JP2001050720A - Surface inspection method and device thereof - Google Patents

Surface inspection method and device thereof

Info

Publication number
JP2001050720A
JP2001050720A JP11224129A JP22412999A JP2001050720A JP 2001050720 A JP2001050720 A JP 2001050720A JP 11224129 A JP11224129 A JP 11224129A JP 22412999 A JP22412999 A JP 22412999A JP 2001050720 A JP2001050720 A JP 2001050720A
Authority
JP
Japan
Prior art keywords
light
inspection
reflected light
inspection object
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11224129A
Other languages
Japanese (ja)
Inventor
Koji Haruyama
弘司 春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11224129A priority Critical patent/JP2001050720A/en
Publication of JP2001050720A publication Critical patent/JP2001050720A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide excellent defect detecting performance by shading a part of reflecting light from an inspected object irradiated by an irradiation means, and discriminating the surface condition of the inspected object from the change of a quantity of light according to the change of reflecting angle on the surface of the inspected object. SOLUTION: Illuminating light from a illuminating source 4 is projected on a chart 5 for slit, and the slit image is projected on the surface of an inspected object 1 by a converging optical system 6. The reflected light 9 of light irradiating the inspected object 1 is received by a light receiving means 8 constituted of a shading means 10, a converging optical system 11, and a light receiving sensor 12. Hereat in the reflected light 9, a part of the light is shaded by a shading means 10 movable along the direction 14, the passed light is converged by a converging optical system 11, and it is formed into an image on the light receiving sensor 12. The shading means 10 is set so as to shade the upper side dividing the light flux of the reflected light 9 into two in the lengthwise direction of the slit. By constituting it in this way, when recessed and projecting parts exist on the inspected object 1, reflected light fluxes corresponding to the inclination of the recessed and projecting parts are converged by the light receiving sensor 12 to be output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種装置に用いら
れる機能部品等の表面に存在する欠陥を検査する方法、
特に微細な凹凸欠陥を検査する方法および装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a defect present on a surface of a functional component or the like used in various apparatuses,
In particular, the present invention relates to a method and an apparatus for inspecting a fine unevenness defect.

【0002】[0002]

【従来の技術】従来、表面欠陥検査は光学的な手法を用
いて、正反射光または拡散反射光を受光部でとらえるこ
とによって行われていた。たとえば図6は、従来の手法
を模式的に表した図であり、図において検査対象となる
検査対象61の表面の欠陥を検査する際に、図示のよう
な帯状の光62を投光する。そして、帯状の光62によ
って検査対象表面をスリット状に照明する(スリット状
照明63)。
2. Description of the Related Art Conventionally, surface defect inspection has been carried out by capturing specularly reflected light or diffusely reflected light at a light receiving section using an optical method. For example, FIG. 6 is a diagram schematically illustrating a conventional method. When inspecting a defect on the surface of an inspection target 61 to be inspected in the drawing, a belt-like light 62 as shown is projected. Then, the surface to be inspected is illuminated in a slit shape by the band light 62 (slit illumination 63).

【0003】その検査対象表面からのスリット光の反射
光64を受光センサ65で受光し、その光の反射状況を
判断することで欠陥の検出を行っている。実際、投光お
よび受光は、レンズ等により検査対象に対して光学的な
結像関係にあるように構成される。検査対象は一般的に
平面方向に、スリット光(図6、矢印A)と直交方向
(矢印B)に移動させながら検査対象表面内の欠陥を検
出する方法がとられる。受光センサ65としては、1次
元ラインセンサがよく用いられる。
[0003] The reflected light 64 of the slit light from the surface to be inspected is received by a light receiving sensor 65, and a defect is detected by judging the reflection state of the light. Actually, the light projection and the light reception are configured to have an optical imaging relationship with respect to the inspection object by a lens or the like. In general, a method of detecting a defect in the surface of the inspection target while moving the inspection target in a plane direction in a direction (arrow B) perpendicular to the slit light (arrow A in FIG. 6) is used. As the light receiving sensor 65, a one-dimensional line sensor is often used.

