JPH0284775A - Manufacture of vertical thin film transistor - Google Patents

Manufacture of vertical thin film transistor

Info

Publication number
JPH0284775A
JPH0284775A JP30528387A JP30528387A JPH0284775A JP H0284775 A JPH0284775 A JP H0284775A JP 30528387 A JP30528387 A JP 30528387A JP 30528387 A JP30528387 A JP 30528387A JP H0284775 A JPH0284775 A JP H0284775A
Authority
JP
Japan
Prior art keywords
film
insulating film
gate electrode
gate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30528387A
Other languages
Japanese (ja)
Inventor
Akira Takayama
暁 高山
Yoshiyuki Suda
良幸 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30528387A priority Critical patent/JPH0284775A/en
Publication of JPH0284775A publication Critical patent/JPH0284775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To have only to use a high-cost plasma CVD only one time for the formation of an insulating film for gate electrode parts and to make it possible to obtain a TFT, which is improved in both the film thickness and the film quality of its gate insulating film and has a superior efficiency, by a method wherein the surfaces of the gate electrodes are oxidized by an anodization method to form the insulating film and the like. CONSTITUTION:A first main electrode 12 is formed on an insulative substrate 11, a first insulating film 14 is formed on the main electrode 12 and gate electrodes 15 of a prescribed pattern are formed on the film 14. Then, the surfaces of the electrodes 15 are anodized to cover with a second insulating film 16 and the film 14 is etched away using the above electrodes 15 as masks after or before that process. After that, a semiconductor film 17 which is used as an operating layer is deposited on the whole surface and second main electrodes 19 are formed on the film 17. For example, the above film 17 is formed as an amorphous semiconductor film or a poly semiconductor film containing silicon, carbon and germanium or their mixtures as its main component. Moreover, second main electrodes 19 are formed on the semiconductor layer 17 through a high-impurity concentration a Si film 18.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、2次元イメージセンサや液晶デイスプレィな
どの駆動回路部に適用して有用な縦型薄膜トランジスタ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a vertical thin film transistor that is useful when applied to a drive circuit section of a two-dimensional image sensor, a liquid crystal display, and the like.

(従来の技術) 近年、非晶質シリコン(a−8t)を用いた薄膜トラン
ジスタ(TPT)の応用が活発化している。現在、a−
8iのTPTの主流派はプレーナ型であり、オン/オフ
比で4〜6桁の範囲が実現されている。しかし非晶質半
導体は移動度が低く、シリコンの場合でu−0,icM
2/v *sec程度である。このため、現在のa−S
tプレーナ型TPTの応答速度は最高10μsec程度
と遅く、高速駆動の用途には難点があった。
(Prior Art) In recent years, applications of thin film transistors (TPT) using amorphous silicon (a-8t) have become active. Currently, a-
The mainstream type of 8i TPT is the planar type, which achieves an on/off ratio in the range of 4 to 6 digits. However, amorphous semiconductors have low mobility, and in the case of silicon, u-0, icM
It is about 2/v*sec. For this reason, the current a-S
The response speed of the t-planar TPT is as slow as about 10 .mu.sec at most, making it difficult to use in high-speed drive applications.

そこで最近、高速動作可能な薄膜トランジスタとして有
望視されているのが、縦型薄膜トランジスタである。そ
の従来例を次に説明する。
Therefore, vertical thin film transistors have recently been viewed as promising as thin film transistors capable of high-speed operation. A conventional example thereof will be explained next.

第4図は、MS型縦型TPTである(Japanesc
Journal  of  AppHed   Phy
slcs   Vol、  24(1985) pp4
87〜471参照)。ガラスなどの絶縁性基板21上に
ドレイン電極22.n十型a −8i膜23を介して高
抵抗のa−3i膜24が堆積され、このa−Si膜24
中に所定パターンのゲート電極25が埋込み形成されて
いる。a −8i膜24上には、所定パターンのn◆型
層26を介してソース電極27が形成されている。
Figure 4 shows the MS type vertical TPT (Japanesc
Journal of Applied Phys.
slcs Vol, 24 (1985) pp4
87-471). A drain electrode 22 is formed on an insulating substrate 21 such as glass. A high resistance a-3i film 24 is deposited via the n-type a-8i film 23, and this a-Si film 24
A gate electrode 25 having a predetermined pattern is embedded therein. A source electrode 27 is formed on the a-8i film 24 via an n◆ type layer 26 having a predetermined pattern.

