JPS5944643A - Method for inspecting surface defect - Google Patents

Method for inspecting surface defect

Info

Publication number
JPS5944643A
JPS5944643A JP15523982A JP15523982A JPS5944643A JP S5944643 A JPS5944643 A JP S5944643A JP 15523982 A JP15523982 A JP 15523982A JP 15523982 A JP15523982 A JP 15523982A JP S5944643 A JPS5944643 A JP S5944643A
Authority
JP
Japan
Prior art keywords
reflected light
inspected
variation
stripes
light quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15523982A
Other languages
Japanese (ja)
Inventor
Keiji Inoue
恵司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP15523982A priority Critical patent/JPS5944643A/en
Publication of JPS5944643A publication Critical patent/JPS5944643A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect easily a surface defect of a surface to be inspected having processed stripes in a fixed direction by detecting the variation of a component of the reflected light quantity in the direction parallel to the processing stripes of the object to be inspected out of the reflected light from the object. CONSTITUTION:Luminous flux L is irradiated to an object 1 to be inspected having processed stripes 2 to detect the reflected light by a photodetector 3 such as television camera. The photodetector 3 is arranged to the direction perpendicular to the inspecting surface, and a sampling line 4 is made parallel to the direction of the stripes 2. Thus the variation N of the reflected light quantity due to the surface roughness can be decreased. Thereby, SN ratio of the variation S of the reflected light quantity level due to the defect part to the variation N of the reflected light quantity level at the normal part is increased, and the defect detection ability is improved.

Description

【発明の詳細な説明】 本発明は非接触式表面欠陥検査方法に関するもので、一
定方向に加工筋目を有する被検査面の表面欠陥を容易に
検出することができる検査方法を提供することを目的と
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact surface defect inspection method, and an object of the present invention is to provide an inspection method that can easily detect surface defects on a surface to be inspected that has processed lines in a certain direction. shall be.

従来、表面欠陥検査方法としてはスポット光等を検査対
象面に当て、その反射光を受光するフライングスポット
方式やフライングイメージ方式が広く知られ、実用化さ
れている。また特殊な例としてスポット光の代シに偏光
レーザを用いるとともに受光側に偏光フィルタを設け、
正常面からの反射光を除去し欠陥部からの散乱光のみを
受光した方式等が知られておシ、前の二者は欠陥部によ
る正反射光の減少、第3の方法は散乱光の有無によシ欠
陥部を検出しようとするものである0しかし、これらの
方法によれば欠陥部以外の正常部における反射光量の変
化をなくすか、またはきわめて小さく保つことが欠陥検
出能力を高める上で必要である。すなわち表面粗さ等の
微細な面の傾きによる反射光の拡がシや散乱は欠陥検出
を阻害するので、イ庭気ディスク等のごとく、非常に平
滑な表面を有するものの表面欠陥検出には適しているが
、通常の工作物のように1μm以上の表面粗さを有する
ものの検査には必らずしも好適ではない。
BACKGROUND ART Conventionally, as a surface defect inspection method, a flying spot method and a flying image method, in which a spot light or the like is applied to a surface to be inspected and the reflected light is received, are widely known and put into practical use. In addition, as a special example, a polarized laser is used in place of the spot light, and a polarized filter is installed on the receiving side.
There are known methods that remove reflected light from normal surfaces and receive only scattered light from defective parts.The first two methods reduce specularly reflected light from defective parts, and the third method reduces scattered light. However, according to these methods, eliminating changes in the amount of reflected light in normal areas other than defective areas or keeping them extremely small is the key to improving defect detection ability. It is necessary. In other words, the spread and scattering of reflected light due to minute surface inclinations such as surface roughness inhibits defect detection, so it is suitable for detecting surface defects on objects with very smooth surfaces, such as hard disks. However, it is not necessarily suitable for inspecting ordinary workpieces that have a surface roughness of 1 μm or more.

さらに1jσ述の第1および第2の方法の場合には正反
射光を受光するようになるために光軸の許容札囲が狭く
、条件設定が困難となるものであシ、また第3の方法の
場合には散乱光を効率的に集光するための受光系の楢造
が複雑になる欠点を有しておフ、さらに各従来方法とも
検査面が曲面の場合には不適合であった。
Furthermore, in the case of the first and second methods described in 1jσ, since specularly reflected light is received, the permissible range of the optical axis is narrow, making it difficult to set conditions. This method has the disadvantage that the structure of the light receiving system to efficiently collect the scattered light is complicated, and each conventional method is not suitable when the inspection surface is curved. .

