JPH0228815B2 - - Google Patents

Info

Publication number
JPH0228815B2
JPH0228815B2 JP55021558A JP2155880A JPH0228815B2 JP H0228815 B2 JPH0228815 B2 JP H0228815B2 JP 55021558 A JP55021558 A JP 55021558A JP 2155880 A JP2155880 A JP 2155880A JP H0228815 B2 JPH0228815 B2 JP H0228815B2
Authority
JP
Japan
Prior art keywords
light
magnetic disk
scattered light
photoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55021558A
Other languages
Japanese (ja)
Other versions
JPS56118646A (en
Inventor
Mitsuyoshi Koizumi
Nobuyuki Akyama
Yoshimasa Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2155880A priority Critical patent/JPS56118646A/en
Publication of JPS56118646A publication Critical patent/JPS56118646A/en
Publication of JPH0228815B2 publication Critical patent/JPH0228815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 本発明は磁気デイスク素材アルミ面等の金属表
面の傷を検査する傷検査装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flaw inspection device for inspecting flaws on a metal surface such as an aluminum surface of a magnetic disk material.

傷を検査する方法としては、いろいろな方式の
ものが提案されているが、その1つに乱反射光集
光方式がある。これは第1図に示すように、レー
ザ発振器1からのレーザ光はミラー2、レンズ3
を経て、試料面4を照射する。試料面4が平滑平
面である時、レーザ光は正反射し、ミラー5の中
心の通過部を通り、レーザ発振器1に戻る。
Various methods have been proposed as methods for inspecting scratches, one of which is a diffused reflection light condensing method. As shown in Fig. 1, the laser beam from the laser oscillator 1 passes through the mirror 2 and the lens 3.
After that, the sample surface 4 is irradiated. When the sample surface 4 is a smooth plane, the laser beam is specularly reflected, passes through the center passage of the mirror 5, and returns to the laser oscillator 1.

試料面4に凹凸がある場合には、乱反射が生
じ、レンズ3で集光され、ミラー5を経て光電管
6に入射する。試料面4が、カツタマークを有す
る金属等の表面の場合には、第2図に示すように
乱反射光はカツタマークに直交する方向に散る。
この乱反射光強度分布は極座標表示したのが第3
図である。
When the sample surface 4 has irregularities, diffused reflection occurs, the light is focused by the lens 3, passes through the mirror 5, and enters the phototube 6. When the sample surface 4 is a surface of metal or the like having a cutter mark, the diffusely reflected light is scattered in a direction perpendicular to the cutter mark, as shown in FIG.
This diffusely reflected light intensity distribution is expressed in polar coordinates as shown in the third figure.
It is a diagram.

例えば、カツタマークが研削の場合には、乱反
射光の主方向成分θは1゜以内である。第4図Aに
示すごとく、試料面4に圧痕などの孤立傷がある
場合で、同図Bのごとく、照射径が孤立傷よりも
大きい時には、第5図Aに示すような、方向性の
少ない孤立傷乱反射光強度分布が得られる。第5
図において、Bはカツタマークからの乱反射光強
度分布である。
For example, when the cutter mark is ground, the main direction component θ of the diffusely reflected light is within 1°. As shown in Fig. 4A, when there is an isolated flaw such as an indentation on the sample surface 4, and as shown in Fig. 5B, when the irradiation diameter is larger than the isolated flaw, the directionality as shown in Fig. 5A A less isolated scattered reflected light intensity distribution can be obtained. Fifth
In the figure, B is the intensity distribution of diffusely reflected light from the cutter mark.

ところで、光電管6に入射する乱反射光は、カ
ツタマーク乱反射光と孤立傷乱反射光が加わるた
め、第6図に示すような光電管電圧出力となる。
Incidentally, since the diffusely reflected light incident on the phototube 6 includes the cutter mark diffusely reflected light and the isolated scattered reflected light, the phototube voltage output is as shown in FIG.

