JPS58204355A - Method for detecting flaw on surface of metallic object - Google Patents

Method for detecting flaw on surface of metallic object

Info

Publication number
JPS58204355A
JPS58204355A JP8769982A JP8769982A JPS58204355A JP S58204355 A JPS58204355 A JP S58204355A JP 8769982 A JP8769982 A JP 8769982A JP 8769982 A JP8769982 A JP 8769982A JP S58204355 A JPS58204355 A JP S58204355A
Authority
JP
Japan
Prior art keywords
light
slab
polarization
reflected light
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8769982A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
北川 孟
Kane Miyake
三宅 苞
Yoshio Ueshima
上嶋 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
TOEI DENSHI KOGYO KK
Original Assignee
Kawasaki Steel Corp
TOEI DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, TOEI DENSHI KOGYO KK filed Critical Kawasaki Steel Corp
Priority to JP8769982A priority Critical patent/JPS58204355A/en
Publication of JPS58204355A publication Critical patent/JPS58204355A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To enable the detection of the defect on a surface with high S/N by setting the angle between the incident direction of the incident light having a prescribed plane of polarization from a laternal side and the normal on the surface of a specimen at 15 deg.-55 deg. and detecting the prescribed polarization component of the specular reflected light. CONSTITUTION:A laser light source 22 disposed in the diagonal direction intersecting orthogonally with the traveling direction of a continuous casting slab 20 on the lateral side of the traveling line of said slab irradiates the external light having a linear polarization characteristic in such a way that the angle theta1 between the normal on the surface of the slab 20 and the incident direction of the irradiated light attains 15 deg.-55 deg.. The laser light 22a is expanded to a belt shape up to the necessary visual field on the slab 20 by a cylindrical lens 26 through a rotator 24 for the plane of polarization. On the other hand, a photodetection camera 30 which is disposed in the position on the opposite side of the slab traveling line equal to the angle theta1 between the normal on the surface of the slab 20 and the detection direction of the specular reflected light and has a polarization filter 28 detects the prescribed polarization component of the specular reflected light, and a signal processing circuit 32 outputs a defect signal.

Description

【発明の詳細な説明】 本発明は、金属物体表面探傷方法に係り、特に、連続鋳
造スラブ等の走行中の高温鋼材の表面欠陥をオンライン
で検出する際に用いるのに好適な、走行中の被検体の表
面に外部から光をM劃し、被検体表面による反射光を受
光して、被検体の表面欠陥を検出するようにした金属物
体表面探傷方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting defects on the surface of a metal object, and in particular, a method for detecting defects on the surface of a metal object during running, which is suitable for online detection of surface defects in running high-temperature steel materials such as continuous casting slabs. The present invention relates to an improvement in a method for detecting defects on the surface of a metal object in which surface defects on the object are detected by projecting light from the outside onto the surface of the object and receiving light reflected by the surface of the object.

搬送ラインを走行中の被検体の表面に外部から光をM射
し、被検体表面による反射光を受光して、被検体の表面
欠陥を検出するようにした光学的表面探傷方法が知られ
ている。この光学的表面探傷り法は、例えば第1図に示
す如く、被検体10の走行ライン上方の、被検体直上方
向に配置した投光112から被検体10表面に扇状の外
部光或いは飛点走査される外部光を照射し、同じく被検
体走行ラインの被検体直上方向に配置した受光器14に
より受光される反射光の諸物埋置の変化(光量変化又は
回折パターン等)から、被検体10の表面欠陥を検出す
るものである。例えば、前記投光器12としてレーザ光
源を用いた場合には、スポット状の光点を飛点走査方式
で被検体10の幅方向に走査し、被検体10からの反射
光を光電子増+8管ヤシリ」ンノオトセル等からなる受
光器14ぐ受光して、各点の光嫌変化から、欠陥部の輪
方向位置を検出づる。又、前記投光器12どして白色光
の棒状光源を用いた場合には、被検体10からの反射光
を、−次元イメージセンリかうなる受光器14(″飛−
走査り式により一点(−幽A)ず)Mに受光する。
An optical surface flaw detection method is known in which light is emitted from the outside onto the surface of a test object while it is running on a conveyance line, and the reflected light from the surface of the test object is received to detect surface defects on the test object. There is. This optical surface flaw detection method, for example, as shown in FIG. The object 10 is irradiated with external light and received by the light receiver 14, which is also placed directly above the object on the object travel line. This is used to detect surface defects. For example, when a laser light source is used as the light projector 12, a spot-shaped light spot is scanned in the width direction of the subject 10 using a flying spot scanning method, and the reflected light from the subject 10 is reflected by a photoelectron intensifier 8 tube. A light receiver 14 consisting of an optical cell or the like receives the light, and the position of the defective part in the ring direction is detected from the change in light intensity at each point. In addition, when a bar-shaped light source of white light is used as the light projector 12, the reflected light from the subject 10 is transmitted to the -dimensional image sensor or the light receiver 14 ("flying").
The light is received at a single point (-A) by the scanning method.