本発明は上記問題点に鑑み、通常の工作物等の赤面欠陥
を検出する方法を提唱するもので、加工筋目等の一定方
向に表面粗さの規則性を有する面における反射光の空間
分布形状を利用して正常部における反射光景の変化を小
さく保つことによシ、欠陥部の検出を可能になしたもの
である。
In view of the above-mentioned problems, the present invention proposes a method for detecting red-faced defects in ordinary workpieces, etc. The present invention proposes a method for detecting red-faced defects in ordinary workpieces, etc. The present invention is based on the spatial distribution shape of reflected light on a surface having regularity of surface roughness in a certain direction, such as machining lines. This makes it possible to detect defective areas by keeping changes in the reflected light in normal areas small.

すなわち加工筋目等の一定方向に規則性を有する正常部
からの反射光の空間分布は加工筋目方向と同一方向に規
則性を有し、第1図および第2図に示すように検査対象
物(1)の正常部における反射光量の変化(N)は加工
筋目(2)と直角方向(θ=90°)にサンプリングし
た場合に最も大きく表われ、加工筋目(2)と平行(θ
=0°)にす/ブリングした場合に最も小さく表われる
ものであるから、加工筋目(2)と同一方向の反射光量
に注目することで正常部での反射光量の変化を小さくす
ることができる。
In other words, the spatial distribution of reflected light from a normal part, which has regularity in a certain direction such as processed lines, has regularity in the same direction as the processed lines, and as shown in FIGS. The change (N) in the amount of reflected light in the normal part of 1) appears most significantly when sampling in the direction (θ = 90°) perpendicular to the processed line (2), and when sampled in the direction (θ = 90°) perpendicular to the processed line (2),
= 0°)/bling, so by paying attention to the amount of reflected light in the same direction as the processed line (2), it is possible to reduce the change in the amount of reflected light in the normal area. .

一方、欠陥部は不定形で正常部での規則性と異なるため
、欠陥部からの反射光景レベルは、サンプリングの方向
に関係なく相当の変化を示す。したがって加工筋目(2
)と平行(θ=0°)にサンプリングして正常部におけ
る反射光量レベルの変化を低く保つことにより、欠陥部
による反射光量レベルの変化(S)と正常部での反射光
量レベルの変化(N)によるSN比が大きくなシ、欠陥
検出能力が向上することによシ欠陥部の検出が容易にな
るものである。
On the other hand, since the defective part has an irregular shape and is different from the regularity of the normal part, the level of reflected light from the defective part shows a considerable change regardless of the sampling direction. Therefore, the machining line (2
) by sampling parallel to (θ = 0°) and keeping the change in the level of reflected light in the normal area low, the change in the level of reflected light due to the defective area (S) and the change in the level of reflected light in the normal area (N ), the defect detection ability is improved, and defective parts can be easily detected.

以下、本発明の原理に基づく表面欠陥検査方法の一実施
例を第3図によって説明する。この実施例は加工筋目(
2)を有する検車対象物(1)となる平向を検査面とす
る場合であシ、テレビカメラ等の受光素子(3)を検査
面と垂直方向に配置したとき、該受光素子(3)による
反射光量の一す°ンプリ/グライン(4)(テレビカメ
ラであればラスクスキャン方向、ラインカメラであれば
素子の配列方向)を加工筋目(2)と平行方向とするこ
とで容易に底面粗さによる反射光景の変化(N)を小さ
くすることができる。
An embodiment of the surface defect inspection method based on the principle of the present invention will be described below with reference to FIG. This example shows the machining lines (
2) When the inspection surface is the inspection object (1), and when a light receiving element (3) such as a television camera is arranged in a direction perpendicular to the inspection surface, the light receiving element (3) The amount of reflected light due to It is possible to reduce the change (N) in the reflected scene due to the

また加工筋目(2)を有する検査面からの反射光量の変
化(N)は照明方向等の光学系の配置によって大きく変
わシ、その光束(1,)が拡散反射照明でかつ加工筋目
(2)と平行方向からの照射である場合、赤面粗さによ
る反射光量の変化(N)が最も小さくなることが知られ
ておシ、第4図は前記拡散反射照明で加工筋目(2)と
平行方向(oO)および直交方向(90°)から光束(
L)を照射した場合の検査対象面の表面粗さに対する反
射光量のレベルの変化(N) ’r比較するグラフであ
る〇画線測定結果によれば表面粗さ1〜7μm Rma
xの面に対して本発明方法(筋目方向サンプリング)を
用いた場合、変動系数(反射光量の標準偏差/反射光量
の平均)が10%〜30チ小さくなっていることが判る
In addition, the change (N) in the amount of reflected light from the inspection surface having the processed streaks (2) varies greatly depending on the arrangement of the optical system such as the illumination direction, and the luminous flux (1,) is diffuse reflection illumination and the processed streaks (2) It is known that the change (N) in the amount of reflected light due to blush roughness is the smallest when the irradiation is from a direction parallel to the surface roughness. (oO) and the luminous flux (
Change in the level of reflected light amount with respect to the surface roughness of the surface to be inspected when irradiated with L) (N)
It can be seen that when the method of the present invention (grain direction sampling) is used for the x plane, the fluctuation coefficient (standard deviation of the amount of reflected light/average of the amount of reflected light) is reduced by 10% to 30 inches.

