JPH0694642A - Method and equipment for inspecting surface defect - Google Patents
Method and equipment for inspecting surface defectInfo
- Publication number
- JPH0694642A JPH0694642A JP24659092A JP24659092A JPH0694642A JP H0694642 A JPH0694642 A JP H0694642A JP 24659092 A JP24659092 A JP 24659092A JP 24659092 A JP24659092 A JP 24659092A JP H0694642 A JPH0694642 A JP H0694642A
- Authority
- JP
- Japan
- Prior art keywords
- inspected
- light
- laser
- wavelength
- defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱延鋼板などの高速移
動する被検査材の表面欠陥を検出する方法及び装置に関
するものであり、特に、レーザの回折散乱光から被検査
材表面の欠陥検出を行う技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting surface defects on a material to be inspected which moves at high speed such as a hot rolled steel sheet. The present invention relates to detection technology.
【0002】[0002]
【従来の技術】被検査材の表面にレーザ光を投射し、そ
の回折散乱光の強度、分布の変化から欠陥を検出する方
法や装置は、既に鉄鋼、アルミ、製紙ラインなどで実用
化されている。この装置は、例えば図8に示すように、
レーザ光源11から出力されたレーザ光12をコリメー
タレンズ13を通して欠陥検査に最適なビーム径に集光
した後、ポリゴンミラー14により被検査材15の幅方
向に走査するように投射し、被検査材表面の反射光を集
光レンズ16を通して光検出器17により測定し、その
強度から欠陥を検出するものである。ここで、欠陥の検
出感度、検出欠陥の識別能力を向上させるために、空間
マスクと呼ばれる反射光の透過フィルター18を用いる
技術やいくつかのある特定の反射角度に光検出器を配置
することにより、反射光分布の中から欠陥検出に必要な
成分、すなわち欠陥に起因する反射光を抽出する工夫が
なされている。2. Description of the Related Art A method and apparatus for projecting a laser beam on the surface of a material to be inspected and detecting a defect from the intensity and distribution change of the diffracted and scattered light have already been put to practical use in steel, aluminum, papermaking lines and the like. There is. This device is, for example, as shown in FIG.
The laser light 12 output from the laser light source 11 is condensed through the collimator lens 13 to a beam diameter optimum for defect inspection, and then projected by the polygon mirror 14 so as to scan in the width direction of the inspected material 15 to be inspected. The light reflected on the surface is measured by the photodetector 17 through the condenser lens 16, and the defect is detected from the intensity thereof. Here, in order to improve the detection sensitivity of a defect and the ability to identify a detected defect, a technique using a transmission filter 18 for reflected light called a spatial mask or arranging a photodetector at some specific reflection angle is used. The device for extracting the component necessary for defect detection, that is, the reflected light resulting from the defect, is made from the reflected light distribution.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
技術では欠陥に起因する反射光を精度よく検出するため
の光源波長、レーザ光の投射角度に対する条件が明らか
にされていないために、被検査材の正常部による回折散
乱光と欠陥に起因する反射光を区別できない場合があっ
た。特に、熱延鋼板のような表面の粗さが大きい被検査
材では、正常部からの回折散乱光の広がりが大きく、こ
の中に欠陥に起因する反射光が埋もれてしまう結果にな
るために、S/N比が劣化する。従って、従来装置の例
で多く見られるような波長633nmのHe−Neレー
ザを用いると、熱延鋼板のような被検査材の表面欠陥の
検出には適用できないのである。However, in the prior art, the conditions for the light source wavelength and the projection angle of the laser beam for accurately detecting the reflected light caused by the defect have not been clarified. In some cases, it was not possible to distinguish the diffracted and scattered light from the normal part of the above and the reflected light due to the defect. In particular, in the material to be inspected having a large surface roughness such as a hot rolled steel sheet, the spread of the diffracted and scattered light from the normal portion is large, and the result is that the reflected light due to the defect is buried in this. The S / N ratio deteriorates. Therefore, if a He-Ne laser with a wavelength of 633 nm, which is often found in the examples of conventional apparatuses, is used, it cannot be applied to the detection of surface defects of a material to be inspected such as a hot rolled steel sheet.