このような光学的表面探傷方法によれば、走行中の被検
体10の表面欠陥を非接触でオンライン測定C・きると
いノ特徴4!:有するか、従来1.&、雑音信号を欠陥
信号と劇画し、誤検出の娯度が轟く、実用上の障害とな
っていた。又、被検体10とし材の表面探傷にそのまま
用いることは、耐熱性等の点で問題かあった。更に、回
転ミラ一部等、複雑な機構を有し、装置全体の耐′□熱
対策及び調整が非常に繁雑であった。
According to such an optical surface flaw detection method, surface defects of the moving object 10 can be measured online in a non-contact manner C. Feature 4! :Does it have?Conventional 1. &, Noise signals are treated as defective signals, and false detections become a real problem, creating a practical obstacle. Further, if the test object 10 is used as it is for surface flaw detection of a material, there are problems in terms of heat resistance and the like. Furthermore, it has a complicated mechanism such as a part of the rotating mirror, and heat resistance measures and adjustments for the entire device are extremely complicated.

本発明は、1記従来の欠点を解消するべくなされたもの
で、走り中の被検体の表面欠陥を、格段に^いS / 
N比で11度良く検出することができ、しかも、投光器
や受光器の耐熱対策が容易な金属物体表面探傷方法を提
供することを目的とする。
The present invention was made in order to eliminate the drawbacks of the conventional technology as described in 1.
It is an object of the present invention to provide a method for detecting flaws on the surface of a metal object, which can detect defects with an N ratio of 11 degrees, and also allows easy heat resistance measures for a projector and a light receiver.

本発明は、走行中の被検体の表面に外部から光を照射し
、被検体表面による反射光を受光して、被検体の表面欠
陥を検出するようにした金属物体表面探傷方法において
、被検体走行ライン側方の、被検体走行方向と直交する
斜め方向に配置した投光器から、被検体表面の法線と照
射光入射方向とのなす角度が15度〜55mとなるよう
に、被検体表面に所定偏光面を有する外部光又は偏光特
性を有しない外部光を照射し、被検体走行ラインの投光
器と反対側の側方に配置した受光器により受光される正
反射光又はその所定偏光成分の変化から、被検体の表面
欠陥を検出するようにして、前記目的を達成したもので
ある。
The present invention provides a method for detecting surface flaws on the surface of a metal object in which surface defects on the object are detected by irradiating light from the outside onto the surface of a moving object and receiving reflected light from the surface of the object. A light projector placed on the side of the travel line in an oblique direction orthogonal to the travel direction of the test object is directed onto the test object surface so that the angle between the normal line of the test object surface and the incident direction of the irradiated light is 15 degrees to 55 m. A change in the specularly reflected light or its predetermined polarization component that is irradiated with external light that has a predetermined plane of polarization or external light that does not have polarization characteristics, and is received by a receiver placed on the opposite side of the projector to the object travel line. The above object has been achieved by detecting surface defects on the object.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、前出第1図に示したような、投光器12によ
り走行中の被検体10の表面に外部から光を照射し、被
検体10の表面による反射光を受光器14により受光し
て、被検体10の表面欠陥を検出するようにした表面探
傷方法において、発明者等が、投光器12による照射光
入射方向と、受光器14による反射光受光方向とを種々
変えて最適な位置関係について実験した結果に基づいて
なされたものである。
The present invention, as shown in FIG. , in a surface flaw detection method for detecting surface defects of a test object 10, the inventors have variously changed the direction of incidence of the irradiated light by the light projector 12 and the direction of reception of reflected light by the light receiver 14 to determine the optimal positional relationship. This was done based on the results of experiments.