また、第7図A,Bに示すような、試料面4に
すり傷などの線型傷がある場合は、傷と直角方向
に第8図のごとく、方向性が強い線型傷乱反射光
強度分布Aが得られる。第8図においてBはカツ
タマークからの乱反射光強度分布、Cは線型傷の
方向である。この場合にも、光電管電圧出力は第
6図と同様となる。しかし、これらの方法で得ら
れる光電管電圧出力は、常にカツタマークの乱反
射光強度分だけオフセツトしているための、傷の
検出感度が極めて低い。これは、光電管の感度特
性が、光が明るいと出力は飽和し、暗い部分で感
度に線形性を有するためである。
In addition, if there are linear scratches such as scratches on the sample surface 4 as shown in FIGS. 7A and 7B, a linear scattered reflected light intensity distribution A with strong directionality is observed in the direction perpendicular to the scratch as shown in FIG. is obtained. In FIG. 8, B is the intensity distribution of diffusely reflected light from the cutter mark, and C is the direction of the linear scratch. In this case as well, the phototube voltage output is similar to that shown in FIG. However, since the phototube voltage output obtained by these methods is always offset by the intensity of the diffusely reflected light from the cutter mark, the sensitivity for detecting flaws is extremely low. This is because the sensitivity characteristic of the phototube is that when the light is bright, the output is saturated, and the sensitivity has linearity in dark areas.

一例を挙げると、レンズのN.A0.4、試料面に
アルミ研削(0.5S)、レーザ照射径50μmを用いた
場合、直径10μm(深さ1μm)の孤立傷の検出が
限界であつた。また、孤立傷、線型傷の区別は全
く出来なかつた。
For example, when using a lens with N.A. of 0.4, aluminum grinding (0.5S) on the sample surface, and a laser irradiation diameter of 50 μm, the detection limit was an isolated flaw with a diameter of 10 μm (depth of 1 μm). Furthermore, it was not possible to distinguish between isolated scratches and linear scratches.

本発明は上記した従来の欠点に鑑み発明された
もので、その目的とするところは、研削加工され
た磁気デイスク用について、カツタマークを傷と
検出するとなく、かつ不良品である線形傷や孤立
傷を雑な画像処理をすることなく、簡単に検出可
能な磁気デイスク用素材の傷検査装置を提供する
にある。
The present invention was devised in view of the above-mentioned conventional drawbacks, and its purpose is to prevent cutter marks from being detected as flaws in ground magnetic disks, and to detect linear flaws and isolated flaws that are defective products. To provide a flaw inspection device for magnetic disk materials that can easily detect flaws in magnetic disk materials without performing complicated image processing.

即ち、本発明は、上記目的を達成するために、
研削加工された磁気デイスク用素材の傷検査装置
において、光源と、該光源から照射された光を上
記磁気デイスク用円板の面に対して垂直に集光照
射する対物レンズと、上記円板の表面から反射す
る散乱光の内、研削によつて長手方向を周方向に
向けて多数付されたカツタマークの長手方向に略
直角方向に発生する散乱光を遮光する遮光手段
ち、該遮光手段で遮光されない散乱光を受光して
信号に変換する光電変換素子と、該光電変換素子
から得られる信号の広がりに基いて線形傷及び孤
立傷を検出する検出回路とを備えたことを特徴と
する磁気デイスク用素材の傷検査装置である。ま
た、本発明は、研削加工された磁気デイスク用素
材の傷検査装置において、光源と、該光源から照
射された光を上記磁気デイスク用円板の面に対し
て垂直に集光照射する対物レンズと、上記円板の
表面から反射する散乱光の内、研削によつて長手
方向を周方向に向けて多数付されたカツタマーク
の長手方向に略直角方向に発生する散乱光を逃
し、それ以外の散乱光を反射させる光反射手段
と、該光反射手段で反射された散乱光を受光して
信号に変換する光電変換素子と、該光電変換素子
から得られる信号の広がりに基いて線形傷及び孤
立傷を検出する検出回路とを備えたことを特徴と
する磁気デイスク用素材の傷検査装置である。
That is, in order to achieve the above object, the present invention has the following features:
A flaw inspection device for ground magnetic disk material includes a light source, an objective lens for condensing and irradiating light emitted from the light source perpendicularly to the surface of the magnetic disk disk, and a surface of the disk. Among the scattered light reflected from the surface, a light shielding means for shielding the scattered light generated in a direction substantially perpendicular to the longitudinal direction of the cutter marks formed in large numbers with the longitudinal direction facing the circumferential direction by grinding; A magnetic disk characterized in that it is equipped with a photoelectric conversion element that receives scattered light that is not scattered and converts it into a signal, and a detection circuit that detects linear flaws and isolated flaws based on the spread of the signal obtained from the photoelectric conversion element. This is a flaw inspection device for used materials. The present invention also provides a flaw inspection device for a ground magnetic disk material, which includes a light source and an objective lens that condenses and irradiates the light emitted from the light source perpendicularly to the surface of the magnetic disk disk. Among the scattered light reflected from the surface of the disc, the scattered light generated in a direction approximately perpendicular to the longitudinal direction of the cutter marks, which are formed in large numbers by grinding with the longitudinal direction facing the circumferential direction, is missed, and the other A light reflecting means that reflects scattered light; a photoelectric conversion element that receives the scattered light reflected by the light reflecting means and converts it into a signal; and linear flaws and isolation based on the spread of the signal obtained from the photoelectric conversion element. The present invention is a flaw inspection device for magnetic disk materials, characterized by comprising a detection circuit for detecting flaws.

