JPH0254494B2 - - Google Patents
Info
- Publication number
- JPH0254494B2 JPH0254494B2 JP14281679A JP14281679A JPH0254494B2 JP H0254494 B2 JPH0254494 B2 JP H0254494B2 JP 14281679 A JP14281679 A JP 14281679A JP 14281679 A JP14281679 A JP 14281679A JP H0254494 B2 JPH0254494 B2 JP H0254494B2
- Authority
- JP
- Japan
- Prior art keywords
- defect
- light
- inspected
- scanning
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000007547 defect Effects 0.000 claims description 33
- 238000007689 inspection Methods 0.000 claims description 15
- 230000007246 mechanism Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000005286 illumination Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
【発明の詳細な説明】
この発明はほぼ平担な面に発生する欠陥を検査
する装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for inspecting defects occurring on a substantially flat surface.
半導体製造プロセスや電子管製造プロセス等に
おいては、ほぼ平担な表面を有する被検体上に各
種の不規則な欠陥が生じ、プロセスの生産率を大
きく左右している。 BACKGROUND ART In semiconductor manufacturing processes, electron tube manufacturing processes, and the like, various irregular defects occur on objects having substantially flat surfaces, which greatly affect the production rate of the process.
このため、従来製造ラインでは、このような欠
陥を発生後直ちに発見・除去するために、光学的
顕微鏡を用いた肉眼目視検査が行なわれていた。
特に微小な欠陥を検出するには、白熱電燈からの
光を斜入射させ、欠陥からの散乱光を検出し、そ
の光量の変化から欠陥の有無や大小を判別してい
た。 For this reason, in conventional production lines, visual inspection using an optical microscope has been performed in order to discover and remove such defects immediately after they occur.
In particular, in order to detect minute defects, light from an incandescent lamp is incident obliquely, the scattered light from the defect is detected, and the existence and size of the defect can be determined from changes in the amount of light.
この目視検査では、肉眼による検査のため個人
差が大きいこと、強力な光源がないために欠陥で
散乱される光量が少なく見落しが多いこと、欠陥
に方向性がある場合見る(検査する)方向によつ
て思わぬ大きな欠陥を見落す危険性が高い等の欠
点を持つていた。 In this visual inspection, there are large individual differences because it is an inspection with the naked eye, the amount of light scattered by defects is small because there is no strong light source, and there are many oversights, and if the defect has a directionality, the direction of viewing (inspection) However, this method has drawbacks such as a high risk of overlooking unexpected major defects.
この発明は上記事情に鑑みて為されたものであ
り、その目的は上記欠点を除き信頼性の高い欠陥
検査装置を提供するにある。 The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a highly reliable defect inspection device that eliminates the above-mentioned drawbacks.
本発明によれば、被検体の照明に複数のコヒー
レント光ビームを用い、各ビームは互いに異なる
方向から被検体表面の所定位置に照射される、好
ましくはこれらのビームは被検体の表面に対して
数度の角度を為して入射される。 According to the present invention, a plurality of coherent light beams are used to illuminate the object, and each beam is irradiated onto a predetermined position on the surface of the object from different directions. Preferably, these beams are irradiated with respect to the surface of the object. It is incident at an angle of several degrees.
第1図にこの発明の一実施例を示す。同図にお
いて1はほぼ平担な表面を有する被検体であり、
例えばシリコンウエハである。被検体1はテーブ
ル2に載置されており、テーブル2は回転機構3
により矢印Aの方向へ回転するとともに、移動機
構4により矢印Bの方向へ移動されるように構成
されている。被検体1の表面上の1点Pにはレー
ザ光源51,52,53からのレーザビーム101,
102,103が照射される。各レーザビームは点
Pで反射、その反射光201,202,203とな
る。しかしながら、点Pでは散乱光が生じてい
る。散乱光はレンズ系6を介して光検出器7に導
びかれる。本実施例ではレンズ系6の光軸は被検
体1と垂直に設定してある。 FIG. 1 shows an embodiment of the present invention. In the figure, 1 is a test object with a nearly flat surface;
For example, silicon wafers. A subject 1 is placed on a table 2, and the table 2 is connected to a rotating mechanism 3.