即ち、投光器12を、被検体走行ライン側方の、被検体
走行方向と、直交する斜め方向に配置し、被検体表面の
法線と照射光入射方向とのなす角度θ1を変化させて、
被検体走行ラインの投光器12と反対側の側方の、被検
体表面の法線と反射光受光方向とのなす角度が前記角度
θ1と等しい正反射光受光位置に配置した受光器14に
より正反射光を受光し、これから被検体10の表面欠陥
を検出したところ、欠陥(主として縦削れ)信号のS/
N比は、第2図に実線Aで示す如くとなった。図から明
らかな如く、角度θ1が15度〜55度の範囲内にある
場合には、欠陥信号のS/N比が、実用上欠陥信号を弁
別し得る水準であるS/N比2.0以上となり、精度の
^い欠陥検出が可能である。
That is, the projector 12 is placed on the side of the subject running line in an oblique direction orthogonal to the subject running direction, and the angle θ1 between the normal to the subject surface and the irradiation light incident direction is changed,
The light is specularly reflected by the light receiver 14 placed at the specularly reflected light receiving position on the opposite side of the subject traveling line from the projector 12, where the angle between the normal to the subject's surface and the direction of receiving the reflected light is equal to the angle θ1. When the light was received and surface defects of the object 10 to be inspected were detected, the S/S of defect (mainly vertical scraping) signals were detected.
The N ratio was as shown by solid line A in FIG. As is clear from the figure, when the angle θ1 is within the range of 15 degrees to 55 degrees, the S/N ratio of the defect signal is 2.0, which is a level that can practically discriminate the defect signal. As described above, highly accurate defect detection is possible.

又、投光器12による照射光入射方向を、ライン側りの
斜め方向とした場合には、第3図(A>に示す如く、縦
削れ10aによる正反射光の減貴率も強調されるので、
このように、投光器12をフィン側方の斜め上方に置く
方法は、特に走行方向と平行な縦割れの検出に対して有
効である。第3図(B)は、入射角度45度の場合の受
光波形を小したものであり、ビークBが欠陥信号である
Furthermore, when the incident direction of the light irradiated by the projector 12 is an oblique direction toward the line side, as shown in FIG.
In this manner, the method of placing the projector 12 diagonally above the side of the fin is particularly effective for detecting vertical cracks parallel to the running direction. FIG. 3(B) is a reduced version of the received light waveform when the incident angle is 45 degrees, and beak B is a defect signal.

又、被検体10からの垂直距離が小さい状態でも、耐熱
対策が容易であや。更に、投光器と反射点の距離を大き
くとる必要がなく、現場に多い埃の影響に拘わらず、十
分な光が反射点に到達する。
Furthermore, even when the vertical distance from the subject 10 is small, heat resistance measures can be easily taken. Furthermore, there is no need to provide a large distance between the projector and the reflection point, and sufficient light reaches the reflection point regardless of the influence of dust that is abundant at the site.

尚、前記角度θ1をあまり小さくすると、投光視野の遠
近感が強lIされ、焦点合せ及び信号処理の際のアドレ
ス付けに支障をもたらすことがある。
Incidentally, if the angle θ1 is made too small, the perspective of the projected field of view becomes too strong, which may cause problems in addressing during focusing and signal processing.

一方、角度θ1が大であるほど、被検体10の上下動の
影響は受けにくくなるものの、被検体10のF面に近く
なるので、特に^温材の耐熱の面では不利となる。又、
被検体10の下面を反転せずに検査する場合には投光器
12を配設するためのビットの深さを大きくする必要も
生じる。従って、上述の如き、15度〜55度の範囲内
が好ましく、特に、実用上は、20度〜50度の範囲が
より有効である。
On the other hand, as the angle θ1 becomes larger, it becomes less susceptible to the vertical movement of the subject 10, but it is closer to the F plane of the subject 10, which is disadvantageous especially in terms of heat resistance of the hot material. or,
When inspecting the lower surface of the object 10 without inverting it, it is also necessary to increase the depth of the bit for arranging the light projector 12. Therefore, as mentioned above, the angle is preferably within the range of 15 degrees to 55 degrees, and in particular, the range of 20 degrees to 50 degrees is more effective in practice.