この縦型TPT構造は、ゲート部が電極金属(M)と半
導体(S)が直接接触してショットキー接合を構成して
いるため、ゲートのリーク電流が大きく、十分な0N1
0FF比がとれない、という難点がある。
In this vertical TPT structure, the electrode metal (M) and semiconductor (S) are in direct contact with each other in the gate part to form a Schottky junction, so the gate leakage current is large and a sufficient 0N1
The problem is that the 0FF ratio cannot be obtained.

第5図は、ゲート部をM I S構造とした縦型TPT
の従来例である。第4図と異なる点を説明すれば、ゲー
ト電極25を、絶縁膜28.29により覆っていること
である。この様なゲート構造とすれば、リーク電流は小
さくなり、大きい0N10FF比を得ることが可能にな
る。
Figure 5 shows a vertical TPT whose gate part has an MIS structure.
This is a conventional example. The difference from FIG. 4 is that the gate electrode 25 is covered with insulating films 28 and 29. With such a gate structure, leakage current becomes small and it becomes possible to obtain a large 0N10FF ratio.

この第5図の構造を得るには、先ず基板21に電極膜2
2.n+型a−8t膜23を堆積した後、第1の絶縁膜
28とゲート電極25の金属膜を積層形成し、これら金
属膜と第1の絶縁膜28の積層膜を所定パターンにエツ
チングする。次いで第2の絶縁膜29を全面に堆積して
、これをゲート電極25の周囲に残してパターン形成す
る。この後、高抵抗a−8i膜24を堆積し、この上に
n+型層26を介してソース電極27の形成を行つ◎ この従来例においては、MIS構造のゲート部の形成工
程に大きい問題があった。第1に、2回の絶縁膜形成工
程が必要であり、高コストのプラズマCVDなどのプロ
セスを用いるため、コスト高になる。第2に、縦型TP
Tではゲート電極間隔がチャネル幅を決めるため高い0
N10FF比を得るには高精細のゲート電極が必要であ
り、具体的にゲート間隔2μm以下の微細加工が要求さ
れるが、この様な微細パターンに合わせて被覆絶縁膜を
例えば±0.5μmの高精度でパターン形成することは
技術的にも難しく、可能であるとしてもコストの高いも
のとなる。第3に、絶縁膜29にうちゲート電極25の
側壁部がTPT動作に直接効く主要なゲート絶縁膜とな
るのであるが、この側壁絶縁膜を−様な膜厚で且つち密
に形成することは、CVD法では困難である。
To obtain the structure shown in FIG. 5, first the electrode film 2 is placed on the substrate 21.
2. After depositing the n+ type A-8T film 23, a first insulating film 28 and a metal film of the gate electrode 25 are laminated, and the laminated film of these metal films and the first insulating film 28 is etched into a predetermined pattern. Next, a second insulating film 29 is deposited over the entire surface and patterned, leaving it around the gate electrode 25. After this, a high-resistance a-8i film 24 is deposited, and a source electrode 27 is formed thereon via an n+ type layer 26. In this conventional example, there is a big problem in the process of forming the gate part of the MIS structure. was there. First, two insulating film formation steps are required, and an expensive process such as plasma CVD is used, resulting in high costs. Second, vertical TP
At T, the gate electrode spacing determines the channel width, so the high 0
In order to obtain the N10FF ratio, a high-definition gate electrode is required, and specifically microfabrication with a gate spacing of 2 μm or less is required. It is technically difficult to form a pattern with high precision, and even if it were possible, it would be expensive. Thirdly, the side wall portion of the gate electrode 25 in the insulating film 29 becomes the main gate insulating film that directly affects the TPT operation, but it is difficult to form this side wall insulating film with a similar thickness and densely. , which is difficult with the CVD method.