【0004】本発明は、前記問題点を解決するために、
被検査材の表面の粗さに応じて投射するレーザ光源の設
定条件を明確にすることを目的とする。In order to solve the above problems, the present invention provides
The purpose is to clarify the setting conditions of the laser light source for projection according to the roughness of the surface of the material to be inspected.
【0005】[0005]
【課題を解決するための手段】本発明は、被検査材の表
面に光束を投射し、その回折散乱光を検出して被検査材
の表面欠陥を検出するに当り、被検査材の表面プロフィ
ルの高さ方向の標準偏差σを求め、投射する光束の波長
λ、光束の被検査材表面への投射角度θを次式に従って
設定し、測定することを特徴とする表面欠陥検査方法で
ある。According to the present invention, when a light beam is projected on the surface of a material to be inspected and the diffracted and scattered light is detected to detect a surface defect of the material to be inspected, the surface profile of the material to be inspected is detected. Is a standard deviation σ in the height direction, and the wavelength λ of the projected light beam and the projection angle θ of the light beam onto the surface of the material to be inspected are set and measured according to the following equations.
【0006】(σ×cosθ/λ) < 0.35 この方法は被検査材の表面が熱延鋼板の場合に好適に実
施することができ、また、光束が赤外レーザであると好
適である。本発明の装置は、上記方法の実施に好適に用
いられるものであって、波長λの光束を発射するレーザ
光源と、このレーザ光を、高速移動する被検査材の表面
に投射するポリゴンミラーと、被検査材からの反射光を
受光する受光器とを備え、被検査材の表面プロフィルの
高さ方向の標準偏差σに応じて、前記ポリゴンミラーと
被検査材表面との空間位置関係を次式に従うレーザ光投
射角度θを次式に従って設定したことを特徴とする表面
欠陥検査装置である。(Σ × cos θ / λ) <0.35 This method can be preferably carried out when the surface of the material to be inspected is a hot rolled steel sheet, and the light beam is preferably an infrared laser. . The apparatus of the present invention is preferably used for carrying out the above method, and includes a laser light source that emits a light flux of wavelength λ, and a polygon mirror that projects this laser light onto the surface of a material to be inspected that moves at high speed. , A light receiver for receiving reflected light from the material to be inspected, and the spatial positional relationship between the polygon mirror and the surface of the material to be inspected is determined according to the standard deviation σ in the height direction of the surface profile of the material to be inspected. The surface defect inspection apparatus is characterized in that the laser beam projection angle θ according to the equation is set according to the following equation.
【0007】cosθ < 0.35×(λ/σ) ただし、 θ:投射角度(被検査材表面の鉛直線からの傾き角度)
(度) λ:波長(μm) σ:被検査材の表面プロフィルの高さ方向の標準偏差
(μm)Cos θ <0.35 × (λ / σ) where θ: projection angle (angle of inclination from the vertical line of the surface of the material to be inspected)
(Degree) λ: wavelength (μm) σ: standard deviation (μm) in the height direction of the surface profile of the material to be inspected
【0008】[0008]
【作用】光の回折現象を用いて表面の粗さを測定する方
法は、回折散乱光が被測定表面の微細形状に関する情報
を含んでいることが理論的にも、実験的にも確認されて
いるために、既に多くの技術が公開されている。本発明
者らは、この表面粗さ測定の基本技術を表面欠陥の検
出、特に熱延鋼板のインプロセス欠陥検出への応用を試
みた。具体的には、被検査材の正常部からの回折散乱光
と欠陥部からの回折散乱光が、十分なS/N比を有する
条件について調べた。[Function] The method of measuring the surface roughness using the light diffraction phenomenon has been confirmed theoretically and experimentally that the diffracted and scattered light contains information on the fine shape of the surface to be measured. Therefore, many technologies have already been published. The present inventors have tried to apply this basic technique of surface roughness measurement to the detection of surface defects, particularly to the in-process defect detection of hot-rolled steel sheet. Specifically, the conditions under which the diffracted and scattered light from the normal portion and the diffracted and scattered light from the defective portion of the inspection material have a sufficient S / N ratio were examined.