以下本発明の実施例を第9図乃至第14図に基
いて具体的に説明する。即ち、研削加工された磁
気デイスク用素材の傷検査装置において、磁気デ
イスク用素材土に研削によつて長手方向を周方向
に向けて多数付されたカツタマークによる乱反射
光の影響を避けて磁気デイスク用素材上に存在す
る線形傷及び孤立傷を弁別して検査をする本発明
の実施例を説明する。
Embodiments of the present invention will be specifically described below with reference to FIGS. 9 to 14. That is, in a flaw inspection device for ground magnetic disk material, the magnetic disk material is inspected by avoiding the influence of diffusely reflected light from the many cutter marks made by grinding the magnetic disk material with the longitudinal direction facing the circumferential direction. An embodiment of the present invention will be described in which linear flaws and isolated flaws existing on a material are discriminated and inspected.

まず、本発明の第一の実施例を第9図乃至第1
1図に基いて説明する。即ち第9図に示すよう
に、磁気デイスク用素材4を回転走査させなが
ら、レーザ発振器1から出力されたレーザ光を、
ミラー2で反射させ、ミラー5の中央に形成され
た穴を通り、レンズ(対物レンズ)3により、研
削によつて長手方向を周方向に向けてカツタマー
クを多数付された磁気デイスク用素材4上に対し
てほぼ垂直に集光照射される。回転走査された磁
気デイスク用素材4の表面で正反射した光はレン
ズ3を通してミラー5の中央に形成された穴から
逃げ、磁気デイスク用素材4の表面で乱反射した
散乱光はレンズ3を通して集光され、ミラー5で
反射する。そして遮光板7は、磁気デイスク用素
材4上に研削によつて長手方向を周方向に向けて
多数付されたカツタマークによる乱反射光主成分
を遮光し、傷による乱反射光のみが光電管6に入
射する。従つてカツタマークからの乱反射光は遮
光されるのでカツタマークによる乱反射光の影響
を避けることができ、更に、磁気デイスク用素材
4の回転走査に伴つて光電管6から出力される信
号の広がりにより、磁気デイスク用素材上に存在
する線形傷及び孤立傷を弁別して検査をすること
ができる。
First, the first embodiment of the present invention is shown in FIGS. 9 to 1.
This will be explained based on Figure 1. That is, as shown in FIG. 9, while rotating and scanning the magnetic disk material 4, the laser beam output from the laser oscillator 1 is
It is reflected by the mirror 2, passes through a hole formed in the center of the mirror 5, and is passed through the lens (objective lens) 3 onto the magnetic disk material 4, which has been grinded with many cutter marks with its longitudinal direction facing the circumferential direction. The beam is focused and irradiated almost perpendicularly to the object. The light that is specularly reflected on the surface of the magnetic disk material 4 that has been rotated and scanned passes through the lens 3 and escapes from the hole formed in the center of the mirror 5, and the scattered light that is diffusely reflected on the surface of the magnetic disk material 4 is focused through the lens 3. and is reflected by mirror 5. The light shielding plate 7 blocks the main component of the diffusely reflected light caused by the many cutter marks that are formed on the magnetic disk material 4 by grinding so that the longitudinal direction faces the circumferential direction, and only the diffusely reflected light caused by the scratches enters the phototube 6. . Therefore, since the diffusely reflected light from the cutter mark is blocked, the influence of the diffusely reflected light by the cutter mark can be avoided.Furthermore, the spread of the signal output from the phototube 6 as the magnetic disk material 4 rotates and scans the magnetic disk. Linear flaws and isolated flaws present on the material can be discriminated and inspected.