(発明が解決しようとする問題点) 以上のように従来のMIS構造を持つ縦型TPTには、
ゲート部の形成に当たって、2回のプラズマCVDによ
る絶縁膜形成を必要とするためコスト高になる、ゲート
部の絶縁膜の微細加工や一様且つ良質な膜形成が技術的
に難しい、等の問題があった。
(Problems to be solved by the invention) As mentioned above, the vertical TPT with the conventional MIS structure has
Problems include the high cost of forming the insulating film by plasma CVD twice when forming the gate part, and the technical difficulty of microfabrication of the insulating film of the gate part and the technical difficulty of forming a uniform and high-quality film. was there.

本発明はこの様な問題を解決した、MIS構造のTPT
の製造方法を提供することを目的とする。
The present invention solves these problems by providing a TPT with an MIS structure.
The purpose is to provide a manufacturing method for.

[発明の構成] (問題点を解決するための手段) 本発明においては、絶縁性基板上に第1の主電極を形成
した後、この上に第1の絶縁膜を介してゲート電極を所
定パターンで形成し、このゲート電極をマスクとして第
1の絶縁膜をエツチング除去し、またこの絶縁膜エツチ
ング工程の前または後にゲート電極表面を陽極酸化法(
プラズマ陽極酸化法を含む)で酸化して第2の絶縁膜を
形成する。そして動作層となる高抵抗の半導体膜を堆積
し、この上に第2の主電極を形成する。
[Structure of the Invention] (Means for Solving the Problems) In the present invention, after forming a first main electrode on an insulating substrate, a gate electrode is formed on the first main electrode in a predetermined manner via a first insulating film. Using this gate electrode as a mask, the first insulating film is removed by etching, and the surface of the gate electrode is subjected to anodic oxidation (
(including plasma anodic oxidation) to form a second insulating film. A high-resistance semiconductor film serving as an active layer is then deposited, and a second main electrode is formed thereon.

(作用) この様な方法によれば、ゲート電極部の絶縁膜形成にコ
スト高なプラズマCVDを1回しか用いなくてよい。ま
たゲート電極をパターン形成した後その表面を改質する
形で第2の絶縁膜を形成するため、従来のようにゲート
電極パターンに合わせてPEPにより高精度の絶縁膜パ
ターンを形成する工程が要らない。また陽極酸化法では
酸化は金属表面から等方的に成長するため、ゲート電極
側壁部に形成される絶縁膜も組成、膜厚、ち密性などに
優れたものとなる。
(Function) According to such a method, expensive plasma CVD only needs to be used once to form the insulating film of the gate electrode portion. In addition, since the second insulating film is formed by modifying the surface after patterning the gate electrode, the process of forming a highly accurate insulating film pattern using PEP in accordance with the gate electrode pattern as in the conventional method is no longer required. do not have. Furthermore, in the anodic oxidation method, oxidation grows isotropically from the metal surface, so that the insulating film formed on the side walls of the gate electrode also has excellent composition, film thickness, and tightness.

(実施例) 第1図は本発明の一実施例による縦型TPTの構造を示
し、第2図(a)〜(j)はその製造工程を示す。以下
に具体的にその製造工程を説明する。
(Example) FIG. 1 shows the structure of a vertical TPT according to an example of the present invention, and FIGS. 2(a) to (j) show its manufacturing process. The manufacturing process will be specifically explained below.