【0009】被検査材の表面の粗さの程度を示す値とし
て、表面プロフィルの高さ方向の標準偏差σを用いるこ
ととした。図2に示すように波長λのレーザ光2が入射
角度θで粗さσを有する被検査材15の表面に投射され
ると、表面の微小な凹凸によって回折散乱光21が生じ
る。図3は標準偏差σの異なる鋼板サンプルに対する回
折散乱光の測定結果である。図3で明らかなように標準
偏差σの大きな鋼板では回折光の散乱が大きく、もはや
ピーク強度を認めることも難しくなっている。本発明者
らは、回折散乱光のピーク強度が明瞭に検出できる条件
について検討を加えた。ここで、ピーク強度が明瞭に検
出できるか否かを判断するために、散乱光分布の尖度を
評価パラメータとして用いた尖度γはThe standard deviation σ in the height direction of the surface profile is used as a value indicating the degree of roughness of the surface of the material to be inspected. As shown in FIG. 2, when the laser light 2 having the wavelength λ is projected on the surface of the material 15 to be inspected having the roughness σ at the incident angle θ, the diffracted scattered light 21 is generated due to the minute irregularities on the surface. FIG. 3 shows the measurement results of the diffracted and scattered light with respect to steel sheet samples having different standard deviations σ. As is clear from FIG. 3, in a steel sheet having a large standard deviation σ, the scattered diffracted light is large, and it is no longer possible to recognize the peak intensity. The present inventors have examined conditions under which the peak intensity of diffracted and scattered light can be clearly detected. Here, in order to determine whether or not the peak intensity can be clearly detected, the kurtosis γ using the kurtosis of the scattered light distribution as an evaluation parameter is
【0010】[0010]
【数1】 [Equation 1]
【0011】によって計算される値であり、この値が0
の場合は分布曲線が正規分布に従うものであり、大きく
なるほど分布曲線が鋭いピークを有し、小さくなるほど
分布が滑らかになることを示すものである。図4は被検
査材表面の高さ方向の標準偏差σが異なる鋼板サンプル
に対して入射角度θ一定の条件で光源のレーザ波長λを
変化させた場合の尖度、図5は光源のレーザ波長λ一定
の条件で入射角度θを変化させた場合の尖度をそれぞれ
実験により求めた結果である。図より明らかなように、
一定投射角度の下ではレーザ波長λが長いほど、また、
一定レーザ波長の下では入射角度θが大きいほど、尖度
γが大きく、ピーク強度を明瞭に観察できる範囲が広
い。そこで、このような現象を定量的に評価するため
に、 パラメータα=σ×cosθ/λ を導入した。このパラメータは被検査材の表面粗さとレ
ーザ波長、入射角度を含んだパラメータであり、この値
が小さいほどピーク強度が明瞭に検出できることを示す
ものである。図4、図5に示した実験データを用いて、
パラメータαと尖度γとの関係を調べた結果を図6に示
す。図6から明らかなように、パラメータαと尖度γの
間には反比例関係が成立ことが分る。本発明者らはこの
関係を記述するものとして、次のような実験式を得た。Is a value calculated by
In the case of, the distribution curve follows a normal distribution, the larger the distribution curve has a sharper peak, and the smaller the distribution curve is, the smoother the distribution becomes. FIG. 4 shows the kurtosis when the laser wavelength λ of the light source is changed under the condition that the incident angle θ is constant with respect to the steel plate samples having different standard deviations σ in the height direction of the material to be inspected, and FIG. 5 is the laser wavelength of the light source. These are the results of experimentally determining the kurtosis when the incident angle θ was changed under the condition that λ was constant. As is clear from the figure,
At a constant projection angle, the longer the laser wavelength λ,
Under a constant laser wavelength, the larger the incident angle θ, the larger the kurtosis γ, and the wider the range in which the peak intensity can be clearly observed. Therefore, in order to quantitatively evaluate such a phenomenon, the parameter α = σ × cos θ / λ 2 was introduced. This parameter is a parameter that includes the surface roughness of the material to be inspected, the laser wavelength, and the incident angle, and the smaller this value is, the more clearly the peak intensity can be detected. Using the experimental data shown in FIGS. 4 and 5,
FIG. 6 shows the result of examining the relationship between the parameter α and the kurtosis γ. As is clear from FIG. 6, it can be seen that an inverse proportional relationship is established between the parameter α and the kurtosis γ. The present inventors obtained the following empirical formula as a description of this relationship.