ところで、第9図に示す遮光板7に代わりに、
ミラー5として第10図に示すような一部分を黒
く塗つた遮光板を兼ねたミラー5aを用いること
も出来る。
By the way, instead of the light shielding plate 7 shown in FIG.
As the mirror 5, it is also possible to use a mirror 5a which doubles as a light shielding plate and has a portion painted black as shown in FIG.

第11図Aのように、レンズ3の下に遮光部を
有する遮光板8を設置してもよい。
As shown in FIG. 11A, a light shielding plate 8 having a light shielding portion may be installed under the lens 3.

第11図Bは遮光板8の一例を示している。 FIG. 11B shows an example of the light shielding plate 8. As shown in FIG.

いずれの場合も、カツタマーク乱反射光の主成
分は遮光されるので、第6図に示すような光電管
出力のオフセツトは少なくなり、高感度に線形傷
及び孤立傷を検出でき、更に第5図に示すように
線形傷と孤立傷とでは異なる広がりを有すること
になり、光電管6から出力される信号の広がりに
より線形傷及び孤立傷を弁別して検査をすること
ができる。
In either case, the main component of the cutter mark diffusely reflected light is blocked, so the offset of the phototube output as shown in Fig. 6 is reduced, and linear flaws and isolated flaws can be detected with high sensitivity, as shown in Fig. 5. As such, linear flaws and isolated flaws have different spreads, and inspection can be performed by distinguishing between linear flaws and isolated flaws based on the spread of the signal output from the phototube 6.

次に本発明の第二の実施例を第12図乃至第1
4図に基いて説明する。即ち第13図に示すよう
に、加工時の切子のまき込み等によりカツタマー
クに平行な傷が発生する。この場合には第12図
Aに示すようにカツタマークに平行な傷を検出す
る光電管6aを設ける。この時、第12図Bに一
例を示すような通過部を持つミラー5aの通過部
を経て、カツタマークとカツタマークに平行な傷
による乱反射光が光電管6aに達する。カツタマ
ークに平行な傷の光電管6a電圧出力例を第14
図に示す。第12図の例では、孤立、線型傷は光
電管6により、カツタマークに平行な傷は光電管
6aにより各々区別され検出出来る利点を持つ。
Next, the second embodiment of the present invention is shown in FIGS. 12 to 1.
This will be explained based on Figure 4. That is, as shown in FIG. 13, scratches parallel to the cutter mark are generated due to cutting of the cutter during processing. In this case, as shown in FIG. 12A, a phototube 6a is provided to detect scratches parallel to the cutter mark. At this time, the diffusely reflected light due to the cut mark and scratches parallel to the cut mark reaches the phototube 6a through the pass part of the mirror 5a, an example of which is shown in FIG. 12B. The 14th example of the voltage output of a phototube 6a with scratches parallel to the cutter mark
As shown in the figure. The example shown in FIG. 12 has the advantage that isolated and linear flaws can be distinguished and detected by the phototube 6, and flaws parallel to the cutter mark can be distinguished and detected by the phototube 6a.