ガラスなどの絶縁性基板11の表面を清浄化した後、金
属膜を蒸着してこれを所定形状にノくターニングしてド
レイン電極(第1の主電極)12を形成する( (a)
)。この上にプラズマCVD法により、n中型a−8i
膜13を堆積する( (b))。次いでこのn÷型a−
Si膜13上にプラズマCVD法により例えば、a −
3iNx等からなる第1の絶縁膜14を形成する( (
C))  そしてこの絶縁膜14上にゲート電極金属膜
を蒸着しく (d))   これを所定形状にパターニ
ングしてゲート電極15を形成する( (e))。そし
てこのゲート電極15をマスクとして第1の絶縁膜14
を工・ソチング除去し、n÷型層13を露出させる( 
(f))。次にこのゲート電極15の表面(上面および
側面)を陽極酸化法により酸化して第2の絶縁膜16を
形成する( (g))。次いで全面にアンドープの高抵
抗a−St膜17、続いてn中型a−9L膜18を順次
プラズマCVD法により堆積する( (h))。
After cleaning the surface of an insulating substrate 11 such as glass, a metal film is deposited and turned into a predetermined shape to form a drain electrode (first main electrode) 12 ((a)
). On top of this, by plasma CVD method, n medium size a-8i
Deposit film 13 ((b)). Next, this n÷ type a-
For example, a −
A first insulating film 14 made of 3iNx or the like is formed (
C)) Then, a gate electrode metal film is deposited on this insulating film 14 (d)) This is patterned into a predetermined shape to form a gate electrode 15 ((e)). Then, using this gate electrode 15 as a mask, the first insulating film 14 is
is removed by machining and soching to expose the n÷ type layer 13 (
(f)). Next, the surface (upper surface and side surfaces) of this gate electrode 15 is oxidized by an anodic oxidation method to form a second insulating film 16 ((g)). Next, an undoped high-resistance a-St film 17 and then an n-medium type a-9L film 18 are sequentially deposited over the entire surface by plasma CVD ((h)).

そして金属膜を蒸着し、この金属膜とその下のn中型a
−9i膜18を所定形状にパターニングして、ソース電
極(第2の主電極)19を形成する((j))。
Then, a metal film is deposited, and this metal film and the n medium a
The -9i film 18 is patterned into a predetermined shape to form a source electrode (second main electrode) 19 ((j)).

こうしてこの実施例によれば、従来のプロセスと比較し
て、絶縁膜を堆積するプラズマCVDなどの高コストプ
ロセスを減らしてMIS型の縦型TPTを作ることがで
きる。しかも、微細なゲート電極パターンに合わせた絶
縁膜のPEP工程モ必要ない。以上により低コストでM
IS型の縦型TPTを製造することができる。また、ゲ
ート絶縁膜には陽極酸化膜を利用するため、プラズマC
VDによる場合と比較したとき、特にチャネル領域に接
するゲート電極側壁に−様な膜厚の均質な酸化膜が得ら
れ、優れたTPT特性が得られる。
Thus, according to this embodiment, compared to conventional processes, a MIS type vertical TPT can be manufactured by reducing the high cost process such as plasma CVD for depositing an insulating film. Moreover, there is no need for a PEP process for forming an insulating film in accordance with a fine gate electrode pattern. As a result of the above, M
IS type vertical TPT can be manufactured. In addition, since an anodic oxide film is used for the gate insulating film, plasma C
When compared with the case using VD, a homogeneous oxide film with a similar thickness can be obtained particularly on the side wall of the gate electrode in contact with the channel region, and excellent TPT characteristics can be obtained.

上記実施例では、第2図(f)(g)に示すように、パ
ターニングしたゲート電極15をマスクとして先ず、第
1の絶縁膜14をエツチングし、その後ゲート電極15
の表面を陽極酸化による第2の絶縁膜16で被覆した。
In the above embodiment, as shown in FIGS. 2(f) and 2(g), first the first insulating film 14 is etched using the patterned gate electrode 15 as a mask, and then the gate electrode 15 is etched.
The surface of the substrate was covered with a second insulating film 16 formed by anodic oxidation.

この部分の工程は、第3図(a)(b)に示すように逆
にすることができる。即ち第3図(a)に示すように、
パターニングしたゲート電極15の表面を陽極酸化によ
り第2の絶縁膜16で覆った後、第3図(b)に示すよ
うにゲート電極15をマスクとして第1の絶縁膜14の
エツチングを行なう。これ以外の工程は先の実施例と同
様にして優れた特性の縦型TPTを得ることができる。
This part of the process can be reversed as shown in FIGS. 3(a) and 3(b). That is, as shown in FIG. 3(a),
After the surface of the patterned gate electrode 15 is covered with the second insulating film 16 by anodic oxidation, the first insulating film 14 is etched using the gate electrode 15 as a mask, as shown in FIG. 3(b). A vertical TPT with excellent characteristics can be obtained by performing the other steps in the same manner as in the previous embodiment.

