JPS5833873A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS5833873A
JPS5833873A JP13286081A JP13286081A JPS5833873A JP S5833873 A JPS5833873 A JP S5833873A JP 13286081 A JP13286081 A JP 13286081A JP 13286081 A JP13286081 A JP 13286081A JP S5833873 A JPS5833873 A JP S5833873A
Authority
JP
Japan
Prior art keywords
film
thin film
film transistor
oxidized
anodic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13286081A
Other languages
Japanese (ja)
Other versions
JPH0318357B2 (en
Inventor
Kanetaka Sekiguchi
金孝 関口
Seigo Togashi
清吾 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP13286081A priority Critical patent/JPS5833873A/en
Priority to GB08221029A priority patent/GB2107115B/en
Publication of JPS5833873A publication Critical patent/JPS5833873A/en
Priority to US06/621,324 priority patent/US4502204A/en
Publication of JPH0318357B2 publication Critical patent/JPH0318357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To enhance the performance and the operating range of a thin film transistor by individually forming a semiconductor film to become a channel and a noninsulating thin film to become a gate oxidized film, and subjecting the thin film to anodic oxidatin to form as a gate oxidized film. CONSTITUTION:The first layer thin semiconductor film 2 is formed on a substrate 1. Subsequently, patterned source and drain electrodes 3 are formed on the film 2. The electrodes 3 are utilized as the anode in case of subjecting an anodic oxidation, and are also used as source and drain electrodes 3 of a thin film transistor. Then, the second layer thin semiconductor film 4 is formed as a noninsulating film on the patterned electrodes 3 and the film 2, and is oxidized by an anodic oxidation. Thereafter, the film 4 is oxidized to form an oxidizied film 5. Successively, a gate electrode 7 is formed. As a result, a uniform can be formed at a low temperature, thereby enhancing the performance and the operating range of the thin film transistor.

Description

【発明の詳細な説明】 本発明は、薄膜トランジスタ(TFT)のスイッチング
特性を左右するゲート絶縁膜の低温形成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to low-temperature formation of a gate insulating film that influences the switching characteristics of a thin film transistor (TFT).

絶縁ゲート薄膜トランジスタの一般の構造は、基板−半
導体薄膜一絶縁層一導電層である。薄膜”トランジスタ
の特徴である大面積化及び、安価であるという特徴を利
用するためには、基板として、ガラス及び、セラミック
ス等を使用する事が考えられ、その場合には、高温での
処理が難しくなる。
The general structure of an insulated gate thin film transistor is a substrate--a semiconductor thin film--an insulating layer--a conductive layer. In order to take advantage of the large area and low cost characteristics of thin film transistors, it is possible to use glass, ceramics, etc. as the substrate, and in that case, high temperature processing is required. It becomes difficult.

現在、半導体技術において使用されているゲート絶縁膜
には、8102等があるが、現在の所、熱酸化法が主に
利用されている。だが、基板により温度の制約を受ける
場合、一般に利用されている熱酸化を使用する事は、難
しい。他の絶縁膜形成法としては、物理蒸着法(PVD
)及び、化学蒸着法(CVD )があるが、熱酸化膜に
比べて、膜の均一性、絶縁性、膜中の欠陥、不純物密度
、界面準位密度等の点で劣っている。また、熱酸化を利
用したゲート絶縁膜の場合には、半導体膜の酸化物が利
用されてきた。
Gate insulating films currently used in semiconductor technology include 8102 and the like, but at present, thermal oxidation is mainly used. However, if the temperature is restricted by the substrate, it is difficult to use commonly used thermal oxidation. Other insulating film forming methods include physical vapor deposition (PVD)
) and chemical vapor deposition (CVD), but these methods are inferior to thermal oxide films in terms of film uniformity, insulation, defects in the film, impurity density, interface state density, etc. Furthermore, in the case of gate insulating films using thermal oxidation, oxides of semiconductor films have been used.