以下本発明に直接関係しない磁気デイスク用素
材の傷検査装置の例を第15図乃至第22図に基
いて説明する。第16図は第15図X−X矢視図
で、複数の光電管61〜6eは環状に並び、各々
は試料面4に向いている。ここでは周囲方向にす
き間が生じ無いように二段に並んでいる。光電管
61と6mはカツタマークの乱反射光主成分の方
向に向いている。第16図に示すような線型傷の
乱反射光は光電管65,6nの方向となる。各々
の光電管出力を第17図に示す。ここでは光電管
65と6nの出力により極めて高感度に線型傷が
検出出来る。これはカツタマークの乱反射光非主
成分が61,6mを除く各光電管に分散して入射
する為である。孤立傷の場合には、乱反射光方向
性が少ないため、光電管61,6m以外の光電管
は第18図のごとく同程度の出力となる。
An example of an apparatus for inspecting scratches on magnetic disk materials that is not directly related to the present invention will be described below with reference to FIGS. 15 to 22. FIG. 16 is a view taken along the line XX in FIG. 15, in which a plurality of phototubes 61 to 6e are arranged in a ring shape, each facing the sample surface 4. Here, they are arranged in two stages so that there are no gaps in the circumferential direction. The phototubes 61 and 6m are oriented in the direction of the main component of the diffusely reflected light of the cutter mark. The diffusely reflected light from the linear scratches as shown in FIG. 16 is directed toward the phototubes 65 and 6n. The output of each phototube is shown in FIG. Here, linear flaws can be detected with extremely high sensitivity using the outputs of the phototubes 65 and 6n. This is because the non-principal component of the diffusely reflected light from the cutter mark is dispersed and incident on each phototube except for 61 and 6m. In the case of an isolated flaw, since the directionality of diffusely reflected light is small, the outputs of the phototubes other than the phototubes 61 and 6m are about the same as shown in FIG. 18.

カツタマークに平行な傷の場合には、光電管6
1,6mの出力のみに乱反射光が入射するので、
第19図に示す出力が得られる。
In the case of scratches parallel to the cutter mark, phototube 6
Since diffusely reflected light enters only the output of 1.6 m,
The output shown in FIG. 19 is obtained.

カツタマークに平行な傷と線型傷は方向性を有
するので、傷に直交する方向に同程度の強度の乱
反射光を生じるため、対向位置の光電管(例えば
65と6n)の出力は加算して処理出来るので、
回路の簡素化が図れる。第20図にこの方法を用
いた傷検査装置のブロツク図を示す。光電管61
と6mの出力はアナログ加算回路91で加算さ
れ、カツタマークに平行な傷の検出回路10で量
子化処理されて、表示回路12に至る。その他の
光電管出力は対向する位置の出力がアナログ加算
回路92〜9sで加算され、孤立傷と線型傷の検
出回路11で量子化処理が行なわれる。検出回路
11では隣り合う定められた数以下の検出器出力
が、61,6m以外の他の出力より、有意差をも
つて大きい場合には線型傷、有意差を持た無い場
合には孤立傷と区別する。
Since scratches parallel to the cutter mark and linear scratches have directionality, they produce diffusely reflected light of the same intensity in the direction perpendicular to the scratches, so the outputs of phototubes at opposing positions (for example, 65 and 6n) can be processed by adding them. So,
The circuit can be simplified. FIG. 20 shows a block diagram of a flaw inspection device using this method. Phototube 61
The outputs of 6m and 6m are added by an analog addition circuit 91, quantized by a flaw detection circuit 10 parallel to the cutter mark, and then sent to a display circuit 12. Outputs from other phototubes at opposing positions are added by analog adder circuits 92 to 9s, and quantization processing is performed by an isolated flaw and linear flaw detection circuit 11. In the detection circuit 11, if adjacent detector outputs of a predetermined number or less are significantly larger than other outputs other than 61, 6m, it is considered a linear flaw, and if there is no significant difference, it is called an isolated flaw. distinguish.

第21図に示す例は、複数の光フアイバ13を
環状に設置し、対向する各フアイバの一方の端を
センサアレイ14上に固定するのでこの場合に
は、簡単な構成で、センサアレイの自己走査によ
り、検出信号が得られる。
In the example shown in FIG. 21, a plurality of optical fibers 13 are installed in a ring shape, and one end of each opposing fiber is fixed on the sensor array 14. A detection signal is obtained by scanning.