It is configured to be rotated in the direction of arrow A by the movement mechanism 4, and moved in the direction of arrow B by the movement mechanism 4. At one point P on the surface of the object 1, laser beams 10 1 , 10 from laser light sources 5 1 , 5 2 , 5 3
10 2 and 10 3 are irradiated. Each laser beam is reflected at point P and becomes reflected light 20 1 , 20 2 , 20 3 . However, at point P, scattered light is generated. The scattered light is guided to a photodetector 7 via a lens system 6. In this embodiment, the optical axis of the lens system 6 is set perpendicular to the subject 1.
ここで、光検出器7がレーザビームの正反射成
分を受光していない理由は、表面の欠陥からの
(散乱光)信号が微弱であり、正反射成分に対す
る欠陥信号の変調度が非常に小さくS/Nが劣る
ためである。 Here, the reason why the photodetector 7 does not receive the specular reflection component of the laser beam is that the (scattered light) signal from the surface defect is weak, and the degree of modulation of the defect signal with respect to the specular reflection component is very small. This is because the S/N ratio is poor.
また、各レーザビーム101,102,103は
互いに異なる方向から点Pに入射している。各レ
ーザビームの波長はそれぞれ異なるものであつて
も同一であつてもよい。 Moreover, each laser beam 10 1 , 10 2 , 10 3 is incident on point P from mutually different directions. The wavelengths of each laser beam may be different or the same.
回転機構3及び移動機構4とは被検体1の全表
面を走査するための機構であり、これらの機構に
よつてビーム照射点Pは被検体1の表面をスパイ
ラル状(渦巻き状)に走査することになる。 The rotation mechanism 3 and the movement mechanism 4 are mechanisms for scanning the entire surface of the subject 1, and these mechanisms cause the beam irradiation point P to scan the surface of the subject 1 in a spiral shape. It turns out.
次にコヒーレント光ビームを多方向から照射す
ることの有用性を第2図を用いて説明する。第2
図aは被検体1の正面図であり、糸くずのような
欠陥100が存在する。第2図bはその断面図で
ある。このような欠陥100に対して矢印101
の方向から照射された場合の散乱光と、矢印10
2の方向から照射された場合の散乱光とでは当然
矢印102の方向から照射した場合の方が多い。
これは照明ビームに対する欠陥100の散乱断面
積が矢印101の方向からよりも矢印102の方
向からのほうが大きいためである。 Next, the usefulness of irradiating coherent light beams from multiple directions will be explained using FIG. 2. Second
Figure a is a front view of the object 1, in which a lint-like defect 100 is present. FIG. 2b is a sectional view thereof. For such a defect 100, an arrow 101
Scattered light when irradiated from the direction of arrow 10
Naturally, there is more scattered light when the light is emitted from the direction of the arrow 102 than when the light is emitted from the direction of the arrow 102.
This is because the scattering cross section of the defect 100 with respect to the illumination beam is larger from the direction of arrow 102 than from the direction of arrow 101.
また第2図c,dは、被検体1の表面に凹状欠
陥103がある状態を示している。第2図dにお
いて矢印104,105,106はそれぞれ照明
ビームの入射方向を示している。この種の欠陥か
らの散乱光は、主として凹部のエツジでの散乱に
よつている。従つて欠陥103に対して垂直に入
射するビーム104よりも、矢印105,106
方向からの照明ビームによるほうが検出に有利で
あることが明らかである。 Furthermore, FIGS. 2c and 2d show a state in which there is a concave defect 103 on the surface of the object 1. In FIG. 2d, arrows 104, 105, and 106 each indicate the direction of incidence of the illumination beam. Scattered light from this type of defect is primarily due to scattering at the edges of the recess. Therefore, the beam 104 that is incident perpendicularly to the defect 103 is
It is clear that a directional illumination beam is more advantageous for detection.