その結果、本発明方法の場合、前述のSN比が、10%
〜30%大きくな勺、それだけ表面欠陥検出能力が向上
したことを意味している。とくに光束(L)の照明方向
を加工筋目(2)の方向と平行にした場合、前記変ルb
係数((5’/Iave )が小さく、正常部での反射
光量の変化が最も小さく、かつ表面粗さの影響を受けに
くいため欠陥部の検出が容易となる。また実際の表面欠
陥検出に際して正常部から欠陥部を区別する量(しきい
量)の設定は前述の賀動係数を用いて行なえばよい。
As a result, in the case of the method of the present invention, the above-mentioned S/N ratio was reduced to 10%.
~30% larger diameter means improved surface defect detection ability. In particular, when the illumination direction of the light beam (L) is made parallel to the direction of the processing lines (2),
The coefficient ((5'/Iave) is small, the change in the amount of reflected light in a normal area is the smallest, and it is less affected by surface roughness, making it easy to detect defective areas. Also, when actually detecting surface defects, The amount (threshold amount) for distinguishing a defective portion from a defective portion may be set using the above-mentioned motion coefficient.

つぎに第5図は被検査物(1)がリング状の形状を有す
る場合の実施例を示すもので、その断面図(、)は平面
、(4)は傾斜面、また(c)は凸曲面になる場合であ
る。被検査物(1)の垂直方向にカメラ等の受光素子(
3)を配置し、被検査物(1)の加工筋目(2)と直交
方向(4)の反射光景をサンプリングし、被検査物(1
)を回転(矢印Y)させることで連続的に全周面を検査
するものであυ、ラインカメラの同一素子からの信号(
反射光景)を連続的に測定することによシ表面欠陥を検
出することができる。とくにこの場合でも照明を前述と
同様に拡散反射筋目方向の光束にした場合、受光素子(
3)が正常部からの反射光を受光しないため、被検査物
(1)が曲面であっても反射光量レベルそのものの変化
を小さくすることができ、容易に欠陥の検出をすること
が可能となるものである。
Next, Fig. 5 shows an example in which the object to be inspected (1) has a ring shape, in which the cross-sectional view (,) is a plane, (4) is an inclined surface, and (c) is a convex cross-sectional view. This is the case when the surface becomes a curved surface. A light receiving element such as a camera (
3), and sample the reflection scene in the direction (4) perpendicular to the processed lines (2) of the object to be inspected (1).
) is rotated (arrow Y) to continuously inspect the entire circumferential surface υ, and the signal from the same element of the line camera (
Surface defects can be detected by continuously measuring the reflected light. In particular, even in this case, if the illumination is made into a light beam in the direction of diffuse reflection lines as described above, the light receiving element (
3) does not receive reflected light from normal parts, so even if the object to be inspected (1) is a curved surface, changes in the level of reflected light itself can be reduced, making it possible to easily detect defects. It is what it is.

以上述べたように本発明の表面欠陥検査方法によれば、
通常の表面粗さを有する加工面等の表面欠陥をその表面
粗さの影響を小さくして検出し易くすることができ、ま
た光束を公知の拡散反射筋目方向照明と組み合わせるこ
とで検査対象面が曲面および傾斜面であってもきわめて
高精度に欠陥部を検出することができる等の特徴を有し
、本発明はきわめて有用である。
As described above, according to the surface defect inspection method of the present invention,
It is possible to easily detect surface defects such as machined surfaces with normal surface roughness by reducing the influence of the surface roughness, and by combining the light beam with well-known diffuse reflection streak direction illumination, the surface to be inspected can be easily detected. The present invention is extremely useful because it has features such as being able to detect defects with extremely high accuracy even on curved and inclined surfaces.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明表面欠陥検査方法の一実施例を示すもので
、8g1図は検査対象物に対するサンプリング方向を示
す説明図、第2図は第1図における筋目方向とサンプリ
ング方向のなす角度(θ)と反射光量の変化(N)の関
係を示すグラフ、第3図は本発明の測定原理を示す説明
図、第4図はサンプリングの方向を変えた時の表面粗さ
くμmRmax)に対する反射光量の変動係数(σ/ 
I ave )を示すグ、7ノ、第5図は検査対象物が
リング状の場合の実施例を示す説明図である。 (1)検査対象物  (2)加工筋目 (3)受光素子  (4)反射光景の受光ライン(5)
光源 七しi、!、i1 代理人弁理士  野   本   1号     1,
1ル11第1図 筋目−角右向の “す′ン7゛リング(b) 第2[) なす角&(θ)
The drawings show an embodiment of the surface defect inspection method of the present invention, and Fig. 8g1 is an explanatory diagram showing the sampling direction for the object to be inspected, and Fig. 2 shows the angle (θ) between the streak direction and the sampling direction in Fig. 1. Figure 3 is an explanatory diagram showing the measurement principle of the present invention, and Figure 4 shows the variation in the amount of reflected light with respect to the surface roughness (μmRmax) when the sampling direction is changed. Coefficient (σ/
FIG. 5 is an explanatory diagram showing an example in which the object to be inspected is ring-shaped. (1) Inspection object (2) Machining lines (3) Light receiving element (4) Light receiving line of reflected scene (5)
Light source seven,! , i1 Representative Patent Attorney Nomoto No. 1 1,
1 Le 11 Figure 1 Streak - Angle Rightward "sun 7" ring (b) 2nd [) Angle formed & (θ)

Claims (1)

【特許請求の範囲】[Claims] 加工筋目等の規則性を有する表面粗さを含む検査対象物
について、検査対象物に適当な照射光を投光し、該照射
光の対象物からの反射光のうち対象物の加工筋目と平行
な方向の反射光量の成分の変化によシ表面欠陥の検出を
行なうことを%砿とする非接触光学式の表面欠陥検査方
法。
For inspection objects that have surface roughness with regularity such as processing lines, an appropriate irradiation light is projected onto the inspection object, and the reflected light from the object is parallel to the processing lines of the object. A non-contact optical surface defect inspection method that detects surface defects by changing the component of the amount of reflected light in different directions.
JP15523982A 1982-09-08 1982-09-08 Method for inspecting surface defect Pending JPS5944643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15523982A JPS5944643A (en) 1982-09-08 1982-09-08 Method for inspecting surface defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15523982A JPS5944643A (en) 1982-09-08 1982-09-08 Method for inspecting surface defect

Publications (1)

Publication Number Publication Date
JPS5944643A true JPS5944643A (en) 1984-03-13

Family

ID=15601574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15523982A Pending JPS5944643A (en) 1982-09-08 1982-09-08 Method for inspecting surface defect

Country Status (1)

Country Link
JP (1) JPS5944643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075444A (en) * 2013-10-11 2015-04-20 独立行政法人 国立印刷局 Method for inspecting luminous printed matter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219111A (en) * 1975-08-05 1977-02-14 Sumitomo Metal Ind Ltd Heat treated high tensile steel plate cont. b
JPS56118646A (en) * 1980-02-25 1981-09-17 Hitachi Ltd Flaw inspecting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219111A (en) * 1975-08-05 1977-02-14 Sumitomo Metal Ind Ltd Heat treated high tensile steel plate cont. b
JPS56118646A (en) * 1980-02-25 1981-09-17 Hitachi Ltd Flaw inspecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075444A (en) * 2013-10-11 2015-04-20 独立行政法人 国立印刷局 Method for inspecting luminous printed matter

Similar Documents

Publication Publication Date Title
TWI713638B (en) Method for detecting defects and associated device
JP2008014848A (en) Surface inspection method and surface inspecting device
US6122047A (en) Methods and apparatus for identifying the material of a particle occurring on the surface of a substrate
US20090040512A1 (en) Semiconductor wafer inspection device and method
US3834822A (en) Method and apparatus for surface defect detection using detection of non-symmetrical patterns of non-specularly reflected light
JPS59141008A (en) Threaded portion inspecting device
US5155372A (en) Optical inspection system utilizing wedge shaped spatial filter
JPS5944643A (en) Method for inspecting surface defect
JPH0256626B2 (en)
JPH0311403B2 (en)
JPH0254494B2 (en)
JPH0334578B2 (en)
JP3476742B2 (en) Method and apparatus for identifying material of particles generated on the surface of a substrate
JPH0228815B2 (en)
JPS59180413A (en) Surface-defect inspecting method
JPS61286740A (en) Method for inspecting surface flaw
JPH0422444B2 (en)
JPH07146245A (en) Apparatus and method for detecting foreign matter
JP2559470B2 (en) Appearance inspection method
JPS63228049A (en) Defect inspecting device
EP1136815A1 (en) Methods and apparatus for identifying the material of a particle occurring on the surface of a substrate
JPH0252241A (en) Surface defect inspection instrument
JPS59157544A (en) Surface defect inspecting method
JPH0545303A (en) Defect inspecting apparatus
JP2001050720A (en) Surface inspection method and device thereof