【0004】図7は、このような方法の具体的な構成
を、スリット光と直交する検査対象平面の方向から見た
図である。この方法においてはスリット光を投影し、そ
の反射光を1次元センサ等で受光している。このときの
信号波形は図8のようになり、図中のセンサ受光位置
は、スリット光の長手方向(図6、矢印A)に相当する
ように配置される。これによりセンサ上に検査対象面の
スリット光像が結像されるようにする。図8において、
たとえば81は欠陥部分であり、反射率変化のあるゴミ
欠陥やまたは反射方向変化の大きいキズ欠陥のようなも
のでは信号処理によって容易に欠陥を判別することがで
きる。
FIG. 7 is a diagram showing a specific configuration of such a method as viewed from a direction of a plane to be inspected orthogonal to the slit light. In this method, slit light is projected, and the reflected light is received by a one-dimensional sensor or the like. The signal waveform at this time is as shown in FIG. 8, and the sensor light receiving position in the figure is arranged so as to correspond to the longitudinal direction of the slit light (FIG. 6, arrow A). Thereby, a slit light image of the inspection target surface is formed on the sensor. In FIG.
For example, reference numeral 81 denotes a defect portion, and a defect such as a dust defect having a change in reflectance or a flaw defect having a large change in the reflection direction can be easily identified by signal processing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来例で
は、たとえば図7の例で説明するとスリット光照明73
からの光76は、載置台72上の検査対象71に投光さ
れる。検査対象71の表面からの拡散反射光77を検出
器74で受光する手法では、表面の急峻に変化する欠陥
に対しては有効であるが、なだらかな凹凸を検出するこ
とは難しい。
However, in the conventional example, the slit light illumination 73 will be described with reference to the example of FIG.
Is emitted to the inspection target 71 on the mounting table 72. The method of receiving the diffuse reflection light 77 from the surface of the inspection target 71 by the detector 74 is effective for a defect whose surface changes rapidly, but it is difficult to detect a gentle unevenness.

【0006】また、正反射光78を検出器75で受光す
る手法においては、欠陥ではない表面の大きなうねり成
分によって正反射光78をうまくとらえることができな
い。そのためうねり成分の影響を受けないように、受光
手段に用いられる光学系の開口数を大きくすることで、
そのような不都合を回避している。ところが、開口数を
大きくすると欠陥も背景と同様に埋もれてしまい、その
検出が難しくなる。
In the method of receiving the specularly reflected light 78 with the detector 75, the specularly reflected light 78 cannot be properly detected due to a large undulation component on the surface which is not a defect. Therefore, by increasing the numerical aperture of the optical system used for the light receiving means so as not to be affected by the swell component,
Such inconvenience is avoided. However, when the numerical aperture is increased, the defect is buried as well as the background, and it becomes difficult to detect the defect.

【0007】図9において欠陥の検出の様子を説明する
と、図9(a)では検査対象面91に凹欠陥92aがあ
るとき、スリット投光93は反射により反射光96とな
る。欠陥部分は図示のように、受光センサに対する結像
光学系94から外れるため欠陥部分とそれ以外の反射光
95とは受光センサ上でセンサ出力の差となって現れ、
これにより欠陥の検出が可能になる。
FIG. 9 illustrates the state of defect detection. In FIG. 9 (a), when there is a concave defect 92a on the inspection target surface 91, the slit light 93 becomes reflected light 96 by reflection. As shown in the figure, the defective portion deviates from the imaging optical system 94 for the light receiving sensor, so that the defective portion and the other reflected light 95 appear as a difference in sensor output on the light receiving sensor,
As a result, the defect can be detected.

【0008】一方、図9(b)のように凹欠陥92bが
浅い場合は、その欠陥による反射光96は、欠陥以外の
反射光95と同様に結像光学系94によってセンサに結
像されることになる。したがって、この場合欠陥の識別
が不可能となる。また、図9のように反射光の方向や位
置が変化するために、表面の大きなうねり成分の影響の
問題に対して、単純に開口数を小さくすることができな
いという問題がある。また、検査対象に求められる凹凸
欠陥サイズは、使用する複写機等の高精細化に伴って検
査対象の大局的なうねり成分の角度変化0.5°程度に
対して凹凸欠陥の角度変化がその1/10程度で、段差
が1μm程度という極めて微細レベルが問題になる。つ
まり、より微細な凹凸欠陥を検出しなければならない。
On the other hand, when the concave defect 92b is shallow as shown in FIG. 9B, the reflected light 96 due to the defect is imaged on the sensor by the imaging optical system 94 in the same manner as the reflected light 95 other than the defect. Will be. Therefore, in this case, the defect cannot be identified. Further, as shown in FIG. 9, since the direction and position of the reflected light change, there is a problem that it is not possible to simply reduce the numerical aperture with respect to the problem of the influence of a large waviness component on the surface. In addition, the size of the unevenness defect required for the inspection object is such that the angular change of the unevenness defect is about 0.5 ° with respect to the global change in the waviness component of the inspection object of about 0.5 ° with the increase in the definition of the copying machine used. An extremely fine level of about 1/10 with a step of about 1 μm poses a problem. That is, finer irregularity defects must be detected.