本発明は上記実施例に限られるものではない。The present invention is not limited to the above embodiments.

例えば実施例ではa−3t膜を用いたが、他に炭素やゲ
ルマニウム或いはこれらの混合物を主成分とする非晶質
半導体(a−S i C,a−S i G eなど)、
更には多結晶半導体膜を用いることができる。
For example, in the examples, an a-3T film was used, but other materials may also be used, such as amorphous semiconductors (a-S i C, a-S i G e, etc.) whose main components are carbon, germanium, or a mixture thereof.
Furthermore, a polycrystalline semiconductor film can be used.

その池水発明はその趣旨を逸脱しない範囲で種々変形し
て実施することができる。
The pond water invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果〕 以上述べたように本発明によれば、MIS構造の縦型T
PTの製造に陽極酸化法を導入することにより、高精度
を要する高コストのプロセスを減らすことができ、また
ゲート絶縁膜の膜厚、膜質も改善されて優れた性能のT
PTを得ることができる。
[Effects of the Invention] As described above, according to the present invention, the vertical T
By introducing the anodic oxidation method to the manufacturing of PT, it is possible to reduce the high-cost process that requires high precision, and also improve the thickness and quality of the gate insulating film, resulting in a T with excellent performance.
PT can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるMIS構造の縦型TP
Tを示す図、第2図(a)〜(j)はその製造工程を示
す図、第3図(a)(b)は他、の実施例の製造工程を
説明するための図、第4図は従来のMS構造の縦型TP
Tを示す図、第5図は従来のMIS構造の縦型TPTを
示す図である。 11・・・絶縁性基板、12・・・ドレイン電極(第1
の主電極)、13・・・n中型a−Si膜、14・・・
第1の絶縁膜、15・・・ゲート電極、16・・・第1
の絶縁膜(陽極酸化膜)、17・・・アンド−プロ−3
t膜、18・・・n中型a−3i膜、19・・・ソース
電極(第2の主電極)。 出願人代理人 弁理士 鈴江武彦 第 図 第 図(2) 第 図 第 図(3) 第 図(4) 第3 図
FIG. 1 shows a vertical TP with an MIS structure according to an embodiment of the present invention.
Figures 2 (a) to (j) are diagrams showing the manufacturing process thereof, Figures 3 (a) and (b) are diagrams for explaining the manufacturing process of other examples, and Figure 4 The figure shows a vertical TP with a conventional MS structure.
FIG. 5 is a diagram showing a vertical TPT with a conventional MIS structure. 11... Insulating substrate, 12... Drain electrode (first
main electrode), 13...n medium-sized a-Si film, 14...
first insulating film, 15... gate electrode, 16... first
Insulating film (anodized film), 17...and-pro-3
t film, 18...n medium-sized a-3i film, 19... source electrode (second main electrode). Applicant's agent Patent attorney Takehiko Suzue Figure (2) Figure (3) Figure (4) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板上に第1の主電極を形成する工程と、
前記第1の主電極上に第1の絶縁膜を形成する工程と、
前記第1の絶縁膜上に所定パターンのゲート電極を形成
する工程と、前記ゲート電極表面を陽極酸化して第2の
絶縁膜で覆う工程と、この工程の後または前に前記ゲー
ト電極をマスクとして前記第1の絶縁膜をエッチング除
去する工程と、全面に動作層となる半導体膜を堆積する
工程と、前記半導体膜上に第2の主電極を形成する工程
とを備えたことを特徴とする縦型薄膜トランジスタの製
造方法。
(1) forming a first main electrode on an insulating substrate;
forming a first insulating film on the first main electrode;
A step of forming a gate electrode in a predetermined pattern on the first insulating film, a step of anodizing the surface of the gate electrode and covering it with a second insulating film, and masking the gate electrode after or before this step. The method is characterized by comprising the steps of etching away the first insulating film, depositing a semiconductor film to serve as an active layer over the entire surface, and forming a second main electrode on the semiconductor film. A method for manufacturing vertical thin film transistors.
(2)前記半導体膜は、シリコン、炭素、ゲルマニウム
またはこれらの混合物を主成分とする非晶質半導体また
は多結晶半導体である特許請求の範囲第1項記載の縦型
薄膜トランジスタの製造方法。
(2) The method for manufacturing a vertical thin film transistor according to claim 1, wherein the semiconductor film is an amorphous semiconductor or a polycrystalline semiconductor whose main component is silicon, carbon, germanium, or a mixture thereof.
JP30528387A 1987-03-02 1987-12-02 Manufacture of vertical thin film transistor Pending JPH0284775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30528387A JPH0284775A (en) 1987-03-02 1987-12-02 Manufacture of vertical thin film transistor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4697287 1987-03-02
JP62-46972 1987-03-02
JP30528387A JPH0284775A (en) 1987-03-02 1987-12-02 Manufacture of vertical thin film transistor

