス粉末(例えば松下電器製のサーコ
ガラスP−140)を充填し、600℃に加熱してガラ
スを溶融させる。
さらに、溶融ガラスの温度を520℃まで下げ、第5図
bに示すように、ステム7をセラミック基板上に重ね、
各ガラス膜5a,5bを溶融ガラス塊6a,6bに接触
させた後、温度を室温まで徐々に下げることにより、ガ
ラス塊6a,6bを固化させる。
この後、ステムとセラミック基板との間に赤外線に不透
明な樹脂18、例えばシリコン樹脂(東洋レーヨン製の
トーレ・モールデイング・コンパウンドSH30S)を
充填し熱硬化させる。
このような製法によると、溶融したガラス塊は、ガラス
膜が被着された受光領域のみに有効にぬれ付着するため
、厳密に位置合せしなくても所望の光ガイドを形成する
ことができる。
また、発光素子と受光素子との間に形成される光ガイド
は、ガラス膜とガラス塊とが溶融中に混合させるためほ
ぼ均一な組成になる。
従って、異なる屈折率を有する物質間の界面で通常生ず
るような光の反射の影響が少なくなって、光伝達効率が
向上する。
また、光ガイドのまわりを下透明な樹脂で被覆したので
、迷光は完全に除去される。
この実施例において注意すべきことは、受光素子及び発
光素子を構成する半導体材料と光ガイドとの熱膨張係数
が異なるため、熱的ストレスによりいずれかの素子によ
り故障が生じ易いということである。
以上に詳述したところから明らかにされた通り、本発明
によれば、次のような優れた効果が得られる。
(1)受光領域がガラス膜などで保護されているため、
受光素子の特性が安定で、受光領域の表面劣化も少ない
(2)透光絶縁物の一部に有機樹脂を用いて光ガイドを
形成した場合には、熱的ストレスが緩和されるので、耐
熱性が向上される。
(3)受光領域と光ガイドとの位置合せが厳密な精度を
要することなく行えるので、組立歩留りが高く量産性も
良好である。
(4)受光領域と光ガイドとが光学的に十分密に結合さ
れるため、発光素子−受光素子間の光伝達効率が高くな
り、且つ述光による影響も軽減されるから、誤動作の発
生が防止される。
【図面の簡単な説明】
第1図a〜fは、本発明の一実施例によるフオトカプラ
の製法を示す断面図、第2図乃至第5図は、本発明の他
の実施例を示す断面図である。 1・・・受光素子、2・・・受光領域、3・・・光ガイ
ド用絶縁層、4・・・発光素子、5・・・ガラス膜、6
・・・ガラス塊。

Claims (1)