第3図に実験結果を示す。同図は数μm程度の
誘電体凸起検出にあたつての照射角依存性を単一
レーザ光を用いて実験したものである。縦軸には
(欠陥+表面散乱光光電出力)/(表面散乱光光
電出力)をとり、横軸に被検体の表面との為す角
度(照射角)をとつて示した。照射角が1゜以下で
データがないのは、ビームの太さにより被検体の
表面に対してこの値以下で照射することができな
いためである。同図より、照射角は小さい程検出
能力が大きいことが判る。すなわち、第1図にお
けるレーザビーム101,102,103は被検体
1の表面に対してほぼ平行に近い1゜〜3゜で入射す
ることが望ましい。 Figure 3 shows the experimental results. The figure shows an experiment using a single laser beam to determine the dependence of the irradiation angle on detecting dielectric convexities of several micrometers. The vertical axis shows (defect + surface scattered light photoelectric output)/(surface scattered light photoelectric output), and the horizontal axis shows the angle (irradiation angle) with respect to the surface of the object. The reason why there is no data when the irradiation angle is 1° or less is because the beam thickness makes it impossible to irradiate the surface of the object below this value. From the figure, it can be seen that the smaller the irradiation angle is, the greater the detection ability is. That is, it is desirable that the laser beams 10 1 , 10 2 , 10 3 in FIG. 1 be incident on the surface of the subject 1 at an angle of approximately 1° to 3° parallel to the surface of the subject 1 .
以上のように本発明によれば、ほぼ平担な表面
を持つ被検体に生じる各種欠陥を信頼性高く検出
することができる。特に第1図に示すように欠陥
情報を光電検出系の光軸で得ているため、光学系
の収差の影響が少ないので安価な光学素子を用い
て高性能な検査装置を構成することができる。ま
た本発明で用いる光学系は、被検体からの正反射
成分を用いずに、検査光ビームに対してほぼ垂直
方向より欠陥情報を得ているため、被検体を回転
させながら検査することができる。即ち、被検体
の回転と水平方向へのシフトの組合せによるスパ
イラル状の走査によつて、大面積における欠陥検
査を容易に行なうことができる。このようなスパ
イラル状の走査は保守性・信頼性に優れまた、検
査ビーム自身を走査させる場合において出力信号
中に生ずるシエーデイングの影響も除くことがで
きる。更に本発明において用いられる光学系はす
べて固定されてよいので調整も容易であるという
利点がある。また空間的に多くの方向から欠陥を
照明することは、実効的に輝度の高いインコヒー
レント照明を実現している意味もある。 As described above, according to the present invention, various defects occurring in an object having a substantially flat surface can be detected with high reliability. In particular, as shown in Figure 1, since defect information is obtained on the optical axis of the photoelectric detection system, the influence of aberrations in the optical system is small, making it possible to construct a high-performance inspection device using inexpensive optical elements. . Furthermore, the optical system used in the present invention obtains defect information from a direction substantially perpendicular to the inspection light beam without using the regular reflection component from the object to be inspected, so it is possible to inspect the object while rotating it. . That is, by performing spiral scanning using a combination of rotation and horizontal shift of the object, defect inspection over a large area can be easily performed. Such spiral scanning is superior in maintainability and reliability, and can also eliminate the influence of shading that occurs in the output signal when the inspection beam itself is scanned. Furthermore, since all the optical systems used in the present invention may be fixed, there is an advantage that adjustment is easy. In addition, illuminating the defect from many spatial directions also has the meaning of realizing incoherent illumination with effectively high brightness.