Publications (1)

Publication Number Publication Date
JPH0284775A true JPH0284775A (en) 1990-03-26

Family

ID=26387146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30528387A Pending JPH0284775A (en) 1987-03-02 1987-12-02 Manufacture of vertical thin film transistor

Country Status (1)

Country Link
JP (1) JPH0284775A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774360A (en) * 1993-01-29 1995-03-17 Gold Star Electron Co Ltd Preparation of vertical thin film transistor
US6320221B1 (en) 1998-12-30 2001-11-20 Hyundai Electronics Industries Co., Ltd. TFT-LCD having a vertical thin film transistor
JP2002208701A (en) * 2001-01-09 2002-07-26 Fuji Electric Co Ltd Mis semiconductor device
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
JP2006013128A (en) * 2004-06-25 2006-01-12 Nippon Hoso Kyokai <Nhk> Organic or inorganic transistor, its manufacturing method and image display

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
JPH0774360A (en) * 1993-01-29 1995-03-17 Gold Star Electron Co Ltd Preparation of vertical thin film transistor
US6320221B1 (en) 1998-12-30 2001-11-20 Hyundai Electronics Industries Co., Ltd. TFT-LCD having a vertical thin film transistor
JP2002208701A (en) * 2001-01-09 2002-07-26 Fuji Electric Co Ltd Mis semiconductor device
JP2006013128A (en) * 2004-06-25 2006-01-12 Nippon Hoso Kyokai <Nhk> Organic or inorganic transistor, its manufacturing method and image display

Similar Documents

Publication Publication Date Title
JPS59208783A (en) Thin film transistor
KR930015077A (en) Manufacturing Method of Semiconductor Device
JPS63178560A (en) Forming method of thin-film transistor
JPH0284775A (en) Manufacture of vertical thin film transistor
JPH04279064A (en) Display device
JP2592044B2 (en) Manufacturing method of vertical thin film transistor
JPH06169086A (en) Polycrystalline silicon thin film transistor
JPS61224359A (en) Manufacture of thin film transistor array
JPS60177676A (en) Thin film transistor device and manufacture thereof
JP2621619B2 (en) Method for manufacturing thin film transistor
JPH01302768A (en) Inverse stagger type si-thin film transistor
JPH0534837B2 (en)
JPS6380570A (en) Manufacture of thin film transistor
JPS5821868A (en) Manufacture of thin polycrystalline silicon film transistor
JPH0221663A (en) Manufacture of thin film transistor
KR970000461B1 (en) Thin film transistor &amp; method of manufacturing the same
JP3263894B2 (en) Active matrix display device and method of manufacturing the same
JP2598922B2 (en) Method for manufacturing thin film transistor
JPH0562996A (en) Manufacture of thin film transistor
JPS62224976A (en) Thin film transistor
JPH0449625A (en) Thin-film transistor and its manufacturing method
JPS62239579A (en) Manufacture of thin film transistor
KR940000911A (en) LCD and Manufacturing Method
JPS60224278A (en) N type transistor
JPH05343687A (en) Thin film transistor