  1. 【特許請求の範囲】 1 半導体発光素子と、 半導体発光素子に対向して配置された表面の一部分に受
    光領域を有する半導体受光素子と、半導体受光素子の受
    光領域上に他より突出して形成されたSiO2を主成分
    とする透光性のガラス層と、 半導体発光素子と半導体受光素子との間に介在され、半
    導体発光素子から照射された光を受光領域に導き、少く
    とも受光領域側が透光性のガラス部分から構成され、こ
    のガラス部分の端部はガラス層の受光領域に対応する表
    面にぬれ付着してなる光ガイドと、を具備することを特
    徴とする光結合半導体装置。 2 特許請求の範囲第1項において、光ガイドの半導体
    発光素子側が透光性の樹脂部分から構成されていること
    を特徴とする光結合半導体装13 半導体受光素子の表
    面の一部分に存在する受光領域をおおう透光性のガラス
    層を他より突出するように形成する工程と、該ガラス層
    に流動状の透光性ガラスをぬれ付着させ且つ固化させて
    ガラス塊を形成する工程と、この固化したガラス塊と半
    導体発光素子とを透光性の絶縁物によって連結し、これ
    によって半導体発光素子と受光素子とを光学的に結合す
    る工程とを含むことを特徴とする光結合半導体装置の製
    法。 4 半導体受光素子の表面の一部分に形成された受光領
    域をおおう透光性ガラス層を形成する工程と、該ガラス
    層に流動状の透光性ガラスをぬれ付着させ且つ固化させ
    てガラス塊を形成する工程と、この固化したガラス塊と
    半導体発光素子とを所定間隔で対向配置した状態におい
    て両者間に流動状の透光性樹脂を充填し且つ固化させる
    ことにより該固化ガラス塊及び固化樹脂からなる光ガイ
    ドを形成して前記発光素子と受光素子との間を光学的に
    結合する工程とを含むことを特徴とする光結合半導体装
    置の製法。
JP50039155A 1975-04-02 1975-04-02 ヒカリケツゴウハンドウタイソウチ オヨビ ソノセイホウ Expired JPS584470B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP50039155A JPS584470B2 (ja) 1975-04-02 1975-04-02 ヒカリケツゴウハンドウタイソウチ オヨビ ソノセイホウ
US05/668,404 US4058821A (en) 1975-04-02 1976-03-19 Photo-coupler semiconductor device and method of manufacturing the same
DE19762613885 DE2613885A1 (de) 1975-04-02 1976-03-31 Optokoppler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50039155A JPS584470B2 (ja) 1975-04-02 1975-04-02 ヒカリケツゴウハンドウタイソウチ オヨビ ソノセイホウ

Publications (2)

Publication Number Publication Date
JPS51114886A JPS51114886A (en) 1976-10-08
JPS584470B2 true JPS584470B2 (ja) 1983-01-26

Family

ID=12545207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50039155A Expired JPS584470B2 (ja) 1975-04-02 1975-04-02 ヒカリケツゴウハンドウタイソウチ オヨビ ソノセイホウ

Country Status (3)

Country Link
US (1) US4058821A (ja)
JP (1) JPS584470B2 (ja)
DE (1) DE2613885A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1557685A (en) * 1976-02-02 1979-12-12 Fairchild Camera Instr Co Optically coupled isolator device
JPS52137279A (en) * 1976-05-12 1977-11-16 Hitachi Ltd Semiconductor device for optical coupling
DE2737345C2 (de) * 1976-08-20 1991-07-25 Canon K.K., Tokio/Tokyo Halbleiterlaser-Vorrichtung mit einem Peltier-Element
US4143385A (en) * 1976-09-30 1979-03-06 Hitachi, Ltd. Photocoupler
JPS54142988A (en) * 1978-04-28 1979-11-07 Hitachi Ltd Photo semiconductor device
US4266140A (en) * 1978-11-21 1981-05-05 Kaufman Lance R Positioning means for optically couplable circuit elements
US4297653A (en) * 1979-04-30 1981-10-27 Xerox Corporation Hybrid semiconductor laser/detectors
US4329190A (en) * 1979-06-06 1982-05-11 Motorola, Inc. Process for attaching optical fiber to semiconductor die
US4528446A (en) * 1982-06-30 1985-07-09 Honeywell Inc. Optoelectronic lens array with an integrated circuit
GB2156972B (en) * 1984-04-06 1988-07-06 Plessey Co Plc Improvements relating to the manufacture of optical devices
JPS62172767A (ja) * 1986-01-24 1987-07-29 Mitsubishi Electric Corp 光半導体装置
DE3633251A1 (de) * 1986-09-30 1988-03-31 Siemens Ag Optoelektronisches koppelelement
US5177806A (en) * 1986-12-05 1993-01-05 E. I. Du Pont De Nemours And Company Optical fiber feedthrough
US4755474A (en) * 1986-12-22 1988-07-05 Motorola Inc. Method of assembling an optocoupler
US5151118A (en) * 1988-07-08 1992-09-29 Kabushiki Kaisha Goto Seisakusho Method for producing a package-type semiconductor assembly
US5245198A (en) * 1990-10-12 1993-09-14 Sharp Kabushiki Kaisha Optoelectronic device, metal mold for manufacturing the device and manufacturing method of the device using the metal mold
JPH07508856A (ja) * 1992-04-08 1995-09-28 ジョージア テック リサーチ コーポレイション 成長基板から薄膜材料をリフトオフするためのプロセス
JP3438365B2 (ja) * 1994-11-29 2003-08-18 ソニー株式会社 複合光学装置およびその製造方法
US6169295B1 (en) * 1998-05-29 2001-01-02 Maxim Integrated Products, Inc. Infrared transceiver module and method for making same
US6376851B1 (en) * 1998-09-21 2002-04-23 Eugene Robert Worley Opto-coupler applications suitable for low efficiency silicon based LEDs
US6093938A (en) * 1999-05-25 2000-07-25 Intel Corporation Stacked die integrated circuit device
JP2003332560A (ja) * 2002-05-13 2003-11-21 Semiconductor Energy Lab Co Ltd 半導体装置及びマイクロプロセッサ
JP4373063B2 (ja) 2002-09-02 2009-11-25 株式会社半導体エネルギー研究所 電子回路装置
JP4094386B2 (ja) * 2002-09-02 2008-06-04 株式会社半導体エネルギー研究所 電子回路装置
JP4574118B2 (ja) * 2003-02-12 2010-11-04 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP2005294494A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 光半導体装置及びその製造方法
US7453058B2 (en) * 2005-03-15 2008-11-18 Fujitsu Limited Optical bumps for low-loss interconnection between a device and its supported substrate and related methods
US7736070B2 (en) * 2005-08-31 2010-06-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Double mold optocoupler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1264513C2 (de) * 1963-11-29 1973-01-25 Texas Instruments Inc Bezugspotentialfreier gleichstromdifferenzverstaerker
US3436548A (en) * 1964-06-29 1969-04-01 Texas Instruments Inc Combination p-n junction light emitter and photocell having electrostatic shielding
FR2155137A5 (ja) * 1971-10-08 1973-05-18 Radiotechnique Compelec