今仮りに上述したような回転運動と水平運動に
よるスパイラル状の走査に代えてX―Y二次元方
向の走査を行なつた場合を考えると、走査は同一
欠陥部に対し行きと帰りの双方向によるものとな
る。これをセンサの検出出力波形で見ると、装置
に設けられているセンサ7のレスポンス特性と図
示しないアンプの特性とによつて検出出力に尾引
き現象が必ずと言つてよい程起こる。それが同一
方向に現れるならば尾引き部分を考慮してその大
きさ等を判定することが出来る。しかし、この現
象が双方向に現れてしまうと、検出出力が実際の
欠陥部分のものか尾引き現象によるものかの判定
が難しく、欠陥の大きさを正確に判定できない
か、あるいは左右に現れる尾引きの部分が新たに
発生した別の欠陥であると誤判定してしまう可能
性もある。この場合、検査装置に設けられている
センサの感度を上げれば上げる程レスポンスが鈍
つてしまうので誤判定は著しく現れる。 Now, suppose we were to perform scanning in the two-dimensional X-Y direction instead of the spiral scanning using rotational movement and horizontal movement as described above. It will be due to. When looking at this in the waveform of the detection output of the sensor, a trailing phenomenon almost always occurs in the detection output due to the response characteristics of the sensor 7 provided in the device and the characteristics of the amplifier (not shown). If it appears in the same direction, its size etc. can be determined by considering the trailing portion. However, if this phenomenon appears in both directions, it is difficult to determine whether the detection output is from the actual defective part or from the tailing phenomenon, and the size of the defect cannot be accurately determined, or the tailing that appears on the left and right There is also a possibility that the pulled part may be mistakenly determined to be another newly generated defect. In this case, the more the sensitivity of the sensor provided in the inspection device is increased, the slower the response becomes, so erroneous judgments become more noticeable.
又この二次元方向の走査を、同一位置の2度の
走査をし逆方向の走査を空走査とすることも考え
られるが、この様な方法によると検査にかなりの
時間を費してしまい全く効率が悪い。よつて上述
したようにスパイラル状の走査が検査精度と検査
時間からして最良の走査である。 It is also possible to perform this two-dimensional scanning by scanning the same position twice and performing a blank scan in the opposite direction, but such a method would require a considerable amount of time for inspection. ineffective. Therefore, as mentioned above, spiral scanning is the best scanning in terms of inspection accuracy and inspection time.
第1図はこの発明の一実施例を示す図、第2図
a〜d及び第3図はこの発明による効果を説明す
るための図である。
1……被検体、2……テーブル、3……回転機
構、4……移動機構、51,52,53……レーザ
光源、6……レンズ系、7……光検出器。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIGS. 2a to 2d and 3 are diagrams for explaining the effects of the present invention. DESCRIPTION OF SYMBOLS 1...Object, 2...Table, 3...Rotation mechanism, 4...Movement mechanism, 51 , 52 , 53 ...Laser light source, 6...Lens system, 7...Photodetector.
Claims (1)
射する光源と、前記被検体の面に対して、ほぼ垂
直な方向に設けられ、前記光源からの光ビームの
うち前記被検体表面の欠陥により散乱された光を
受光する受光手段と、この受光手段により前記欠
陥の検出を行う欠陥検査装置において、 前記被検体を保持する保持手段と、 この保持手段に保持された前記被検体に対し
て、渦巻き状の走査を行うための走査手段とを備
え、前記光源および受光手段とを固定したまま前
記欠陥の検査を行うことを特徴とする欠陥検査装
置。 2 光源は、複数の光ビームを照射するものであ
つて、そのうち少なくとも1本は被検体の表面に
対して微小角度をなして入射して成ることを特徴
とする特許請求の範囲第1項記載の欠陥検査装
置。[Scope of Claims] 1. A light source that irradiates a light beam onto a subject having a substantially flat surface; A defect inspection apparatus includes a light receiving means for receiving light scattered by a defect on the surface of an object to be inspected, and a defect inspection apparatus for detecting the defect using the light receiving means, a holding means for holding the object to be inspected, and a holding means for holding the object to be inspected; What is claimed is: 1. A defect inspection apparatus comprising a scanning means for spirally scanning an object to be inspected, and inspecting the defect while the light source and the light receiving means are fixed. 2. The light source emits a plurality of light beams, at least one of which is incident on the surface of the subject at a small angle. defect inspection equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14281679A JPS5667739A (en) | 1979-11-06 | 1979-11-06 | Defect inspecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14281679A JPS5667739A (en) | 1979-11-06 | 1979-11-06 | Defect inspecting apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23887691A Division JPH0545303A (en) | 1991-08-27 | 1991-08-27 | Defect inspecting apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5667739A JPS5667739A (en) | 1981-06-08 |