本発明は、低温で熱酸化膜に匹敵する膜の均一性、絶縁
性、不純物密度、界面準位密度を有する膜を陽極酸化を
利用して形成する。絶縁性基板上にPVD及びCVD法
により低温で形成された非絶縁性薄膜、例えば、半導体
膜はシート抵抗が大きいため、従来の方法による陽極酸
化は利用しがたいので、ソース及びドレイン電極をあら
かじめ、基板上に形成された第1層半導体薄膜上へパタ
ーン化し、その上に更に非絶縁性薄膜とむて第2層半導
体薄膜を形成し、上記電極を陽極として利用し、該第2
層半導体薄膜を陽極酸化し、ゲート絶縁膜として利用す
る。
The present invention utilizes anodic oxidation to form a film having film uniformity, insulation properties, impurity density, and interface state density comparable to those of thermal oxide films at low temperatures. Non-insulating thin films, such as semiconductor films, formed at low temperatures by PVD and CVD on an insulating substrate have a high sheet resistance, making it difficult to use conventional methods for anodic oxidation. , a first layer semiconductor thin film formed on a substrate is patterned, a second layer semiconductor thin film is formed on top of the first layer semiconductor thin film through a non-insulating thin film, the above electrode is used as an anode, and the second layer semiconductor thin film is patterned.
The layered semiconductor thin film is anodized and used as a gate insulating film.

従来の熱酸化の場合、半導体膜の酸化物をゲートとして
利用していたのに対し、上記薄膜トランジスタ構造は、
ゲート絶縁膜が半導体膜の組成に左右される事なく形成
でき、現在まで酸化されにくかった物質をも、電極を形
成した事、及び対向電極とソース、ドレイン電極間に電
圧が印加しやすいようにするため第1層半導体薄膜を設
けた事により利用を可能とし、且つ第1層半導体薄膜−
電極−ゲート絶縁膜の構造により、半導体膜及びゲート
絶縁膜材料の利用範囲を広げ、高性能薄膜トランジスタ
を提供する。即ち、本発明は、基板上に第1層半導体薄
膜をまず形成し、半導体膜上にパターン化されたソース
、ドレイン電極を形成し、この上に非絶縁性薄膜である
第2層半導体薄膜を形成し、前記電極を陽極として陽極
酸化を利用し、薄膜トランジスタを製造する方法である
。本発明においては、チャネルになる半導体膜と、ゲー
ト酸化膜になる非絶縁性薄膜を別々に形成し、且つ、非
絶縁性薄膜例えば、半導体膜を陽極酸化し、ゲート酸化
膜として形成する事に特徴が有る。
In the case of conventional thermal oxidation, the oxide of the semiconductor film was used as the gate, but in the thin film transistor structure described above,
The gate insulating film can be formed without being affected by the composition of the semiconductor film, and the electrodes are made of materials that have been difficult to oxidize to date, and the voltage can be easily applied between the counter electrode and the source and drain electrodes. Therefore, by providing the first layer semiconductor thin film, it is possible to use the first layer semiconductor thin film.
The electrode-gate insulating film structure expands the scope of use of semiconductor films and gate insulating film materials, and provides high-performance thin film transistors. That is, in the present invention, a first layer semiconductor thin film is first formed on a substrate, patterned source and drain electrodes are formed on the semiconductor film, and a second layer semiconductor thin film, which is a non-insulating thin film, is formed on this. In this method, a thin film transistor is manufactured by forming a thin film transistor, and using the electrode as an anode and using anodic oxidation. In the present invention, a semiconductor film to become a channel and a non-insulating thin film to become a gate oxide film are separately formed, and the non-insulating thin film, for example, a semiconductor film, is anodized and formed as a gate oxide film. It has characteristics.

以下本発明を図面を用いて詳細に説明する。The present invention will be explained in detail below using the drawings.

図面はすべて本発明の実施例を示し、第1図(A)(B
)(C)(D)は、薄膜トランジスタの製造工程を示す
もので、第1図(A)の工程に於て1は基板であり、該
基板1上に第1層半導体薄膜2を形成する。
All drawings show embodiments of the present invention, and FIGS. 1(A)(B)
)(C) and (D) show the manufacturing process of a thin film transistor. In the process of FIG. 1(A), 1 is a substrate, and a first layer semiconductor thin film 2 is formed on the substrate 1.

次に第1層半導体薄膜2上にパターン化された、ソース
及びドレイン電極3を形成する。この電極を陽極酸化の
際の陽極として利用するとともに、薄膜トランジスタの
ソース及びドレイン電極としても利用する。
Next, patterned source and drain electrodes 3 are formed on the first layer semiconductor thin film 2. This electrode is used as an anode during anodic oxidation, and also as a source and drain electrode of a thin film transistor.