【0012】 γ = (1/1.5α)−1.9 …(2) 欠陥検出に必要なピーク観察の条件として尖度γ=0、
すなわち散乱光分布が正規分布に従うことを選ぶと、第
2式よりα<0.35が必要である。従って、(σ×c
osθ/λ)<0.35を満たすように光学条件を設定
すれば、回折散乱光のピーク強度を明瞭に検出すること
が可能である。Γ = (1 / 1.5α) -1.9 (2) As a condition of peak observation necessary for defect detection, kurtosis γ = 0,
That is, if it is selected that the scattered light distribution follows a normal distribution, α <0.35 is required from the second equation. Therefore, (σ × c
If the optical conditions are set so as to satisfy osθ / λ) <0.35, it is possible to clearly detect the peak intensity of the diffracted and scattered light.
【0013】さらに、熱延鋼板の製造ラインにおいて最
も問題となる欠陥は、例えば圧延ロールに異物が付着し
たことで発生する飛込み疵のような表面に凹凸が発生す
るものであるから、正常部の粗さのオーダに比較して疵
が明らかに大きな形状を有している。従って、このよう
な欠陥によって起因する反射光は、もはや光の回折現象
によってその散乱強度、分布が決定するのではなく、欠
陥の幾何的な形状によって決まるものであり、散乱が非
常に大きな反射となる。このため、熱延鋼板の正常部か
らの回折散乱光があまりに広がりすぎると、欠陥に起因
する反射光の変化を検出することが不可能になり、欠陥
検出が行えないのである。Further, the most problematic defect in the hot-rolled steel sheet production line is that irregularities are generated on the surface, such as blow-in flaws caused by foreign matter adhering to the rolling roll. The flaw has a distinctly larger shape than the roughness order. Therefore, the reflected light caused by such a defect is determined by the geometrical shape of the defect, rather than the scattering intensity and distribution thereof being determined by the diffraction phenomenon of light, and the scattering is very large. Become. Therefore, if the diffracted and scattered light from the normal portion of the hot-rolled steel sheet spreads too much, it becomes impossible to detect the change in the reflected light due to the defect, and the defect cannot be detected.
【0014】また、熱延鋼板の場合、表面プロフィルの
高さ方向の標準偏差σが1μmを越えるものが多い。そ
のため、前期条件に従えば、赤外レーザを用いて欠陥検
出を行うことが必要になるのである。In the case of hot-rolled steel sheets, the standard deviation σ of the surface profile in the height direction often exceeds 1 μm. Therefore, according to the conditions of the previous term, it is necessary to detect defects using an infrared laser.
【0015】[0015]
【実施例】本発明による実施例を熱延鋼板に適用した結
果を説明する。図1は本発明による熱延鋼板のインプロ
セス表面欠陥検査装置の一例であり、光源として波長
3.39μmの赤外He−Neレーザを用いた熱延鋼板
用の欠陥検出装置である。EXAMPLES The results of applying examples according to the present invention to hot-rolled steel sheets will be described. FIG. 1 is an example of an in-process surface defect inspection apparatus for hot-rolled steel sheet according to the present invention, which is a defect detection apparatus for hot-rolled steel sheet using an infrared He—Ne laser having a wavelength of 3.39 μm as a light source.
【0016】図において、赤外He−Neレーザ1から
発せられた波長λ=3.39μmの赤外レーザビーム2
は、コリメータレンズ3を経てビーム径が所定の大きさ
に調節された後、ポリゴンミラー4によつて熱延鋼板5
の板幅方向に連続的に走査される。反射光は集光レンズ
6によって受光器7に導かれ、その強度、分布が電気信
号に変換される。信号処理装置8はこの電気信号をリア
ルタイムで処理し、検出結果を出力装置9から出力す
る。熱延鋼板5によって反射された赤外波長の回折散乱
光は、そのピーク強度が容易に検出できるような分布を
有するので、例えば、ロールマークと呼ばれる凹凸欠陥
が走査赤外光を通過した時には散乱が非常に大きな反射
を発生するから、欠陥検出の感度が向上する。In the figure, an infrared laser beam 2 having a wavelength λ = 3.39 μm emitted from an infrared He-Ne laser 1 is shown.