対向するフアイバの端を第22図のごとく結合
する方法も可能である。上記実施例の説明は、カ
ツタマークのある試料面について説明したが、本
例はカツタマークのない平滑な表面の傷検査装置
として用いられることは当然である。
It is also possible to join the opposite ends of the fibers as shown in FIG. Although the above embodiment has been described with respect to a sample surface having cutter marks, it is natural that this example can be used as a flaw inspection device for a smooth surface without cutter marks.

このように、本発明によれば、研削加工された
磁気デイスク用素材について、カツタマークを傷
と検出することなく、かつ不良品である線形傷や
孤立傷を複雑な画像処理をすることなく、簡単に
検出できるので、高速な検査が可能となる。
As described above, according to the present invention, it is possible to easily detect cutter marks on ground magnetic disk materials without detecting them as scratches, and without performing complicated image processing to detect linear scratches or isolated scratches that are defective products. Since it can be detected quickly, high-speed inspection is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の乱反射集光方式傷検査装置。第
2図はカツタマークからの乱反射光の一例を示す
図、第3図はカツタマークからの乱反射光強度分
布の極座標表示を示す図、第4図は孤立傷からの
乱反射光を示す図、第5図は孤立傷からの乱反射
光強度分布の極座標表面を示す図、第6図は孤立
傷による光電管電圧出力を示す図、第7図は線型
傷からの乱反射光を示す図、第8図は線型傷から
の乱反射光強度分布の極座標表示を示す図、第9
図は遮光板を用いた本発明の第一の実施例を示す
図、第10図は第9図に示すミラーに遮光板の機
能を持たせた実施例を示す図、第11図は第9図
に示す遮光板をレンズと磁気デイスク用素材との
間に置いた実施例を示した図、第12図は磁気デ
イスク用素材上に存在するカツタマークに平行な
傷をも検出する本発明の第2の実施例を示した
図、第13図はカツタマークに平行な傷を示した
図、第14図は第13図に示すようにカツタマー
クに平行な傷が存在したとき第12図に示す光電
管から出力される出力電圧波形を示す図、第15
図は本発明に直接関係しない例を示した図、第1
6図は第15図のX−X矢視図、第17図は線形
傷の場合第15図及び第16図に示す光電管から
出力される電圧波形を示す図、第18図は孤立傷
の場合第15図及び第16図に示す光電管から出
力される電圧波形を示す図、第19図はカツタマ
ークに平行な傷の場合第15図及び第16図に示
す光電管から出力される電圧波形を示す図、第2
0図は第15図及び第16図に示す光電管から出
力される信号について処理する回路を示すブロツ
ク図、第21図は第15図及び第16図に示す光
電管の代わりに用いられる光フアイバとセンサア
レイとを示した図、第22図は第21図に示す対
向する光フアイバの結合例を示す図である。 61〜6e……光電管、91,9s……アナロ
グ加算回路、10……カツタマークに平行な傷検
出回路、11……孤立、線型傷の検出回路、12
……表示回路、13……光フアイバ、14……セ
ンサアレイ。
Figure 1 shows a conventional diffuse reflection condensing flaw inspection device. Figure 2 shows an example of diffusely reflected light from a cutter mark, Figure 3 shows a polar coordinate representation of the intensity distribution of diffusely reflected light from a cutter mark, Figure 4 shows diffusely reflected light from an isolated scratch, and Figure 5 Figure 6 shows the polar coordinate surface of the intensity distribution of the diffusely reflected light from an isolated scratch, Figure 6 shows the phototube voltage output due to an isolated scratch, Figure 7 shows the diffusely reflected light from a linear scratch, and Figure 8 shows the linear scratch. FIG. 9 shows a polar coordinate representation of the intensity distribution of diffusely reflected light from
The figure shows a first embodiment of the present invention using a light-shielding plate, FIG. 10 shows an embodiment in which the mirror shown in FIG. 9 has the function of a light-shielding plate, and FIG. FIG. 12 is a diagram showing an embodiment in which the light-shielding plate shown in the figure is placed between the lens and the magnetic disk material, and FIG. FIG. 13 is a diagram showing a scratch parallel to the cutter mark, and FIG. 14 is a diagram showing the example of the cutter mark shown in FIG. Diagram showing the output voltage waveform to be output, No. 15
Figure 1 shows an example not directly related to the present invention.
Figure 6 is an X-X arrow view in Figure 15, Figure 17 is a diagram showing the voltage waveform output from the phototube shown in Figures 15 and 16 in the case of a linear flaw, and Figure 18 is a diagram in the case of an isolated flaw. Figures 15 and 16 show the voltage waveforms output from the phototubes, and Figure 19 shows the voltage waveforms output from the phototubes shown in Figures 15 and 16 in the case of scratches parallel to the cutter mark. , second
Figure 0 is a block diagram showing a circuit that processes signals output from the phototubes shown in Figures 15 and 16, and Figure 21 is an optical fiber and sensor used in place of the phototubes shown in Figures 15 and 16. FIG. 22 is a diagram showing an example of coupling the opposing optical fibers shown in FIG. 21. 61-6e...Phototube, 91,9s...Analog addition circuit, 10...Flaw detection circuit parallel to the cutter mark, 11...Isolated, linear flaw detection circuit, 12
... Display circuit, 13 ... Optical fiber, 14 ... Sensor array.