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCEEDINGS OF THE IEEE=1964 *

Also Published As

Publication number Publication date
DE2613885A1 (de) 1976-10-14
JPS51114886A (en) 1976-10-08
US4058821A (en) 1977-11-15

Similar Documents

Publication Publication Date Title
JPS584470B2 (ja) ヒカリケツゴウハンドウタイソウチ オヨビ ソノセイホウ
CN109148670B (zh) Led倒装芯片封装基板和led封装结构
US6571466B1 (en) Flip chip image sensor package fabrication method
JP2557324B2 (ja) 反射光障壁およびその製造方法
EP1074827B1 (en) Pressure sensor and method of manufacturing the same
US7705465B2 (en) Surface-mount type optical semiconductor device and method for manufacturing the same
US5905303A (en) Method for manufacturing bump leaded film carrier type semiconductor device
US4124860A (en) Optical coupler
US4100562A (en) Light coupled semiconductor device and method of manufacturing the same
JP2005159265A (ja) 光学素子の封止構造体および光結合器ならびに光学素子の封止方法
US20070267643A1 (en) Semiconductor light emitting device and method for manufacturing the same
US5727104A (en) Optical transmission module and a method of producing the same
CN102549785B (zh) 发光装置
SG65674A1 (en) Semiconductor device and method of manufacturing the same
JP2000173947A (ja) プラスティックパッケージ
JP2001159724A (ja) 光モジュール及びその製造方法並びに光伝達装置
US3938173A (en) Optically coupled semiconductive switching devices
TWI359481B (en) Sensor semiconductor package and method thereof
JPH11260969A (ja) 半導体光モジュール及びその製造方法
TWI597867B (zh) Led倒裝晶片封裝基板和led封裝結構
JPH06268246A (ja) 光結合装置
JP3068667B2 (ja) 光結合装置
JP2574559B2 (ja) イメージセンサの製造方法
CN100431181C (zh) 光学元件的密封结构体、光耦合器及光学元件的密封方法
JPH11233810A (ja) 光結合素子及びその製造方法