更に、前記のような角度範囲において、偏光条件を適正
に設定した場合、欠陥信号のS 、/ N比は、更に向
上した。即ち、前記投光1112により照射される照射
光を直線偏光とし、その偏光面を調整して、被検体10
表面上の棒状(帯状)視野の短辺に平行、即ち、被検体
10の走行方向に平行な偏光面を持つ外部光とし、被検
体10からの反射光を受光する際に、やはり該偏光面の
光のみを受光器14に入力するようにしたとこ′ろ、前
記と同様な角度条件において、そのS/N比は、12a
!!1に実線Cで示す如(、又、183図(C)に示す
如く格段に向上した。尚、偏光″□条件は、前記例に限
定されず、例えば入射偏光面と直交する散乱偏光面の光
のみを受光するようにした場合でも、同様の効果が得ら
れた。
Furthermore, when the polarization conditions were set appropriately in the above angle range, the S/N ratio of the defect signal was further improved. That is, the irradiation light irradiated by the light projection 1112 is linearly polarized, and the plane of polarization is adjusted to illuminate the subject 10.
The external light has a polarization plane parallel to the short side of the rod-shaped (band-shaped) field of view on the surface, that is, parallel to the running direction of the subject 10, and when receiving the reflected light from the subject 10, the polarization plane is When only the light of
! ! As shown by the solid line C in Fig. 1 (and as shown in Fig. 183 (C)), the polarization condition was not limited to the above example. A similar effect was obtained even when only light was received.

本発明は、1配のような知見に基いてなされたものであ
る。
The present invention was made based on the above findings.

以下図面を参照して、本発明に係る金属物体表面探傷方
法が採用された連続鋳造スラブの表面探傷装置の*施例
を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a continuous casting slab surface flaw detection apparatus employing the metal object surface flaw detection method according to the present invention will be described in detail below with reference to the drawings.

本寅論例は、第4図に示す如く、連続鋳造スラー120
の走行ライン側方のスラブ走行方向と直交する斜め方向
に配置された、連続鋳造スラブ20表面の法線と[光入
射方向とのなす角度θ1が、15度〜55度となるよう
に、連続鋳造スラブ20の表面に直線偏光特性を有する
外部光を照射するためのレーザ光源22と、該レーザ光
源22から発振されたレーザ光の偏光面を所定偏光面、
例えば、連続鋳造スラブ20の棒状(帯状)視野の短辺
に平行(即ち連続鋳造スラブ20の走行方向に平行)な
偏光面を持つレーザ光22aとするための偏光面回転子
24と、該偏光面回転子24出力の所定偏光面を有する
レーザ光22aを、連続鋳造スラブ20上の必I!視野
幅まで帯状に広げるためのシリンドリカルレンズ26と
、スラブ走行ラインの前記レーザ光源22ど反対側の側
方の、連続鋳造スラブ20表面の法線と反射光受光方向
とのなす角度が前記角度θ1と等しい正反射光受光位置
に配置された、正反射光の所定偏光成分を受光するため
の、1個又は複数個の偏光フィルタ28が装着された受
光カメラ3oと、該受光カメラ30出力の正反射光信号
を処理して、欠陥信号を出力するだめの信号処理回路3
2とから構成されている。第4図1.:おいて、34は
、受光カメラ30の受光部に配設された、レーザ光a*
22がら照射されたレーザ光22aの使用波長域のみを
通過させることによって、連続鋳造スラブ2oの自発光
エネルギの影−を除去し、検出精度を高めるための干渉
フィルタである。
In this example, as shown in Figure 4, continuous casting slurry 120
Continuously cast slabs are continuously cast so that the angle θ1 between the light incident direction and the normal to the surface of the continuous casting slab 20, which is disposed in an oblique direction orthogonal to the slab running direction on the side of the running line, is between 15 degrees and 55 degrees. A laser light source 22 for irradiating the surface of the casting slab 20 with external light having linear polarization characteristics, and a polarization plane of the laser light emitted from the laser light source 22 is set to a predetermined polarization plane
For example, a polarization plane rotator 24 for making the laser beam 22a have a polarization plane parallel to the short side of the bar-shaped (band-shaped) field of view of the continuous casting slab 20 (that is, parallel to the running direction of the continuous casting slab 20), and A laser beam 22a having a predetermined polarization plane output from the surface rotator 24 is directed onto the continuous casting slab 20! The angle θ1 is the angle between the cylindrical lens 26 for widening the field of view in a strip shape, the normal to the surface of the continuous casting slab 20 on the opposite side of the slab running line from the laser light source 22, and the direction in which the reflected light is received. A light receiving camera 3o equipped with one or more polarizing filters 28 for receiving a predetermined polarized light component of the specularly reflected light is placed at a specularly reflected light receiving position equal to Signal processing circuit 3 that processes the reflected light signal and outputs a defect signal
It is composed of 2. Figure 41. :, 34 is a laser beam a* disposed in the light receiving part of the light receiving camera 30.
This is an interference filter for removing the shadow of the self-luminous energy of the continuous casting slab 2o and improving detection accuracy by passing only the usable wavelength range of the laser beam 22a irradiated from the continuous casting slab 2o.