Claims (1)

【特許請求の範囲】 1 研削加工された磁気デイスク用素材の傷検査
装置において、光源と、該光源から照射された光
を上記磁気デイスク用円板の面に対して垂直に集
光照明する対物レンズと、上記円板の表面から反
射する散乱光の内、研削によつて長手方向を周方
向に向けて多数付されたカツタマークの長手方向
に略直角方向に発生する散乱光を遮光する遮光手
段と、該遮光手段で遮光されない散乱光を受光し
て信号に変換する光電変換素子と、該光電変換素
子から得られる信号の広がりに基いて線形傷及び
孤立傷を検出する検出回路とを備えたことを特徴
とする磁気デイスク用素材の傷検査装置。 2 研削加工された磁気デイスク用素材の傷検査
装置において、光源と、該光源から照射された光
を上記磁気デイスク用円板の面に対して垂直に集
光照射する対物レンズと、上記円板の表面から反
射する散乱光の内、研削によつて長手方向を周方
向に向けて多数付されたカツタマークの長手方向
に略直角方向に発生する散乱光を逃し、それ以外
の散乱光を反射させる光反射手段と、該光反射手
段で反射された散乱光を受光して信号に変換する
光電変換素子と、該光電変換素子から得られる信
号の広がりに基いて線形傷及び孤立傷を検出する
検出回路とを備えたことを特徴とする磁気デイス
ク用素材の傷検査装置。 3 上記光反射手段で逃された散乱光を受光して
信号に変換する光電変換素子と、該光電変換素子
から得られる信号に基づいてカツタマーク上に存
在するカツタマークに平行な傷を検出する検出回
路とを備え付けたことを特徴とする特許請求の範
囲第2項記載の磁気デイスク用素材の傷検査装
置。
[Scope of Claims] 1. A flaw inspection device for a ground magnetic disk material, comprising: a light source; and an objective for condensing and illuminating the light emitted from the light source perpendicularly to the surface of the magnetic disk disk. A lens and a light shielding means for blocking scattered light generated in a direction substantially perpendicular to the longitudinal direction of the cutter marks, which are formed in large numbers by grinding with the longitudinal direction facing the circumferential direction, among the scattered light reflected from the surface of the disk. , a photoelectric conversion element that receives scattered light that is not blocked by the light blocking means and converts it into a signal, and a detection circuit that detects linear flaws and isolated flaws based on the spread of the signal obtained from the photoelectric conversion element. A flaw inspection device for magnetic disk materials, characterized by: 2. A flaw inspection device for a ground magnetic disk material, comprising: a light source, an objective lens that focuses and irradiates light emitted from the light source perpendicularly to the surface of the magnetic disk disk, and the disk. Among the scattered light reflected from the surface, the scattered light generated in a direction approximately perpendicular to the longitudinal direction of the cutter marks, which are formed in large numbers by grinding with the longitudinal direction facing the circumferential direction, is missed, and the other scattered light is reflected. A light reflecting means, a photoelectric conversion element that receives the scattered light reflected by the light reflecting means and converts it into a signal, and a detection that detects linear flaws and isolated flaws based on the spread of the signal obtained from the photoelectric conversion element. A flaw inspection device for magnetic disk materials, characterized by comprising a circuit. 3. A photoelectric conversion element that receives the scattered light missed by the light reflecting means and converts it into a signal, and a detection circuit that detects scratches parallel to the cutter mark existing on the cutter mark based on the signal obtained from the photoelectric conversion element. An apparatus for inspecting scratches on a magnetic disk material according to claim 2, characterized in that it is equipped with:
JP2155880A 1980-02-25 1980-02-25 Flaw inspecting apparatus Granted JPS56118646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2155880A JPS56118646A (en) 1980-02-25 1980-02-25 Flaw inspecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155880A JPS56118646A (en) 1980-02-25 1980-02-25 Flaw inspecting apparatus