JPH0254494B2 true JPH0254494B2 (en) | 1990-11-21 |
Family
ID=15324286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14281679A Granted JPS5667739A (en) | 1979-11-06 | 1979-11-06 | Defect inspecting apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5667739A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008241716A (en) * | 2008-04-03 | 2008-10-09 | Shibaura Mechatronics Corp | Device and method for surface inspection |
WO2014073532A1 (en) * | 2012-11-08 | 2014-05-15 | 株式会社日立ハイテクノロジーズ | Method and device for detecting defects and method and device for observing defects |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0827238B2 (en) * | 1986-05-06 | 1996-03-21 | 日立電子エンジニアリング株式会社 | Surface inspection device |
JPH0545303A (en) * | 1991-08-27 | 1993-02-23 | Toshiba Corp | Defect inspecting apparatus |
JP4536337B2 (en) | 2003-06-10 | 2010-09-01 | 株式会社トプコン | Surface inspection method and surface inspection apparatus |
JP4641143B2 (en) | 2003-06-30 | 2011-03-02 | 株式会社トプコン | Surface inspection device |
-
1979
- 1979-11-06 JP JP14281679A patent/JPS5667739A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008241716A (en) * | 2008-04-03 | 2008-10-09 | Shibaura Mechatronics Corp | Device and method for surface inspection |
WO2014073532A1 (en) * | 2012-11-08 | 2014-05-15 | 株式会社日立ハイテクノロジーズ | Method and device for detecting defects and method and device for observing defects |
JP2014095578A (en) * | 2012-11-08 | 2014-05-22 | Hitachi High-Technologies Corp | Defect detection method, defect detection device, defect observation method and defect observation device |
Also Published As
Publication number | Publication date |
---|---|
JPS5667739A (en) | 1981-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100261387B1 (en) | Method and equipment for inspecting foreign substance | |
US6366690B1 (en) | Pixel based machine for patterned wafers | |
US7643139B2 (en) | Method and apparatus for detecting defects | |
US4555635A (en) | Surface flaw inspection apparatus for a convex body | |
JP5349742B2 (en) | Surface inspection method and surface inspection apparatus | |
US4674875A (en) | Method and apparatus for inspecting surface defects on the magnetic disk file memories | |
KR920018886A (en) | Semiconductor substrate evaluation method and apparatus | |
US6122047A (en) | Methods and apparatus for identifying the material of a particle occurring on the surface of a substrate | |
JP2947513B1 (en) | Pattern inspection equipment | |
JPH0254494B2 (en) | ||
JPS63143831A (en) | Optical apparatus for detecting defect on face plate | |
JPH11153549A (en) | Surface inspection method and apparatus using the same | |
JP2006017685A (en) | Surface defect inspection device | |
JPH11230912A (en) | Apparatus and method for detection of surface defect | |
JP3078784B2 (en) | Defect inspection equipment | |
JPH0545303A (en) | Defect inspecting apparatus | |
JP3432273B2 (en) | Foreign matter inspection device and foreign matter inspection method | |
JP3476742B2 (en) | Method and apparatus for identifying material of particles generated on the surface of a substrate | |
KR101785069B1 (en) | Darkfield illumination device | |
JPH0587781B2 (en) | ||
JPH04344447A (en) | Detecting device for defect in transparent glass substrate | |
JPS62223649A (en) | Method and device for inspection | |
JPS5848837A (en) | Defect checking method | |
JPH0329177B2 (en) | ||
JP2009236519A (en) | Defect inspection device and defect inspection method using it |