【0009】本発明はかかる実情に鑑み、優れた欠陥検
出性能を実現する表面検査方法および装置を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a surface inspection method and apparatus which realize excellent defect detection performance.

【0010】[0010]

【課題を解決するための手段】本発明の表面検査方法
は、照射手段によって照射された検査対象からの反射光
を受光手段で受光して、その受光信号から検査対象の表
面を検査する表面検査方法であって、検査対象からの反
射光を受光手段で受光する際に、反射光の一部を遮光
し、検査対象の表面における反射角変化に応じた光量変
化を検出することにより検査対象の表面状態を識別する
ことを特徴とする。
A surface inspection method according to the present invention is a surface inspection method in which reflected light from an inspection object irradiated by an irradiation unit is received by a light receiving unit, and a surface of the inspection object is inspected from a light reception signal. A method of receiving reflected light from an inspection target by a light receiving unit, shielding a part of the reflected light, and detecting a change in a light amount according to a change in a reflection angle on a surface of the inspection target, thereby detecting the light of the inspection target. It is characterized by identifying the surface state.

【0011】また、本発明の表面検査方法において、検
査対象を移動させながら、照射手段から所定方向のスリ
ット光を照射し、受光手段によってスリット状の反射光
を受光することを特徴とする。
Further, in the surface inspection method of the present invention, the slit light in a predetermined direction is irradiated from the irradiation means while the inspection object is moved, and the slit-shaped reflected light is received by the light receiving means.

【0012】また、本発明の表面検査方法において、検
査対象の表面形状の変動を測定し、その変動に従って検
査対象からの反射光を遮光することを特徴とする。
Further, in the surface inspection method of the present invention, a variation in the surface shape of the inspection object is measured, and the reflected light from the inspection object is shielded according to the variation.

【0013】また、本発明の表面検査装置は、照射手段
によって照射された検査対象からの反射光を受光手段で
受光して、その受光信号から検査対象の表面を検査する
表面検査装置であって、検査対象を平面方向に移動させ
る検査対象の移動手段と、検査対象にスリット光を照射
する照明手段と、照射手段によって照射された検査対象
からの反射光を受光する受光手段と、受光手段の受光信
号から欠陥を識別する検出手段と、受光手段の受光光路
の途中適所に配置され、反射光の一部を遮光する遮光手
段と、を備えたことを特徴とする。
Further, the surface inspection apparatus of the present invention is a surface inspection apparatus for receiving reflected light from an inspection object irradiated by an irradiation means by a light receiving means, and inspecting the surface of the inspection object from the received light signal. Moving means for moving the test object in the plane direction, illuminating means for irradiating the test object with slit light, light receiving means for receiving reflected light from the test object irradiated by the irradiation means, and light receiving means It is characterized by comprising a detecting means for identifying a defect from a light receiving signal, and a light shielding means arranged at an appropriate position in the light receiving optical path of the light receiving means and shielding a part of the reflected light.

【0014】また、本発明の表面検査装置において、遮
光手段は、検査対象の表面における反射角変化に応じて
反射光の一部を遮光するように構成されていることを特
徴とする。
Further, in the surface inspection apparatus of the present invention, the light shielding means is configured to shield a part of the reflected light in accordance with a change in the reflection angle on the surface to be inspected.

【0015】また、本発明の表面検査装置において、検
査対象の表面形状の変動を測定する表面形状測定手段
を、さらに含んでいることを特徴とする。
Further, the surface inspection apparatus of the present invention is characterized in that the surface inspection apparatus further includes surface shape measuring means for measuring a change in the surface shape of the inspection object.

【0016】本発明によれば、複写機やレーザビームプ
リンタの機能部品であるゴムブレートなどの平面状の対
象物の表面の微細な凹凸などの欠陥を光学的手法によっ
て検査する際に、受光手段の開口部に開口の一定部分を
連光する遮光手段を設ける。照明手段による検査対象か
らのスリット状の正反射光を1次元センサで受光する際
に、検査対象の表面角度変化を光量変化として捉えるこ
とで検出能力が格段に向上する。
According to the present invention, when inspecting defects such as fine irregularities on the surface of a planar object such as a rubber plate which is a functional component of a copying machine or a laser beam printer by an optical method, the light receiving means is used. The opening is provided with a light-shielding means for transmitting light at a predetermined portion of the opening. When the one-dimensional sensor receives the slit-shaped regular reflection light from the inspection target by the illumination means, the change in the surface angle of the inspection target is regarded as a change in the amount of light, thereby greatly improving the detection ability.