Publications (2)

Publication Number Publication Date
JPS56118646A JPS56118646A (en) 1981-09-17
JPH0228815B2 true JPH0228815B2 (en) 1990-06-26

Family

ID=12058329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155880A Granted JPS56118646A (en) 1980-02-25 1980-02-25 Flaw inspecting apparatus

Country Status (1)

Country Link
JP (1) JPS56118646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192541A (en) * 2009-05-25 2009-08-27 Hitachi Ltd Defect inspection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103647A (en) * 1981-12-16 1983-06-20 Nok Corp Testing method for surface defect
JPS5944643A (en) * 1982-09-08 1984-03-13 Nok Corp Method for inspecting surface defect
JPS6211133A (en) * 1985-06-24 1987-01-20 Hitachi Electronics Eng Co Ltd Surface inspection apparatus
JPS62124448A (en) * 1985-11-26 1987-06-05 Hitachi Electronics Eng Co Ltd Surface inspection device
CZ306088B6 (en) * 2004-07-07 2016-08-03 ĂšSTAV MERANIA SAV Method of retrieving surface defects especially that of bearing rings and device for making the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517443A (en) * 1978-07-26 1980-02-06 Hitachi Electronics Eng Co Ltd Detector for surface deficiency of optical type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517443A (en) * 1978-07-26 1980-02-06 Hitachi Electronics Eng Co Ltd Detector for surface deficiency of optical type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192541A (en) * 2009-05-25 2009-08-27 Hitachi Ltd Defect inspection device

Also Published As

Publication number Publication date
JPS56118646A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
US4423331A (en) Method and apparatus for inspecting specimen surface
US5076692A (en) Particle detection on a patterned or bare wafer surface
US4954723A (en) Disk surface inspection method and apparatus therefor
EP1131623B1 (en) Detection system for nanometer scale topographic measurements of reflective surfaces
US6208750B1 (en) Method for detecting particles using illumination with several wavelengths
JPS6223250B2 (en)
US6346713B1 (en) Method and installation for inspecting an article for defects
JPH0228815B2 (en)
US3779649A (en) Method of and an electro-optical system for inspecting material
JP4536337B2 (en) Surface inspection method and surface inspection apparatus
JPS6129453B2 (en)
JPH0833354B2 (en) Defect inspection equipment
JPS5973710A (en) Surface defect inspecting device for transparent disk
JP2873450B2 (en) Defect inspection device using light
JPS5960344A (en) Method and device for automatically inspecting surface by coherent laser luminous flux
JPS5933855B2 (en) Surface inspection method
JPH11337502A (en) Method and apparatus for detecting defect on surface of rolled material
JPH0431748A (en) Defect inspecting method for transparent plate-shaped body
GB1596295A (en) Optical apparatus and method
JPH0495861A (en) Detector of defect of transparent circular work
JPH09218162A (en) Surface defect inspection device
JP3406951B2 (en) Surface condition inspection device
JPH0252241A (en) Surface defect inspection instrument
JPS63153454A (en) Flaw inspection device for optical disk transparent disk