JPS5848837A - Defect checking method - Google Patents

Defect checking method

Info

Publication number
JPS5848837A
JPS5848837A JP14763681A JP14763681A JPS5848837A JP S5848837 A JPS5848837 A JP S5848837A JP 14763681 A JP14763681 A JP 14763681A JP 14763681 A JP14763681 A JP 14763681A JP S5848837 A JPS5848837 A JP S5848837A
Authority
JP
Japan
Prior art keywords
sample
light
reflected
microscope
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14763681A
Other languages
Japanese (ja)
Inventor
Shigeru Kondo
茂 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14763681A priority Critical patent/JPS5848837A/en
Publication of JPS5848837A publication Critical patent/JPS5848837A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To penetrate the light reflected by a sample surface having the curvature into a microscope to convert the sample surface into the same observing status as a plane by irradiating scattered light to the sample surface. CONSTITUTION:A scattering body part 10 on which a sample 12 is held is arranged on an X-Y stage 11. The surface of the sample 12 is observed through a microscope unit 4. Directional illuminating light 7 irradiated from a reflecting and lighting device 3 is irradiated to the surface of the sample 12 through the scattering body part 10. As the result, a part of the reflected light 18 reflected by the surface of the sample 12 is penetrated into an objective lens 5. A non-defective surface 20 in an area 19 in which the light 18 reflected by the surface of the sample 12 is penetrated into the objective lens 5 has the same observing status as the positively reflected surface of a plane. A defective part 21 has the same irregular reflection as that of a plane. Consequently the clear difference of luminance levels between the non-defective part 20 and the defective part 21 appears. Thus scattered lighting can be easily realized by using an ordinary microscope.

Description

【発明の詳細な説明】 本発明は円筒表面等の曲率を有した試料表面の欠陥を検
査する欠陥検査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defect inspection method for inspecting defects on a sample surface having a curvature such as a cylindrical surface.

さらに詳しくは、顕微鏡を用いた欠陥検査において試料
表面の欠陥を容易に検出できる照明方法の改善を目的と
する。
More specifically, the present invention aims to improve an illumination method that can easily detect defects on the surface of a sample in defect inspection using a microscope.

近年、各製品9部品に対する外観検査(欠陥検査)が広
〈実施されている。
In recent years, visual inspections (defect inspections) have been widely carried out on nine parts of each product.

欠陥検査を行うことにより品質の向上、コストの低減な
どそのメリットは大きい。
Defect inspection has many benefits, such as improving quality and reducing costs.

欠陥検査方法として、代表的なものに顕微鏡を用いたも
のがある。顕微鏡を用いることにより微少な欠陥を検出
することが可能になる。捷た、撮像装置(テレビジョン
カメラ等)を併用することで欠陥の有無、大きさの判別
を映像信号処理によりじん速に計測することができる。
A typical defect inspection method uses a microscope. Using a microscope makes it possible to detect minute defects. By using a deformed imaging device (such as a television camera), the presence or absence of a defect and its size can be quickly measured through video signal processing.

そのため、欠陥検査が高精度で能率的に処理でき大きな
効果を得ている。
Therefore, defect inspection can be performed efficiently with high precision, resulting in great effects.

従来の顕微鏡を用いた欠陥検査方法の一例を第1図り、
下に示す。
The first example of a defect inspection method using a conventional microscope is shown in Figure 1.
Shown below.

試料として、鏡面加工された基板1、欠陥としてキズを
対象とした欠陥検査について述べる。
Defect inspection using a mirror-finished substrate 1 as a sample and scratches as defects will be described.

第1図に示す様に、試料1はX−Yステージ2上に保持
され、反射照明装置3により照明されている。対物レン
ズ6、接眼レンズ6等よりなる顕微鏡ユニット4により
、欠陥部分が観察される。
As shown in FIG. 1, a sample 1 is held on an XY stage 2 and illuminated by a reflective illumination device 3. A defective portion is observed by a microscope unit 4 comprising an objective lens 6, an eyepiece lens 6, etc.

捷だ、撮像装置(テレビジョンカメラ等)7及び計測・
制御回路を用い、欠陥の自動計測を行っている。この場
合、第2図に示す様に試料表面無欠陥部分8け正反射し
、欠陥部分9は乱反射するため、輝度1ノベルに差異を
生じる。つ捷り、この輝度レベル差を利用I−で欠陥検
出を行っている。
Imaging device (television camera, etc.) 7 and measurement/
Defects are automatically measured using a control circuit. In this case, as shown in FIG. 2, the defect-free portions of the sample surface 8 reflect specularly, and the defective portions 9 reflect diffusely, resulting in a difference in brightness of one novel. This brightness level difference is used to detect defects using I-.

以−1−の従来例の場合は、試料が平面であるため、無
欠陥面が一様な正反射面となり、容易に欠陥を検出する
ことができる。
In the case of the prior art example -1- below, since the sample is flat, the defect-free surface becomes a uniform specular reflection surface, and defects can be easily detected.

L、かし、試料が曲率を有[7た試料の場合、正反射面
はごく一部しか得られない。
In the case of a sample with a curvature, only a small portion of the specular reflection surface can be obtained.

つ1す、通常の照明光−:レンズ系を通り方向性をもっ
た光となっており、正反射面は、曲率表面のごく一部分
でi−か得られない。
First, normal illumination light: The light passes through a lens system and has directionality, and the specular reflection surface can only provide an i- value on a small portion of the curvature surface.

このゾでめ、たとえば円筒表面を検査する場合、検査領
域が狭い範囲しか得られず、何回転かさせながら検査す
る必要が生じる。検査装置の構成、能率の点で大きな障
害となっている。
When inspecting a cylindrical surface using this method, for example, only a narrow inspection area can be obtained, and the inspection must be performed while making several rotations. This poses a major obstacle in terms of the configuration and efficiency of inspection equipment.

同時に、無欠陥部分と欠陥部分の輝度レベル差も十分1
Hることができず、安定した欠陥検出を実現することは
むずかしい。
At the same time, the difference in brightness level between the defect-free area and the defect area is also sufficient.
Therefore, it is difficult to realize stable defect detection.

上部に示した例−:明視野照明の場合である。明視野照
明のほかに暗視野照明が欠陥検査には広く用いられてい
るが、暗視野照明を用いた場合でも良好な欠陥検査状態
は得られ々かった。
Example shown at the top - for bright field illumination. In addition to bright-field illumination, dark-field illumination is widely used for defect inspection, but even when dark-field illumination is used, good defect inspection conditions have not been obtained.

つ甘り、暗視野照明の特徴である欠陥部分での散乱光の
みを取り込むことができないためである。
This is because it is not possible to capture only the scattered light from the defective part, which is a characteristic of dark-field illumination.

以上の様に、顕微鏡を用いた曲率を有した試料表面の欠
陥検査には種々の問題がある。
As described above, there are various problems in inspecting defects on the surface of a sample having curvature using a microscope.

本発明は従来のこの問題点を解決せんとするものである
The present invention aims to solve this conventional problem.

本発明は、曲率を有した試料表面に散乱光を照射するこ
とにより、試料表面での反射光を顕微鏡に取り込み、曲
率を有した試料表面を平面と同様の観察状態とするもの
である。
In the present invention, by irradiating a sample surface with curvature with scattered light, the reflected light from the sample surface is captured into a microscope, and the sample surface with curvature is made to be observed in the same state as a flat surface.

つ捷り、試料表面に散乱光を照射することにより、種々
の方向から入射した光は試料表面にて反射され、試料の
曲率に対応した入射角にて入射[〜だ所定の光のみ、対
物レンズに取り込寸れる。この試料表面での反射光が対
物レンズに取り込まれた領域に、片面の場合に述べた正
反射面と同様の観察状態となる。この結−果、この領域
に存在する欠陥5・ 部分は平面の場合と同様の観察状態となり、無欠陥部分
と欠陥部分の輝度レベル差が十分得られる。
By splitting and irradiating the sample surface with scattered light, light incident from various directions is reflected on the sample surface and is incident at an incident angle corresponding to the curvature of the sample. It can be captured into the lens. In the area where the reflected light from the sample surface is captured by the objective lens, an observation state similar to that of the specular reflection surface described in the case of a single surface is created. As a result, the defect 5 portion existing in this area is observed in the same state as in the case of a flat surface, and a sufficient difference in brightness level between the defect-free portion and the defective portion can be obtained.

つぎに、通常の顕微鏡装置を用い容易に散乱光を試f−
’1.F面に照射さぜ欠陥を検出することが可能な本発
明の一実施例を以下に述べる。
Next, we can easily measure the scattered light using an ordinary microscope device.
'1. An embodiment of the present invention capable of detecting irradiation groove defects on the F-plane will be described below.

試料としてシャフトを用い、シャフト表面の欠陥(キズ
)検査について第3図に示す。
Using a shaft as a sample, FIG. 3 shows the inspection for defects (scratches) on the shaft surface.

第3図に示す様に、散乱体部1oから成る試料保持面に
試料12(シャフト)が保持されている。
As shown in FIG. 3, a sample 12 (shaft) is held on a sample holding surface consisting of a scatterer portion 1o.

散乱体部10ばx−yステージ11上に配置されている
。顕微鏡ユニット4により試料12表面を観察する。
A scatterer section 10 is arranged on the xy stage 11. The surface of the sample 12 is observed using the microscope unit 4.

照明装置として反射照明装置3を用いる。A reflective lighting device 3 is used as the lighting device.

第4図に示す様に、反射照明装置3より照射された方向
性を有した照明光17は、散乱体部1oを介して試料1
2表面に照射される。
As shown in FIG. 4, the directional illumination light 17 emitted from the reflected illumination device 3 passes through the scatterer section 1o to the sample 1.
2 surfaces are irradiated.

つ捷り、方向性を有した照明光17は、散乱体部10に
よってあらゆる方向に散乱し、試料12表面に達する。
The twisted and directional illumination light 17 is scattered in all directions by the scatterer section 10 and reaches the surface of the sample 12.

この結果、試料12表面にて反射された反射光6、− 
・ 18の一部は、対物レンズ5に取り込捷れる。
As a result, the reflected light 6, - reflected on the surface of the sample 12
- A part of the light beam 18 is taken into the objective lens 5.

この状態での試料表面の観察状態を第6図に示す。The observed state of the sample surface in this state is shown in FIG.

試料12表面での反射光18が対物レンズ5に取り込捷
れた領域19は第5図に示す様になる。この領域19の
無欠陥面20は、平面の場合の正反射面と同様の観察状
態となる。
A region 19 where the reflected light 18 on the surface of the sample 12 is taken into the objective lens 5 becomes as shown in FIG. The defect-free surface 20 of this region 19 is observed in the same state as a regular reflection surface in the case of a flat surface.

また、領域19内の欠陥部分21は、平面の場合と同様
の乱反射面となる。これにより、無欠陥面20と欠陥部
分21は明りょうな輝度レベル差が生じる。これは、先
に述べた散乱体部10を用いることにより、試料表面に
容易に散乱光を照明させることができるためである。つ
捷り、散乱体部10を一種の散乱光源として使用してい
るためである。
Furthermore, the defective portion 21 within the region 19 becomes a diffused reflection surface similar to that in the case of a flat surface. As a result, a clear brightness level difference occurs between the defect-free surface 20 and the defective portion 21. This is because by using the scatterer section 10 described above, the surface of the sample can be easily illuminated with scattered light. This is because the scatterer section 10 is used as a kind of scattered light source.

これにより、通常の顕微鏡を用いて容易に散乱照明を実
現することができる。
Thereby, scattered illumination can be easily realized using an ordinary microscope.

捷だ、散乱体部は光学的に一様で所定の散乱面を有した
ものであれば材質はとわない(たとえば、樹脂5紙でも
よい)。
The material of the scatterer section is not limited as long as it is optically uniform and has a predetermined scattering surface (for example, resin 5 paper may be used).

前記実施例では散乱体部10として平板状のものを示し
たが、他の実施可能な例を第6図に示す。
In the above embodiment, a flat scatterer section 10 was shown, but another possible example is shown in FIG.

aは散乱体部を断面v型、bは散乱体部を断面り型、C
は試t1が球の場合を示し、散乱体部を円すい型の形状
とした実施例である。
a: the scatterer part has a v-shaped cross section, b: the scatterer part has a cross-sectional shape, C
This is an example in which the test t1 is a sphere, and the scatterer portion has a conical shape.

V型、U型などの方が平板状のものに比らべ、試料表面
での反射光が対物レンズに取り込まれる領域が広くなり
、さらに有利である。
A V-shape, a U-shape, or the like is more advantageous than a flat-plate shape because the area where the reflected light from the sample surface is captured by the objective lens is larger.

第7図にその状態を示し、以下に説明する。aは平板状
の散乱体部10を採用1〜だ場合を示す。bはU型の散
乱体部10を採用した場合を示す。aに比らべbの方が
試$412表面での反射光18が対物レンズ6に取り込
捷れる領域19が広い。つまり、U型の方が平板状に比
らべ試料表面に対してより広範囲にわたって散乱光を照
射可能なためである。
The state is shown in FIG. 7 and will be explained below. A shows the case where the flat scatterer section 10 is employed. b shows a case where a U-shaped scatterer section 10 is adopted. Compared to a, in b, the area 19 where the reflected light 18 on the surface of the sample 412 is taken into the objective lens 6 is wider. In other words, the U-shape allows irradiation of scattered light over a wider range of the sample surface than the flat-plate shape.

この結果、散乱体部に試料表面での反射光が対物レンズ
に取り込捷れる領域が最大値を示す方向に角度1曲率を
有したものであれば形状はとわない。
As a result, the shape of the scatterer part is not limited as long as it has a curvature of one angle in the direction in which the region where the light reflected from the sample surface is taken into the objective lens has a maximum value.

才だ、散乱体部を試料保持面として使用すれば、顕微鏡
構成と17で従来の顕微鏡を改造することな1−に使用
することができ、さらにV型、U型にした場合試料の位
置決めが容易である。
If you use the scatterer part as a sample holding surface, you can use it for the microscope configuration and 17 without modifying the conventional microscope.Furthermore, if you use the V-shape or U-shape, you can easily position the specimen. It's easy.

それから散乱体部の試料に対する位置については、試料
表面に散乱光を照射できる位置であれば、試料保持面と
しての位置に限定しなくてもよい。
The position of the scatterer section with respect to the sample is not limited to the position of the sample holding surface as long as it is a position where the sample surface can be irradiated with scattered light.

つぎに、ここでは図示していないが円筒の試料の全面を
観察を行うためその試料の回転機構部を有している。
Next, although not shown here, in order to observe the entire surface of the cylindrical sample, it has a rotation mechanism for the sample.

本発明を使用した場合、従来の方法に比らべより広い観
察面19が得られ試料の回転回数も急減し検査能率は向
上する。
When the present invention is used, compared to conventional methods, a wider observation surface 19 is obtained, the number of rotations of the sample is also rapidly reduced, and inspection efficiency is improved.

つぎに、欠陥検出・ 計測方法について述べる。Next, we will discuss defect detection and measurement methods.

第5図に示した領域19を選択的に検査領域として、撮
像装置を用いて自動的な欠陥検査を行う。
The area 19 shown in FIG. 5 is selectively set as an inspection area, and an automatic defect inspection is performed using an imaging device.

第5図の領域19′は、正反射面状態とはならず、欠陥
部分と無欠陥部の識別の困難な領域である。
The region 19' in FIG. 5 does not have a specular reflection surface state, and is a region in which it is difficult to distinguish between a defective portion and a non-defective portion.

つ1す、領域19を検査領域と限定すれば良好な欠陥検
査が可能になる。
First, if the area 19 is limited to the inspection area, good defect inspection becomes possible.

第3図に示す様に、カメラ22を使用しての欠陥検出は
概知の通り、正反射面と乱反射”面での輝度9、− 差を利用して、カメラ22から映像信号を取り出し一定
の[−きい値により二値化し、欠陥部分の判定、阿ti
ll+を行う3.23け開側、制御回路である。
As shown in Figure 3, as is well known, defect detection using the camera 22 uses the difference in brightness between the specular reflection surface and the diffused reflection surface to extract a video signal from the camera 22 and keep it constant. Binarize using [-threshold value, determine defective part,
3.23 The opening side is the control circuit that performs ll+.

以」二のように本発明を用いることにより、曲率を有し
た試料表面の欠陥検査を平面と同様の検査状態にするこ
とができ、高精度、高能率の検査を行うことが可能にな
り大きな効果を得ることができる。
As described below, by using the present invention, defects on the surface of a sample with curvature can be inspected in the same inspection condition as on a flat surface, making it possible to perform inspection with high accuracy and high efficiency, resulting in a large effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に1従来の欠陥検査装置の一例を示す側面図、第
2図は、従来の欠陥検査状態を示す図、第3図は、本発
明の欠陥検査方法の一実施例を示す側面図、第4図は、
本発明の原理図を示す側面図、第5図は、本発明による
欠陥検査状態を示す図、第6図a、  b、  cはそ
れぞれ本発明による散乱体部形状の実施例を示す斜視図
、第7図a、  bは、本発明による散乱体部形状によ
る検査領域の差異を示す図である。 3・・・・・・反射照明装置、4・・・・・・顕微鏡、
10・・・・・光散乱体部、12・・・・・試料。 第1図 第5図 第6図 第7図 ’ /12) 7g(b)
FIG. 1 is a side view showing an example of a conventional defect inspection device, FIG. 2 is a side view showing a conventional defect inspection state, and FIG. 3 is a side view showing an embodiment of the defect inspection method of the present invention. , Figure 4 is
FIG. 5 is a side view showing the principle of the present invention; FIG. 5 is a diagram showing a defect inspection state according to the present invention; FIGS. 6 a, b, and c are perspective views showing examples of the shape of the scatterer portion according to the present invention; FIGS. 7a and 7b are diagrams showing differences in the inspection area depending on the shape of the scatterer portion according to the present invention. 3...Reflected illumination device, 4...Microscope,
10...Light scatterer section, 12...Sample. Figure 1 Figure 5 Figure 6 Figure 7' /12) 7g(b)

Claims (2)

【特許請求の範囲】[Claims] (1)検査すべき曲率を有した試料の表面に散乱光を照
射し、その散乱光の照射された試料表面を顕微鏡により
観察して試料表面の欠陥を検査する欠陥検査方法。
(1) A defect inspection method in which the surface of a sample having a curvature to be inspected is irradiated with scattered light, and the sample surface irradiated with the scattered light is observed with a microscope to inspect for defects on the sample surface.
(2)光散乱体面上に試料を載置し、前記光散乱体面か
らの散乱光を試料表面に照射することを特徴とする特許
請求の範囲第1項記載の欠陥検査方法。
(2) The defect inspection method according to claim 1, characterized in that a sample is placed on a light scattering body surface, and the sample surface is irradiated with scattered light from the light scattering body surface.
JP14763681A 1981-09-17 1981-09-17 Defect checking method Pending JPS5848837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14763681A JPS5848837A (en) 1981-09-17 1981-09-17 Defect checking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14763681A JPS5848837A (en) 1981-09-17 1981-09-17 Defect checking method

Publications (1)

Publication Number Publication Date
JPS5848837A true JPS5848837A (en) 1983-03-22

Family

ID=15434808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14763681A Pending JPS5848837A (en) 1981-09-17 1981-09-17 Defect checking method

Country Status (1)

Country Link
JP (1) JPS5848837A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246382A (en) * 1985-08-23 1987-02-28 Matsushita Electric Ind Co Ltd Parts position recognizing device in parts fitting machine
JPS6246383A (en) * 1985-08-23 1987-02-28 Matsushita Electric Ind Co Ltd Parts position recognizing device in parts fitting machine
US4864632A (en) * 1985-11-29 1989-09-05 Antenna Co., Ltd. Yagi Indoor wiring system for VHF/UHF signal lines
JP2009020000A (en) * 2007-07-12 2009-01-29 Canon Inc Inspection device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246382A (en) * 1985-08-23 1987-02-28 Matsushita Electric Ind Co Ltd Parts position recognizing device in parts fitting machine
JPS6246383A (en) * 1985-08-23 1987-02-28 Matsushita Electric Ind Co Ltd Parts position recognizing device in parts fitting machine
US4864632A (en) * 1985-11-29 1989-09-05 Antenna Co., Ltd. Yagi Indoor wiring system for VHF/UHF signal lines
JP2009020000A (en) * 2007-07-12 2009-01-29 Canon Inc Inspection device and method

Similar Documents

Publication Publication Date Title
US5355213A (en) Inspection system for detecting surface flaws
US4555635A (en) Surface flaw inspection apparatus for a convex body
EP0265229A2 (en) Particle detection method and apparatus
KR0185797B1 (en) Method and apparatus for optical inspection
DE69800328T2 (en) Device and method for inspecting the microtexture on the circumference of a semiconductor wafer
JPH06294749A (en) Flaw inspection method for plat glass
JPH04122839A (en) Inspecting method of surface
JPH11281584A (en) Method and apparatus for inspection
JPS5848837A (en) Defect checking method
JP2006017685A (en) Surface defect inspection device
JP2010139434A (en) Test apparatus and test method for discriminating between foreign substance and scar
JP3078784B2 (en) Defect inspection equipment
JP2821460B2 (en) Inspection device for transparent substrate
JP5100371B2 (en) Foreign matter inspection method and foreign matter inspection apparatus for wafer peripheral edge
JPS60228943A (en) Inspection of surface state of stainless steel plate
US5745239A (en) Multiple focal plane image comparison for defect detection and classification
JPH0254494B2 (en)
JPH10142160A (en) Method and apparatus for optical inspection
JP2000028535A (en) Defect inspecting device
JPH0299806A (en) Inspection of surface defect
CA2413343A1 (en) Method and apparatus for testing optical components
JPH05307007A (en) Surface inspecting method
JP3197047B2 (en) Defect inspection equipment
JPH09218162A (en) Surface defect inspection device
JP2559470B2 (en) Appearance inspection method