After the beam diameter is adjusted to a predetermined value through the collimator lens 3, the hot rolled steel sheet 5 is formed by the polygon mirror 4.
Are continuously scanned in the plate width direction. The reflected light is guided to the light receiver 7 by the condenser lens 6, and its intensity and distribution are converted into an electric signal. The signal processing device 8 processes this electric signal in real time, and outputs the detection result from the output device 9. The diffracted and scattered light of the infrared wavelength reflected by the hot-rolled steel plate 5 has a distribution such that its peak intensity can be easily detected, and therefore, for example, when irregularities called roll marks pass through the scanning infrared light, they are scattered. Generate a very large reflection, which improves the sensitivity of defect detection.
【0017】図7は、σ=1.1±1.0μmの熱延鋼
板をサンプルとして正常部と欠陥部の反射光分布を測定
した結果である。図7の例では波長3.39μmの赤外
He−Neレーザを入射角度θ=30度にて投射した結
果であり、正常部ではパラメータα≒0.28である。
図で明らかなように、正常部と欠陥部では反射光に著し
い差があり、検出感度の高い表面欠陥検査を行うことが
できる。FIG. 7 shows the results of measuring the reflected light distributions of the normal part and the defective part using a hot-rolled steel sheet with σ = 1.1 ± 1.0 μm as a sample. In the example of FIG. 7, the result is obtained by projecting an infrared He—Ne laser having a wavelength of 3.39 μm at an incident angle θ = 30 degrees, and the parameter α≈0.28 in the normal part.
As is clear from the figure, there is a significant difference in the reflected light between the normal portion and the defective portion, and surface defect inspection with high detection sensitivity can be performed.
【0018】[0018]
【発明の効果】本発明によれば、被検査材の表面粗さと
投射する光束の波長、投射角度の最適条件を明確にした
ので、被検査材の表面粗さが大きい場合でも欠陥検出の
感度を高めることができる。特に、熱延鋼板に対して赤
外レーザ光を用いることにより、大量不良品発生の原因
となる凹凸欠陥をインプロセスで検出することが可能と
なる。According to the present invention, since the optimum conditions of the surface roughness of the material to be inspected, the wavelength of the light beam to be projected, and the projection angle are clarified, the sensitivity of defect detection even when the surface roughness of the material to be inspected is large. Can be increased. In particular, by using infrared laser light on the hot-rolled steel sheet, it becomes possible to detect in-process irregularity defects that cause a large number of defective products.
【図1】本発明による一実施例の構成を示す概要図であ
る。FIG. 1 is a schematic diagram showing the configuration of an embodiment according to the present invention.
【図2】レーザ光の回折散乱光の説明図である。FIG. 2 is an explanatory diagram of diffracted and scattered light of laser light.
【図3】鋼板からの反射光分布の測定結果例を示すグラ
フである。FIG. 3 is a graph showing an example of measurement results of reflected light distribution from a steel plate.
【図4】投射角度θ一定の条件で光源のレーザ波長λを
変化させた場合の回折散乱光の分布の尖度を示すグラフ
である。FIG. 4 is a graph showing the kurtosis of the distribution of diffracted and scattered light when the laser wavelength λ of the light source is changed under the condition that the projection angle θ is constant.
【図5】光源のレーザ波長λ一定の条件で投射角度θを
変化させた場合の回折散乱光の分布の尖度を示すグラフ
である。FIG. 5 is a graph showing the kurtosis of the distribution of the diffracted and scattered light when the projection angle θ is changed under the condition that the laser wavelength λ of the light source is constant.
【図6】パラメータαと尖度との関係を示すグラフであ
る。FIG. 6 is a graph showing the relationship between parameter α and kurtosis.
【図7】反射角度と反射強度の測定結果を示すグラフで
ある。FIG. 7 is a graph showing measurement results of reflection angle and reflection intensity.
【図8】従来の欠陥検出装置の概略説明図である。FIG. 8 is a schematic explanatory diagram of a conventional defect detection device.