第1図(B)の工程に於て、4は、パターン化された電
極6及び第1層半導体薄膜2上に非絶縁性膜としての第
2層半導体薄膜を形成したものであり、陽極酸化により
酸化する。
In the process shown in FIG. 1(B), 4 is the one in which a second layer semiconductor thin film as a non-insulating film is formed on the patterned electrode 6 and the first layer semiconductor thin film 2, and the anodic oxidation process is performed. Oxidized by

第1図(C)の工程に於て、第2層半導体薄膜4を酸化
して酸化膜5を形成する。6は、陽極酸化用の対陰極を
示す。
In the step shown in FIG. 1(C), the second layer semiconductor thin film 4 is oxidized to form an oxide film 5. 6 indicates an anticathode for anodic oxidation.

第1図(D)の工程に於て、ゲート電極7を形成する。In the step shown in FIG. 1(D), a gate electrode 7 is formed.

第2図に、実際の陽極酸化装置の一例が示してイン電極
を兼ねたパターン化された電極で、陽極として利用し、
25は、陽極酸化しようとする非絶縁性薄膜であり、2
6は、陰極、27は陽極酸化に利用する電源である。
Figure 2 shows an example of an actual anodic oxidation device, with a patterned electrode that also serves as an in-electrode, and is used as an anode.
25 is a non-insulating thin film to be anodized;
6 is a cathode, and 27 is a power source used for anodic oxidation.

例えば、電解液21として、N−メチルアセトアミドと
0.04Nの硝酸カリウム溶液、テトラヒドロフルフリ
ールアルコール及ヒエチレングリコールの硝酸塩及びハ
ロゲン化物の混合溶液、基板ス及びドレイン電極として
は、Mo及びTa等の高融点金属、第2層半導体薄膜2
4としては、シリコン膜等が有り、陰極6としては、プ
ラチナ電極、電源27としては、定電流−電圧電源が利
用される。本実施例は、液相での陽極酸化を扱ったが、
もちろん、気相での陽極酸化への利用も可能である。
For example, as the electrolytic solution 21, a solution of N-methylacetamide and 0.04N potassium nitrate, a mixed solution of nitrates and halides of tetrahydrofurfuryl alcohol and hyethylene glycol, and as the substrate and drain electrode, materials such as Mo and Ta can be used. High melting point metal, second layer semiconductor thin film 2
4 is a silicon film or the like, the cathode 6 is a platinum electrode, and the power source 27 is a constant current-voltage power source. Although this example dealt with anodic oxidation in the liquid phase,
Of course, it can also be used for anodic oxidation in the gas phase.

以上本発明によれば、陽極酸化に利用する電極を新たに
形成するのではなく、トランジスタの電極として、当然
必要なソース、ドレイン電極を利用するため、工程の単
純化に寄与し、また、第1層半導体薄膜を設ける事によ
り、電極の密着性等の問題の解決及び、陽極酸化の際の
電極間の電圧のかかりかたを一定にし、第2層半導体薄
膜を設けて陽極酸化膜を形成するため、第1層の酸化膜
とは同一組成でもよく又、異った組成の酸化物をも形成
でき、従来、陽極酸化されK〈かった半導体膜に対して
も、電極及び、第1層半導体薄膜を設ける事により、低
温で均一な膜形成を可能にし、薄膜トランジスタの高性
能、高範囲化が図られる。
As described above, according to the present invention, the source and drain electrodes that are naturally required as the electrodes of the transistor are used instead of forming new electrodes for use in anodic oxidation, which contributes to the simplification of the process. By providing a single layer semiconductor thin film, problems such as electrode adhesion can be solved and the voltage applied between the electrodes during anodization can be made constant, and a second layer semiconductor thin film is provided to form an anodic oxide film. Therefore, it is possible to form an oxide film having the same composition as that of the first layer oxide film, or an oxide film having a different composition. By providing a layered semiconductor thin film, it is possible to form a uniform film at low temperatures, and the high performance and range of thin film transistors can be improved.

本発明は、特に液晶等を用いた表示パネル基板上の薄膜
トランジスタ形成として有効な技術であり、腕時計等の
小型携帯機器への表示装置に対して、特に適している。
The present invention is a particularly effective technique for forming thin film transistors on display panel substrates using liquid crystals, etc., and is particularly suitable for display devices for small portable devices such as wristwatches.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)(B)(C)(D)は本発明の実施例を示
す薄膜トランジスタの製造工程図、第2図は陽極酸化装
置の構成図である。 1.22・・・・・・基板 2.26・・・・・・第1層半導体薄膜3・・・・・・
パターン化されたソース、ドレイン電極4や・・・第2
層半導体薄膜(非絶縁性膜)5・・・・・・陽極酸化さ
れた非絶縁性膜6.26・・・・・・対向電極 7・・
・・・・ゲート電極21・・・・・・電解液 27・・
・・・・電源第1図 χ1 (D)           −。
FIGS. 1A, 1B, 1C, and 1D are manufacturing process diagrams of a thin film transistor showing an embodiment of the present invention, and FIG. 2 is a configuration diagram of an anodizing apparatus. 1.22... Substrate 2.26... First layer semiconductor thin film 3...
Patterned source and drain electrodes 4 and...second
Layer semiconductor thin film (non-insulating film) 5...Anodized non-insulating film 6.26...Counter electrode 7...
...Gate electrode 21... Electrolyte 27...
...Power supply Figure 1 χ1 (D) -.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に第1層半導体薄膜を形成する工程と、該
半導体薄膜上にパターン化された電極を形成する工程と
、該パターン化された電極上へ第2層半導体薄膜を形成
する工程と、前記パターン化された電極を陽極として、
前記第2層半導体薄膜を陽極酸化をする工程とを含むこ
とを特徴とする薄膜トー組成である事を特徴とする特許
請求の範囲第1っだ組成である事を特徴とする特許請求
の範囲第1項記載の薄膜トランジスタの製造法。
(1) A step of forming a first layer semiconductor thin film on a substrate, a step of forming a patterned electrode on the semiconductor thin film, and a step of forming a second layer semiconductor thin film on the patterned electrode. and using the patterned electrode as an anode,
Claims characterized in that the thin film has a to-composition comprising the step of anodic oxidation of the second layer semiconductor thin film.Claims characterized in that the thin film has a to-composition. 2. A method for manufacturing a thin film transistor according to item 1.
JP13286081A 1981-07-17 1981-08-25 Manufacture of thin film transistor Granted JPS5833873A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13286081A JPS5833873A (en) 1981-08-25 1981-08-25 Manufacture of thin film transistor
GB08221029A GB2107115B (en) 1981-07-17 1982-07-19 Method of manufacturing insulated gate thin film effect transitors
US06/621,324 US4502204A (en) 1981-07-17 1984-06-15 Method of manufacturing insulated gate thin film field effect transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13286081A JPS5833873A (en) 1981-08-25 1981-08-25 Manufacture of thin film transistor

Publications (2)

Publication Number Publication Date
JPS5833873A true JPS5833873A (en) 1983-02-28
JPH0318357B2 JPH0318357B2 (en) 1991-03-12

Family

ID=15091220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13286081A Granted JPS5833873A (en) 1981-07-17 1981-08-25 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS5833873A (en)

Also Published As

Publication number Publication date
JPH0318357B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
US4502204A (en) Method of manufacturing insulated gate thin film field effect transistors
JPS59208783A (en) Thin film transistor
JPS58114458A (en) Method of producing thin film transistor on insulating substrate
JPS5929460A (en) Thin film transistor
KR100328380B1 (en) Method of manufacturing a semiconductor device
JPS5833873A (en) Manufacture of thin film transistor
GB2016803A (en) Thin film transistor construction and manufacturing method of the same
JPS5871661A (en) Manufacture of thin film transistor with anodic oxidation insulating film
JPH0518935A (en) Diamond thin-film ion sensor
JPH0832083A (en) Thin film transistor
JPS5814575A (en) Manufacture of thin film transistor
JPS57167669A (en) Capacitor and manufacture thereof
JPH0348670B2 (en)
JPS63164A (en) Thin-film transistor
JPH0284775A (en) Manufacture of vertical thin film transistor
JPS61164267A (en) Manufacture of thin film transistor
JPH0221663A (en) Manufacture of thin film transistor
JPS62286282A (en) Manufacture of thin film transistor
JP3149034B2 (en) Thin film transistor
JPH06151460A (en) Manufacture of inverted stagger type tft
JPS61241975A (en) Manufacture of field effect transistor
JPS58134464A (en) Manufacture of semiconductor device
JPS61241976A (en) Manufacture of field effect transistor
JPH06112487A (en) Manufacture of insulating film and thin film transistor element provided therewith
JPH06188420A (en) Insulation thin film and tft liquid crystal display using same