【0017】また、検査対象の表面形状の平面の変動を
測定する表面形状測定手段を備え、この表面形状測定手
段からの検査対象の平面形状の変動に従って遮光手段を
移動させる。これにより検査対象の大きなうねり成分を
除去し、微細な凹凸欠陥のみを正確に検出することがで
きる。
Further, there is provided a surface shape measuring means for measuring a change in the plane of the surface shape of the inspection object, and the light shielding means is moved according to the change in the plane shape of the inspection object from the surface shape measuring means. As a result, a large undulation component to be inspected can be removed, and only fine irregularities can be accurately detected.

【0018】[0018]

【発明の実施の形態】以下、図面に基づき、本発明によ
る表面検査方法および装置の好適な実施の形態を説明す
る。図1は、本発明の特徴をもっともよく表す図であ
る。同図において、1は検査対象、2は検査対象1の移
動手段、3は照明手段である。この例では、検査対象1
は平面状とし、紙面と直交方向に拡がっている。移動手
段2は、検査対象1を矢印C方向に移動させることがで
きる。照明手段3の構成は、照明光源4、スリット用チ
ャート5、集光光学系6からなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a surface inspection method and apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram that best illustrates the features of the present invention. In FIG. 1, reference numeral 1 denotes an inspection target, 2 denotes a moving unit of the inspection target 1, and 3 denotes an illumination unit. In this example, inspection target 1
Has a planar shape and extends in a direction orthogonal to the plane of the paper. The moving means 2 can move the inspection target 1 in the direction of arrow C. The configuration of the illuminating means 3 includes an illuminating light source 4, a slit chart 5, and a condensing optical system 6.

【0019】照明光源4からの照明光をスリット用チャ
ート5に投じて、そのスリット像を集光光学系6によっ
て検査対象1の表面に投光する。一方、検査対象1を照
明した光7は、反射によって反射光9となり受光手段8
で受光される。受光手段8は遮光手段10、集光光学系
11、受光センサ12からなる。
The illumination light from the illumination light source 4 is projected on the slit chart 5, and the slit image is projected on the surface of the inspection object 1 by the condenser optical system 6. On the other hand, the light 7 illuminating the inspection object 1 becomes reflected light 9 by reflection, and becomes a reflected light 9.
Is received at. The light receiving means 8 includes a light shielding means 10, a light collecting optical system 11, and a light receiving sensor 12.

【0020】ここで、反射光9は集光光学系11の手前
で遮光手段10によって、その光の一部が遮光される。
通過した光は集光光学系11によって集光され、受光セ
ンサ12上に結像される。このとき遮光手段10は反射
光9の光束を光軸中心の約半分でスリット長手方向と平
行に、図1の例では反射光9の光束を図中、上下に2分
したうちの上側を遮光するようにしておく。
Here, a part of the reflected light 9 is shielded by the light shielding means 10 in front of the condensing optical system 11.
The passed light is condensed by the condensing optical system 11 and forms an image on the light receiving sensor 12. At this time, the light shielding means 10 shields the light flux of the reflected light 9 at about half the center of the optical axis and in parallel with the longitudinal direction of the slit, and in the example of FIG. Keep it.

【0021】遮光手段10は、方向14に沿って移動す
ることができる遮光部移動手段を持つ。なお、遮光手段
は、光軸の上側でなく下側に配置されてもよい。ここで
は、上側に配置される例とする。また、13は検査対象
1に対する表面形状測定手段であり、3角測量原理を利
用した光マイクロメータなどの測長器を用いて検査対象
1の平面と直交方向、図では上下方向の平面の位置を測
定する。
The light-shielding means 10 has light-shielding part moving means which can move in the direction 14. Note that the light blocking means may be arranged below the optical axis instead of above. Here, an example is shown in which it is arranged on the upper side. Reference numeral 13 denotes a surface shape measuring unit for the inspection object 1, and a position of a plane in a direction orthogonal to the plane of the inspection object 1 using a length measuring device such as an optical micrometer utilizing the principle of triangulation, in the figure, the vertical direction. Is measured.

【0022】つぎに、検査対象1に微細でなだらかな凹
凸欠陥がある場合、これをどのように検出するかを説明
する。図2は、検査対象1において検査対象1の移動手
段2の移動方向もしくは送り方向(図1、矢印C)に凹
みのある欠陥がある場合を示す。図中、21,22は欠
陥の斜面を表し、スリット光は紙面と直交する方向に長
く照明されている状態である。23は欠陥部付近の出力
変化を示している。横軸は検査対象1の移動手段2の移
動方向を、また縦軸はスリット長手方向位置での1次元
センサの出力を表す。図3は、受光部のみを検査対象1
に対して垂直に反射したとして、検査対象1の角度変化
があったときの反射光の光束の様子を示したものであ
る。
Next, a description will be given of how to detect a fine and gentle irregularity defect in the inspection object 1 when it is present. FIG. 2 shows a case where a defect having a dent is present in the inspection object 1 in the moving direction or the feed direction of the moving means 2 of the inspection object 1 (arrow C in FIG. 1). In the figure, reference numerals 21 and 22 denote inclined surfaces of the defect, and the slit light is in a state of being illuminated long in a direction orthogonal to the paper surface. Reference numeral 23 denotes an output change near the defective portion. The horizontal axis represents the moving direction of the moving means 2 of the inspection object 1, and the vertical axis represents the output of the one-dimensional sensor at the position in the slit longitudinal direction. FIG. 3 shows only the light-receiving part as the inspection target 1
FIG. 5 shows a state of a light beam of reflected light when the angle of the inspection target 1 changes assuming that the light is reflected perpendicularly to.

【0023】まず、図2において位置24よりも左側と
位置26よりも右側では図3(a)のような光束が受光
部に入る。すなわち、反射光光束のうち約半分が受光セ
ンサ12に集光される。また、図2において位置24お
よび位置25の間の区間では検査対象1の凹みによって
傾斜部が存在する。この区間における反射光束は図3
(b)のように、光束の主軸が傾くため遮光手段10に
よって遮られる光束が減少する。これに対応して受光セ
ンサ12に届く光束量は、図3(a)の場合に比べて増
加する。逆に図2において位置25および位置26の間
の区間では、図3(c)のような状態になる。光束の主
軸はやはり傾くが、この場合は光束のうち遮光される分
が多いため、受光センサ12に受光される光束は減少す
る。このように検査対象に凹凸があるとその傾斜に対応
した光量が受光センサ12から出力される。
First, in FIG. 2, on the left side of the position 24 and on the right side of the position 26, a light beam as shown in FIG. That is, about half of the reflected light beam is focused on the light receiving sensor 12. Further, in FIG. 2, in the section between the position 24 and the position 25, there is an inclined portion due to the depression of the inspection target 1. The reflected light flux in this section is shown in FIG.
As shown in (b), since the main axis of the light beam is inclined, the light beam blocked by the light shielding means 10 decreases. Correspondingly, the amount of luminous flux reaching the light receiving sensor 12 increases as compared with the case of FIG. Conversely, in the section between the position 25 and the position 26 in FIG. 2, the state is as shown in FIG. The main axis of the light beam is also inclined, but in this case, the light beam received by the light receiving sensor 12 is reduced because much of the light beam is blocked. As described above, when the inspection target has irregularities, the light amount corresponding to the inclination is output from the light receiving sensor 12.

【0024】遮光手段10は上側である必要はなく、下
側であってもよい。下側であれば検査対象の欠陥による
斜面に対するセンサ出力強度が上記説明と逆になる。ま
た上記説明では検査対象の送り方向の斜面について説明
したが、これと直交する方向の斜面も遮光手段の形状位
置を変更することによって検出が可能である。
The light shielding means 10 does not need to be on the upper side, but may be on the lower side. On the lower side, the sensor output intensity on the slope due to the defect to be inspected is reversed from that described above. In the above description, the slope in the feed direction of the inspection target has been described. However, the slope in the direction perpendicular to the feed direction can also be detected by changing the shape position of the light shielding means.

【0025】つぎに、検査対象のうねり成分の除去につ
いて説明する。一般に対象となるブレードの機能から大
きな平面のうねり成分は問題にならない。つまり急激な
角度変化が性能に影響する。また、遮光手段10を設
け、角度変化を光量変化としてとらえる本方式において
は、遮光手段10が光学系に対して固定位置のままでは
検査対象1のうねり成分のために、微細な凹凸変化を捉
えるための光学条件が満たされない。これは、うねり成
分の角度変化の方が欠陥部の角度変化より大きいためで
ある。
Next, the removal of the waviness component to be inspected will be described. Generally, large plane waviness components are not a problem due to the function of the blade in question. That is, a sudden change in the angle affects the performance. Further, in the present system in which the light-shielding means 10 is provided and the angle change is regarded as a change in the amount of light, a fine unevenness change is captured due to the waviness component of the inspection object 1 when the light-shielding means 10 remains at a fixed position with respect to the optical system. Optical conditions are not satisfied. This is because the angle change of the waviness component is larger than the angle change of the defective portion.

【0026】このことを図4で説明する。図4は遮蔽手
段がある位置で固定されたときの状態(図4、実線参
照)を示しており、横軸が反射光束の角度を、また縦軸
はセンサ出力レベルを示している。このとき角度変化に
対してセンサ感度が得られるのは、領域42の範囲であ
り、それ以外の領域では角度検出は実質的にできない。
これは角度の変化を敏感に捉えるために照明のFナンバ
ーを大きく、つまり光束を絞った状態が必要なためであ
る。そうすると測定可能範囲が狭められ、角度変化のダ
イナミックレンジを下げる要因となる。
This will be described with reference to FIG. FIG. 4 shows a state in which the shielding means is fixed at a certain position (see the solid line in FIG. 4). The horizontal axis shows the angle of the reflected light beam, and the vertical axis shows the sensor output level. At this time, the sensor sensitivity is obtained with respect to the angle change in the range of the region 42, and the angle detection cannot be substantially performed in other regions.
This is because the F-number of the illumination needs to be large, that is, a state in which the luminous flux is narrowed, in order to catch the change in the angle sensitively. Then, the measurable range is narrowed, which causes a decrease in the dynamic range of the angle change.

【0027】本発明方法では、図4において領域42の
幅を変えずに、点線43および点線44で示したように
感度領域位置を変位させることによって対応させるとい
うものである。そこで、具体的には大局的なうねり成分
を除去する方法として、図1中の検査対象1の表面形状
測定手段13と検査対象1の移動手段2によって検査対
象1の平面方向の変動を測定する。たとえば図5(a)
は、検査対象送り方向位置に対する検査対象1の表面形
状測定手段13による測定結果を示している。ここでは
変化を強調して示す。
In the method of the present invention, the width of the region 42 in FIG. 4 is not changed, but the position of the sensitivity region is displaced as shown by a dotted line 43 and a dotted line 44. Therefore, specifically, as a method of removing the global undulation component, the variation in the planar direction of the inspection target 1 is measured by the surface shape measuring means 13 of the inspection target 1 and the moving means 2 of the inspection target 1 in FIG. . For example, FIG.
Shows the measurement result of the inspection target 1 in the feed direction by the surface shape measuring means 13 of the inspection target 1. The changes are highlighted here.

【0028】この例では両端部で平面に鉛直方向位置が
変動していて、角度がついていることになる。また、図
中、凹凸欠陥部51は、模式的にその変化を表した部分
であるが、実際にはこれよりも角度変動が小さいものも
対象となる。この測定結果からその移動方向に対する平
面位置の変化を演算する。その様子を示したものが、図
5(b)である。図中の曲線は、図5(a)の測定結果
の変化分を示したものである。
In this example, the position in the vertical direction fluctuates on a plane at both ends, and it is angled. In addition, in the drawing, the unevenness defect portion 51 is a portion schematically showing the change, but in practice, an object whose angular fluctuation is smaller than this is also a target. From this measurement result, a change in the plane position with respect to the moving direction is calculated. FIG. 5B shows this state. The curve in the figure shows the change in the measurement result of FIG. 5 (a).

【0029】この変化曲線を演算する際に、図5(a)
の凹凸欠陥部51のような高周波成分を除去するかたち
で演算する。また図5(b)の52は角度が0°のとき
の位置を示している。欠陥検出動作の際、図5(b)の
曲線に相当する移動位置に従って遮光手段10の位置を
移動させる。このことによって検査対象1に平面的な大
きなうねりがあっても、反射光9は遮光手段10により
常にほぼ光束の中心で2分される(図4ではレベル45
にあたる)。これにより高周波成分、つまり微細な凹凸
欠陥部のみを変化量として検出することができる。
When calculating this change curve, FIG.
The calculation is performed in such a manner as to remove high-frequency components such as the irregularity defect portion 51 of FIG. Further, 52 in FIG. 5B indicates a position when the angle is 0 °. At the time of the defect detection operation, the position of the light shielding means 10 is moved according to the movement position corresponding to the curve in FIG. As a result, even if the inspection target 1 has large planar undulations, the reflected light 9 is almost always divided into two at the center of the light beam by the light shielding means 10 (level 45 in FIG. 4).
). This makes it possible to detect only high-frequency components, that is, only minute concave / convex defect portions, as the amount of change.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、複
写機やレーザビームプリンタの機能部品であるゴムブレ
ートなどの平面状の対象物の表面の微細な凹凸などの欠
陥を光学的手法によって検査する際に、検査対象からの
スリット状の正反射光を1次元センサで受光する際に、
検査対象の表面角度変化を光量変化として捉えることで
検出能力を向上させる。また、検査対象のうねり成分の
除去手段を設けることによって、検査対象の大きな変動
に対しても感度を落とすことなく、表面の微細な凹凸欠
陥を検出することが可能となる。
As described above, according to the present invention, defects such as fine irregularities on the surface of a planar object such as a rubber plate which is a functional part of a copying machine or a laser beam printer are inspected by an optical method. When receiving the slit-shaped regular reflection light from the inspection target with the one-dimensional sensor,
The detection capability is improved by capturing the change in the surface angle of the inspection target as the change in the amount of light. Further, by providing a means for removing the waviness component of the inspection object, it is possible to detect fine irregularities on the surface without lowering the sensitivity to a large fluctuation of the inspection object.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に使用する装置の構成例を示す図で
ある。
FIG. 1 is a diagram showing a configuration example of an apparatus used in a method of the present invention.

【図2】本発明の実施形態における欠陥部と検出出力の
関係を説明する図である。
FIG. 2 is a diagram illustrating a relationship between a defective portion and a detection output according to the embodiment of the present invention.

【図3】本発明の実施形態における検査対象の傾斜とそ
の反射光束および受光部の関係をそれぞれ説明する図で
ある。
FIG. 3 is a diagram illustrating a relationship between a tilt of an inspection target and a reflected light beam and a light receiving unit according to the embodiment of the present invention.

【図4】本発明の実施形態における検査対象の角度変化
と検出出力の関係を説明する図である。
FIG. 4 is a diagram illustrating a relationship between a change in the angle of an inspection target and a detection output according to the embodiment of the present invention.

【図5】本発明の実施形態における検査対象のうねり除
去方法を説明する図である。
FIG. 5 is a diagram illustrating a method of removing undulations of an inspection object according to the embodiment of the present invention.

【図6】従来例における検出手段の配置構成例を示す図
である。
FIG. 6 is a diagram illustrating an example of an arrangement configuration of a detection unit in a conventional example.

【図7】従来例における検出装置の構成例を示す図であ
る。
FIG. 7 is a diagram illustrating a configuration example of a detection device in a conventional example.

【図8】従来例におけるセンサ出力を説明する図であ
る。
FIG. 8 is a diagram illustrating a sensor output in a conventional example.

【図9】従来例における欠陥検出の原理を説明する図で
ある。
FIG. 9 is a diagram illustrating the principle of defect detection in a conventional example.

【符号の説明】[Explanation of symbols]

1 検査対象 2 検査対象の移動手段 3 照明手段 4 照明光源 5 スリット用チャート 6 集光光学系 8 受光手段 9 反射光 10 遮光手段 11 集光光学系 12 受光センサ 13 表面形状測定手段 DESCRIPTION OF SYMBOLS 1 Inspection object 2 Inspection object moving means 3 Illumination means 4 Illumination light source 5 Slit chart 6 Condensing optical system 8 Light receiving means 9 Reflected light 10 Light shielding means 11 Condensing optical system 12 Light receiving sensor 13 Surface shape measuring means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 照射手段によって照射された検査対象か
らの反射光を受光手段で受光して、その受光信号から検
査対象の表面を検査する表面検査方法であって、 検査対象からの反射光を受光手段で受光する際に、反射
光の一部を遮光し、検査対象の表面における反射角変化
に応じた光量変化を検出することにより検査対象の表面
状態を識別することを特徴とする表面検査方法。
1. A surface inspection method for receiving a reflected light from an inspection target irradiated by an irradiation unit by a light receiving unit and inspecting a surface of the inspection target from a received light signal, wherein the reflected light from the inspection target is detected. Surface inspection characterized in that a part of the reflected light is shielded when light is received by the light receiving means, and a surface state of the inspection target is identified by detecting a change in the amount of light corresponding to a change in the reflection angle on the surface of the inspection target. Method.
【請求項2】 検査対象を移動させながら、照射手段か
ら所定方向のスリット光を照射し、受光手段によってス
リット状の反射光を受光することを特徴とする請求項1
に記載の表面検査方法。
2. The method according to claim 1, further comprising: irradiating slit light in a predetermined direction from the irradiating means while moving the inspection object, and receiving the slit-like reflected light by the light receiving means.
Surface inspection method described in 1.
【請求項3】 請求項1または2に記載の表面検査方法
において、 検査対象の表面形状の変動を測定し、その変動に従って
検査対象からの反射光を遮光することを特徴とする表面
検査方法。
3. The surface inspection method according to claim 1, wherein a change in the surface shape of the inspection object is measured, and reflected light from the inspection object is shielded according to the variation.
【請求項4】 照射手段によって照射された検査対象か
らの反射光を受光手段で受光して、その受光信号から検
査対象の表面を検査する表面検査装置であって、 検査対象を平面方向に移動させる検査対象の移動手段
と、 検査対象にスリット光を照射する照明手段と、 照射手段によって照射された検査対象からの反射光を受
光する受光手段と、 受光手段の受光信号から欠陥を識別する検出手段と、 受光手段の受光光路の途中適所に配置され、反射光の一
部を遮光する遮光手段と、を備えたことを特徴とする表
面検査装置。
4. A surface inspection apparatus which receives reflected light from an inspection object irradiated by an irradiation means by a light receiving means, and inspects the surface of the inspection object from a received light signal, wherein the inspection object is moved in a plane direction. Means for moving the inspection object to be inspected, illumination means for irradiating the inspection object with slit light, light receiving means for receiving reflected light from the inspection object irradiated by the irradiation means, and detection for identifying a defect from a light reception signal of the light receiving means A surface inspection apparatus characterized by comprising: means; and light blocking means arranged at an appropriate position in the light receiving optical path of the light receiving means to block a part of reflected light.
【請求項5】 遮光手段は、検査対象の表面における反
射角変化に応じて反射光の一部を遮光するように構成さ
れていることを特徴とする請求項4に記載の表面検査装
置。
5. The surface inspection apparatus according to claim 4, wherein the light shielding unit is configured to block a part of the reflected light in accordance with a change in the reflection angle on the surface of the inspection object.
【請求項6】 検査対象の表面形状の変動を測定する表
面形状測定手段を、さらに含んでいることを特徴とする
請求項4または5に記載の表面検査装置。
6. The surface inspection apparatus according to claim 4, further comprising surface shape measuring means for measuring a change in the surface shape of the inspection object.
JP11224129A 1999-08-06 1999-08-06 Surface inspection method and device thereof Pending JP2001050720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11224129A JP2001050720A (en) 1999-08-06 1999-08-06 Surface inspection method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11224129A JP2001050720A (en) 1999-08-06 1999-08-06 Surface inspection method and device thereof

Publications (1)

Publication Number Publication Date
JP2001050720A true JP2001050720A (en) 2001-02-23

Family

ID=16809006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11224129A Pending JP2001050720A (en) 1999-08-06 1999-08-06 Surface inspection method and device thereof

Country Status (1)

Country Link
JP (1) JP2001050720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014822A (en) * 2006-07-06 2008-01-24 Canon Chemicals Inc Inspection device for plate body
JP2011158381A (en) * 2010-02-02 2011-08-18 Waida Seisakusho:Kk Shape measuring method, shape measuring device, and machine tool
CN111798418A (en) * 2020-06-22 2020-10-20 电子科技大学 Wave-absorbing coating speckle defect detection method based on HOG, LBP and GLCM characteristic fusion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014822A (en) * 2006-07-06 2008-01-24 Canon Chemicals Inc Inspection device for plate body
JP2011158381A (en) * 2010-02-02 2011-08-18 Waida Seisakusho:Kk Shape measuring method, shape measuring device, and machine tool
CN111798418A (en) * 2020-06-22 2020-10-20 电子科技大学 Wave-absorbing coating speckle defect detection method based on HOG, LBP and GLCM characteristic fusion

Similar Documents

Publication Publication Date Title
US4669875A (en) Foreign particle detecting method and apparatus
US4966457A (en) Inspecting apparatus for determining presence and location of foreign particles on reticles or pellicles
KR100190312B1 (en) Foreign substance inspection apparatus
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
US7791721B2 (en) Surface inspection with variable digital filtering
JPH0915163A (en) Method and equipment for inspecting foreign substance
JP3101290B2 (en) Surface condition inspection device, exposure apparatus, and surface condition inspection method
US8563958B2 (en) Inspection apparatus and inspection method
JP3425590B2 (en) Edge damage inspection method and apparatus
JP4641143B2 (en) Surface inspection device
JPS6352696B2 (en)
USRE33991E (en) Foreign particle detecting method and apparatus
JPH05100413A (en) Foreign matter detecting device
US20030117616A1 (en) Wafer external inspection apparatus
JPS6365904B2 (en)
JP3185878B2 (en) Optical inspection equipment
JP2004163129A (en) Defect inspection method
JPH11316195A (en) Surface defect detecting device of transparent plate
JP2001050720A (en) Surface inspection method and device thereof
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JP3106521B2 (en) Optical inspection equipment for transparent substrates
JP2000314707A (en) Device and method for inspecting surface
JPS5933855B2 (en) Surface inspection method
JP2503919B2 (en) Foreign matter inspection device
JP3218726B2 (en) Foreign matter inspection device