1 赤外レーザ 2 赤外レー
ザビーム 3 コリメータレンズ 4 ポリゴン
ミラー 5 熱延鋼板 6 集光レン
ズ 7 受光器 8 信号処理
装置 9 出力装置 11 レーザ
光源 12 レーザ光 13 コリメ
ータレンズ 14 ポリゴンミラー 15 被検査
材 16 集光レンズ 17 光検出
器 18 透過フィルター 19 信号処
理装置 20 出力装置1 Infrared Laser 2 Infrared Laser Beam 3 Collimator Lens 4 Polygon Mirror 5 Hot Rolled Steel Plate 6 Condensing Lens 7 Light Receiver 8 Signal Processor 9 Output Device 11 Laser Light Source 12 Laser Light 13 Collimator Lens 14 Polygon Mirror 15 Inspected Material 16 Condensing lens 17 Photodetector 18 Transmission filter 19 Signal processing device 20 Output device
フロントページの続き (72)発明者 横尾 雅一 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 丸山 智 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 守屋 進 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内Front page continuation (72) Inventor Masakazu Yokoo 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Satoshi Maruyama 1 Kawasaki-cho, Chuo-ku Chiba City Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Susumu Moriya 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Technical Research Division
Claims (4)
折散乱光を検出して被検査材の表面欠陥を検出するに当
り、被検査材の表面プロフィルの高さ方向の標準偏差σ
を求め、投射する光束の波長λ、光束の被検査材表面へ
の投射角度θを次式に従って設定し、測定することを特
徴とする表面欠陥検査方法。 (σ×cosθ/λ)< 0.351. A standard deviation σ in the height direction of a surface profile of a material to be inspected when a light beam is projected onto the surface of the material to be inspected and the diffracted and scattered light is detected to detect a surface defect of the material to be inspected.
Is obtained, and the wavelength λ of the projected light beam and the projection angle θ of the light beam on the surface of the material to be inspected are set and measured according to the following equations. (Σ × cos θ / λ) <0.35
特徴とする請求項1記載の表面欠陥検査方法。2. The surface defect inspection method according to claim 1, wherein the surface of the material to be inspected is a hot rolled steel sheet.
る請求項1記載の表面欠陥検査方法。3. The surface defect inspection method according to claim 1, wherein the light flux is an infrared laser.
高速移動する被検査材の表面にレーザ光を投射するポリ
ゴンミラーと、被検査材からの反射光を受光する受光器
とを備え、被検査材の表面プロフィルの高さ方向の標準
偏差σに応じて、前記ポリゴンミラーと被検査材表面と
の空間位置関係を次式に従うレーザ光投射角度θに一致
させて配設したことを特徴とする表面欠陥検査装置。 cosθ < 0.35×(λ/σ)4. A laser light source which emits a light flux of wavelength λ,
Equipped with a polygon mirror that projects laser light onto the surface of the inspected material that moves at high speed, and a light receiver that receives the reflected light from the inspected material, depending on the standard deviation σ in the height direction of the surface profile of the inspected material. The surface defect inspection apparatus is characterized in that the spatial positional relationship between the polygon mirror and the surface of the material to be inspected is matched with the laser beam projection angle θ according to the following equation. cos θ <0.35 × (λ / σ)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24659092A JPH0694642A (en) | 1992-09-16 | 1992-09-16 | Method and equipment for inspecting surface defect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24659092A JPH0694642A (en) | 1992-09-16 | 1992-09-16 | Method and equipment for inspecting surface defect |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0694642A true JPH0694642A (en) | 1994-04-08 |
Family
ID=17150684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24659092A Withdrawn JPH0694642A (en) | 1992-09-16 | 1992-09-16 | Method and equipment for inspecting surface defect |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0694642A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100403189B1 (en) * | 2000-08-04 | 2003-10-23 | 가부시키가이샤 니콘 | Apparatus for inspecting surface |
JP2005003691A (en) * | 1999-02-08 | 2005-01-06 | Jfe Steel Kk | Surface inspection apparatus |
JP2006208347A (en) * | 2004-02-25 | 2006-08-10 | Jfe Steel Kk | Surface defect detector, grinding device, surface defect detection method and surface defect detection program for reduction roll, and reduction roll grinding method |