前記レーザ光源22としては、例えば出力5wのアルゴ
ンレーザを用いることができる。一般に、^温物体を被
検体とした場合、被検体の自発光エネルギは、赤外及び
可視の長波長側に強いエネルギ成分を持つので、反射光
を受光して欠陥信号を得る場合には、なるべく自発光成
分の少ない短波長の光を投射した方が有利である。アル
ゴンレーずは、#l高出力成分の波長が5001B−近
傍の波長を持つのぐ、連続鋳造スラブのような高温鋼材
の自発光成分の比較的弱い波長域に該当し、■っ、この
種のレーザは、連続しく比較的強い出ツノが得られるの
で、表面探傷の光源としては有効である。
As the laser light source 22, for example, an argon laser with an output of 5 W can be used. Generally, when a hot object is the object to be tested, the self-luminous energy of the object has a strong energy component on the long wavelength side of infrared and visible light, so when receiving reflected light to obtain a defect signal, It is advantageous to project light of a short wavelength with as few self-luminous components as possible. Argon laser has a wavelength of #1 high output component near 5001B-, which falls under the relatively weak wavelength range of the self-luminous component of high-temperature steel materials such as continuous casting slabs. A laser is effective as a light source for surface flaw detection because it produces continuous and relatively strong protrusions.

前記受光カメラ30としては、例えば電荷結合fバイス
を用いた電子走査型イメージセンサが焦点面に配設され
たものを用いることができる。受光7Jメラのレンズは
、被検体−受光カメラ間鉋離、帯状投光面の幅等により
、最適な口径に選定されている。今、2048索子のセ
ンサを用いて視野幅1m+を検査する場合、その幾何学
的分解能は約0.5−一どなる。
As the light-receiving camera 30, for example, one in which an electronic scanning image sensor using a charge-coupled f-vis is disposed on the focal plane can be used. The lens of the light-receiving 7J camera is selected to have an optimum aperture depending on the distance between the subject and the light-receiving camera, the width of the band-shaped light projection surface, etc. Now, when inspecting a field of view width of 1 m+ using a sensor with 2048 probes, its geometric resolution is about 0.5-1.

前記レーザ光源22、偏光面回転子24、シリンドリカ
ルレンズ26等を含む投光装置、及び、前記偏光フィル
タ28、受光カメラ3o、干渉フィルタ34等を含む受
光装置は、いずれも、連続鋳造スラブ20の斜め方向に
十分大きい距離を保゛つて配置され、且つ、長時間連続
使用可能なように、気体或いは液体による耐熱対策が施
されている。
The light projecting device including the laser light source 22, the polarization plane rotator 24, the cylindrical lens 26, etc., and the light receiving device including the polarizing filter 28, the light receiving camera 3o, the interference filter 34, etc. are all connected to the continuous casting slab 20. They are arranged at a sufficiently large distance in the diagonal direction, and are heat-resistant with gas or liquid so that they can be used continuously for a long time.

以下作用を説明する。The action will be explained below.

表面a!度500℃以、Fの連続鋳造スラブ20は、顎
造ラインを矢印りの方向にほぼ一定の速度で走行しくお
り、少なくとも被検面が平坦とみなし得る状態となって
いる。レーザ光源22から発振されたレーザ光22aは
、偏光面回転子24により偏光面が所定偏光面とされた
後、シリンドリカルレンズ26により帯状に連続鋳造ス
ラブ20上に投光される。連続鋳造スラブ20の被検面
によって反射されたレーデ光は、干渉フィルタ%34及
び偏光フィルタ28を介して受光カメラ30に入射し、
帯状光の像が、受光カメラ30の焦点面に一次元情報と
じ一〇人力され、信号処理回路32で欠陥信号化されて
出力される。
Surface a! The continuously cast slab 20, which has a temperature of 500° C. or higher and is F, runs along the maxillary line at a substantially constant speed in the direction of the arrow, and is in a state where at least the surface to be inspected can be considered flat. The laser beam 22a emitted from the laser light source 22 has its polarization plane set to a predetermined polarization plane by the polarization plane rotator 24, and then is projected onto the continuous casting slab 20 in a band shape by the cylindrical lens 26. The radar light reflected by the test surface of the continuous casting slab 20 enters the light receiving camera 30 via the interference filter 34 and the polarizing filter 28,
The image of the band-shaped light is manually printed with one-dimensional information on the focal plane of the light-receiving camera 30, converted into a defect signal by the signal processing circuit 32, and output.

本実施例においては、投光器と5.、シて、レーザ光源
22を用いているので、レーザ光源22及びシリンドリ
カルレンズ26の部分と、高温材である連続鋳造スラブ
20とのパスラインの距離、及び、連続鋳造スラブ20
と受光カメラ3oとのパスラインの沖離を太き(とるこ
とが可能であり、耐熱対鍮上一層有利である。即ち、レ
ーザ光は、強い指向性を持っており、そのビームが非常
に小さく、エネルギ密度が楡めて高いため、距離に対す
る減負がほとんど無く、シリンドリカルレンズ26で横
に広げ(も、十分に高いエネルギ密度が得られる。又、
レーザ光の特性として、その波長成分が単一ぐあるので
、本実施例のように、使用するレーザに適した干渉フィ
ルタ34を、受光カメラ30のレンズ前面に取付けるこ
とによって、レーザ光のみを極めて選択的に受光するこ
とが可能であり、自発光エネルギの影響を効果的に除去
づることが容易である。尚、投光器の種類は、これに限
定されず、例えば、白色光を投射する水銀灯を用いるこ
とも可能である。
In this embodiment, the projector and 5. Since the laser light source 22 is used, the distance between the pass line between the laser light source 22 and the cylindrical lens 26 and the continuous casting slab 20, which is a high-temperature material, and the continuous casting slab 20
It is possible to widen the distance between the path line and the light receiving camera 3o, which is more advantageous than heat-resistant steel.In other words, the laser beam has strong directionality, and the beam is very Since it is small and has a very high energy density, there is almost no decrease in distance, and even if the cylindrical lens 26 is used to spread the energy laterally, a sufficiently high energy density can be obtained.
As a characteristic of laser light, it has a single wavelength component, so by attaching an interference filter 34 suitable for the laser to be used in front of the lens of the light-receiving camera 30 as in this embodiment, only the laser light can be isolated. It is possible to selectively receive light, and it is easy to effectively remove the influence of self-luminous energy. Note that the type of projector is not limited to this, and for example, a mercury lamp that projects white light can also be used.

又・本実施例におい門は・レーず光i!i22からの光
を、連続鋳造スラブ20の表面に帯状に投光し、その反
射光を、電子走査型のイメージセンサC・受光して出力
信号を得るようにしくいるので、信号取出し走査を、従
来の機械的走査より格段に高速化できる。従って、被検
体の走行速度が1000−1/分以上の場合でも、応答
することが可能である。又、光電子増倍管やシリコンフ
ォトセル、増幅器等で受光器を構成した場合に比べて、
受光器が小型であり、耐湿、耐熱、耐酸等の遮蔽対策が
行いやすい。更に、探傷装置全体として、回転部分がな
いので、保守も容易である。
In addition, the odor gate of this example is Rays Hikari i! The light from the i22 is projected onto the surface of the continuous casting slab 20 in a band shape, and the reflected light is received by an electronic scanning image sensor C to obtain an output signal. It can be much faster than conventional mechanical scanning. Therefore, even if the running speed of the subject is 1000-1/min or more, it is possible to respond. Also, compared to the case where the receiver is composed of a photomultiplier tube, silicon photocell, amplifier, etc.
The light receiver is small, making it easy to take shielding measures such as humidity, heat, and acid resistance. Furthermore, since there are no rotating parts in the flaw detection device as a whole, maintenance is easy.

尚、前記実施例においては、レーザ光源22に―光面回
転子24が設けられると共に、受光カメラ30の前面に
偏光フィルタ28が配設されていたが、レーザ光源22
が、直線偏光性レーザ光源である場合には、その配設位
置を工夫することによって、偏光面回転子24を省略す
ることも可能である。
In the above embodiment, the laser light source 22 was provided with the light plane rotator 24 and the polarizing filter 28 was provided in front of the light receiving camera 30.
However, in the case of a linearly polarized laser light source, the polarization plane rotator 24 can be omitted by carefully arranging its position.

又、前記レーザ光源22が、ランダム偏光レーザ光源又
は白色光源である場合には、該投光器の前面に1個又は
複数個の偏光フィルタを追加することも可能である。
Also, if the laser light source 22 is a randomly polarized laser light source or a white light source, it is also possible to add one or more polarizing filters to the front of the projector.

更に、前記投光器による照射光を、偏光特性を4しない
外部光とし、#2受光器の前面に偏光フィルタを配設し
て、受光器により散乱反射光の所定−光成分のみを受光
するように構成することも…能ぐある。
Further, the light irradiated by the light projector is external light having a polarization characteristic of 4, and a polarizing filter is disposed in front of the #2 light receiver so that only a predetermined light component of the scattered reflected light is received by the light receiver. It is also possible to configure...

前に!実施例においCは、本発明が、高温材ぐある連続
鋳造スラブの探傷に適用されていたが、本発明の適用範
囲はこれに限定されず、より高速で走書1ケる仕上圧延
機出側の熱延鋼帯のオンライン抹−1鹸洗ラインのオン
ライン探傷、冷延綱帯、鋼板のオンライン探傷等にも網
様に適用できることは明らかである。
in front! In Example C, the present invention was applied to the flaw detection of a continuously cast slab with high-temperature material, but the scope of application of the present invention is not limited to this. It is clear that the present invention can be similarly applied to online flaw detection of hot-rolled steel strips, online flaw detection of hot-rolled steel strips, online flaw detection of cold-rolled steel strips, steel plates, etc.

以り説明した通り、本発明によれば、連続鋳造スフl@
の走行中の被検体の表面欠陥を、格段に^いS 、′N
比で精度良く検出ζることができ、しかも、投光器や受
光器の耐熱対策も容易であるという優れ/、−効果を有
する。
As explained above, according to the present invention, continuous casting souffle @
Significantly reduces surface defects on the object being inspected while driving.
It has the advantages of being able to detect ζ with high accuracy in terms of ratio, and also making it easy to take heat-resistant measures for the projector and receiver.

【図面の簡単な説明】[Brief explanation of drawings]

11図は、従来の表面探傷り法が行われている状態を示
す斜視図、第2図1よ、本発明の原理を示t、m光条件
を設定した場合と設定しない場合における、被検体表面
の法線と照射光入射方向とのなす角度と、正反射光の変
化から検出した欠陥信号のS/N比との関係を比較して
示す線図、第3図(A>は、同じく縦割れを有する被検
体の表面に斜め方向から照射光を入射している状態を示
す断面図、第3図(B)、(C)は、同じく偏光条件を
設定しない場合と設定した場合における正反射光の変化
状態を比較して示す線図、第4図は、本発明に係る金属
物体表面探傷方法が採用された連続鋳造スラブの表面探
傷装藺の実施例の構成を示す、一部ブロック線図を含む
斜視図である。 10・・・被検体、    10a・・・縦割れ、12
・・・投光器、    14・・・受光器、20・・・
連続鋳造スラブ、22・・・レーザ光源、24・・・偏
光面回転子、 26・・・シリンドリカルレンズ、 28・・・偏光フィルタ、 30・・・受光カメラ、3
2・・・信号処理回路、 34・・・干渉フィルタ。 代理人  ^ 矢  論 (ほか1名)第1図 第2図 −角度θ1
Figure 11 is a perspective view showing the state in which the conventional surface flaw detection method is being performed, and Figure 2.1 shows the principle of the present invention. Figure 3 is a diagram comparing the relationship between the angle between the surface normal and the incident direction of the irradiation light and the S/N ratio of the defect signal detected from the change in the specularly reflected light (A> is the same as above). Figures 3 (B) and 3 (C) are cross-sectional views showing the state in which irradiation light is incident on the surface of a specimen with vertical cracks from an oblique direction. FIG. 4 is a diagram showing a comparison of changes in reflected light; FIG. 4 is a partial block diagram showing the configuration of an embodiment of the surface flaw detection equipment for a continuous casting slab in which the metal object surface flaw detection method according to the present invention is adopted. It is a perspective view including a diagram. 10... Subject, 10a... Vertical crack, 12
... Emitter, 14... Light receiver, 20...
Continuous casting slab, 22... Laser light source, 24... Polarization plane rotator, 26... Cylindrical lens, 28... Polarizing filter, 30... Light receiving camera, 3
2... Signal processing circuit, 34... Interference filter. Agent ^ Arrow Theory (1 other person) Figure 1 Figure 2 - Angle θ1

Claims (1)

【特許請求の範囲】[Claims] (1)走行中の被検体の表面に外部から光を照射し、被
検体表面による反射光を受光して、被検体の表面欠陥を
検出するようにした金属物体表面探傷方法において、被
検体走行ライン側方の、被検体走行方向と直交する斜め
方向に配置した投光器から、被検体表面の法線と照射光
入射方向とのなす角度が15度〜55度となるように、
被検体表面に所定偏光面を有する外部光又は偏光特性を
有しない外部光を照射し、被検体走行ラインの投光器と
反対側の側方に配置した受光器により受光される正反射
光又はその所定偏光成分の変化から、被検体の表面欠陥
を検出するようにしたことを特徴とする金属物体表面探
傷方法。
(1) In a metal object surface flaw detection method in which the surface of a moving object is irradiated with light from the outside and the reflected light from the surface of the object is received to detect surface defects on the object, the object is From a projector placed on the side of the line in an oblique direction perpendicular to the running direction of the subject, the light is projected so that the angle between the normal to the subject's surface and the direction of incidence of the irradiated light is 15 degrees to 55 degrees.
External light having a predetermined plane of polarization or external light having no polarization characteristics is irradiated onto the surface of the test object, and specularly reflected light or its predetermined value is received by a light receiver placed on the opposite side of the projector from the projector in the travel line of the test object. A method for detecting defects on the surface of a metal object, characterized by detecting surface defects on the object from changes in polarized light components.
JP8769982A 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object Pending JPS58204355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8769982A JPS58204355A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8769982A JPS58204355A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Publications (1)

Publication Number Publication Date
JPS58204355A true JPS58204355A (en) 1983-11-29

Family

ID=13922166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8769982A Pending JPS58204355A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Country Status (1)

Country Link
JP (1) JPS58204355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110053827A (en) * 2019-03-05 2019-07-26 红塔烟草(集团)有限责任公司 A kind of cigarette packet three-dimensional appearance visible detection method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110053827A (en) * 2019-03-05 2019-07-26 红塔烟草(集团)有限责任公司 A kind of cigarette packet three-dimensional appearance visible detection method and device

Similar Documents

Publication Publication Date Title
JPS57131039A (en) Defect detector
KR970000781B1 (en) Foreign matter detection device
JPS58204353A (en) Method for detecting flaw on surface of metallic object
US3779649A (en) Method of and an electro-optical system for inspecting material
JPS58204355A (en) Method for detecting flaw on surface of metallic object
JPH0694642A (en) Method and equipment for inspecting surface defect
JP2873450B2 (en) Defect inspection device using light
JPS58204356A (en) Method for detecting flaw on surface of metallic object
JPH0228815B2 (en)
JPS58204348A (en) Method for detecting flaw on surface of metallic object
JPS58204350A (en) Method for detecting flaw on surface of metallic object
JPH0511573B2 (en)
JP3432273B2 (en) Foreign matter inspection device and foreign matter inspection method
JP2858194B2 (en) O-ring inspection method
JPS58204349A (en) Method for detecting flaw on surface of metallic object
JPS58204354A (en) Method for detecting flaw on surface of metallic object
JPS58204352A (en) Method for detecting flaw on surface of metallic object
JPH061168B2 (en) Shape defect detection device
JPS58204351A (en) Method for detecting flaw on surface of metallic object
JP3336392B2 (en) Foreign matter inspection apparatus and method
JP4344284B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
JPH0224538A (en) Apparatus for detecting fissure and crack
JP2698696B2 (en) Surface flaw inspection method
JPS5892937A (en) Automatic inspecting device for surface flaw
JPH09218162A (en) Surface defect inspection device