JP2008157788A (en) * | 2006-12-25 | 2008-07-10 | Nippon Steel Corp | Surface inspection method and device |
JP2009080033A (en) * | 2007-09-26 | 2009-04-16 | Nippon Steel Corp | Surface inspection method and device |
JP2009092426A (en) * | 2007-10-04 | 2009-04-30 | Nippon Steel Corp | Surface inspection method and surface inspection device |
JP2010014547A (en) * | 2008-07-03 | 2010-01-21 | Sumitomo Heavy Ind Ltd | Surface-inspection method and mark-inspecting apparatus |
JP2010133967A (en) * | 1999-02-08 | 2010-06-17 | Jfe Steel Corp | Surface inspection apparatus |
JP2012047673A (en) * | 2010-08-30 | 2012-03-08 | Kobe Steel Ltd | Inspection device and inspection method |
-
1992
- 1992-09-16 JP JP24659092A patent/JPH0694642A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005003691A (en) * | 1999-02-08 | 2005-01-06 | Jfe Steel Kk | Surface inspection apparatus |
JP2010133967A (en) * | 1999-02-08 | 2010-06-17 | Jfe Steel Corp | Surface inspection apparatus |
JP4492275B2 (en) * | 1999-02-08 | 2010-06-30 | Jfeスチール株式会社 | Surface inspection device |
JP2011174942A (en) * | 1999-02-08 | 2011-09-08 | Jfe Steel Corp | Surface inspection apparatus |
KR100403189B1 (en) * | 2000-08-04 | 2003-10-23 | 가부시키가이샤 니콘 | Apparatus for inspecting surface |
JP2006208347A (en) * | 2004-02-25 | 2006-08-10 | Jfe Steel Kk | Surface defect detector, grinding device, surface defect detection method and surface defect detection program for reduction roll, and reduction roll grinding method |
JP2008157788A (en) * | 2006-12-25 | 2008-07-10 | Nippon Steel Corp | Surface inspection method and device |
JP2009080033A (en) * | 2007-09-26 | 2009-04-16 | Nippon Steel Corp | Surface inspection method and device |
JP2009092426A (en) * | 2007-10-04 | 2009-04-30 | Nippon Steel Corp | Surface inspection method and surface inspection device |
JP2010014547A (en) * | 2008-07-03 | 2010-01-21 | Sumitomo Heavy Ind Ltd | Surface-inspection method and mark-inspecting apparatus |
JP2012047673A (en) * | 2010-08-30 | 2012-03-08 | Kobe Steel Ltd | Inspection device and inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03267745A (en) | Surface property detecting method | |
US2947212A (en) | Method of detecting surface conditions of sheet metal | |
JP2007024674A (en) | Surface/surface layer inspection device and surface/surface layer inspection method | |
JPH0694642A (en) | Method and equipment for inspecting surface defect | |
JP3591160B2 (en) | Surface inspection equipment | |
JP2000298102A (en) | Surface inspecting device | |
JPH0518889A (en) | Method and device for inspecting foreign matter | |
JP2001124538A (en) | Method and device for detecting defect in surface of object | |
JP2004163129A (en) | Defect inspection method | |
JPH09178667A (en) | Inspection apparatus for surface | |
JP3275737B2 (en) | Surface inspection device and surface inspection method | |
JP2000314707A (en) | Device and method for inspecting surface | |
JPH07306161A (en) | Method for detecting segregation of metallic material | |
JP3570488B2 (en) | Measurement method of alloying degree of galvanized steel sheet using laser beam | |
JPH0228815B2 (en) | ||
JPH061168B2 (en) | Shape defect detection device | |
JPH09159621A (en) | Surface inspection device | |
JPH08122275A (en) | Surface flaw inspection device | |
JPH08220018A (en) | Method and apparatus for inspecting surface flaw | |
KR100226904B1 (en) | Detecting apparatus and method of surface fault of steel plate using laser | |
JP2002181723A (en) | Surface inspection apparatus | |
JPS63243850A (en) | Method for detecting sliver defect of rolled plate material | |
JP2698696B2 (en) | Surface flaw inspection method | |
JPH0252241A (en) | Surface defect inspection instrument | |
JP2698697B2 (en) | Surface flaw inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |