JPS58204350A - Method for detecting flaw on surface of metallic object - Google Patents

Method for detecting flaw on surface of metallic object

Info

Publication number
JPS58204350A
JPS58204350A JP8769482A JP8769482A JPS58204350A JP S58204350 A JPS58204350 A JP S58204350A JP 8769482 A JP8769482 A JP 8769482A JP 8769482 A JP8769482 A JP 8769482A JP S58204350 A JPS58204350 A JP S58204350A
Authority
JP
Japan
Prior art keywords
light
angle
reflected light
slab
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8769482A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
北川 孟
Kane Miyake
三宅 苞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8769482A priority Critical patent/JPS58204350A/en
Publication of JPS58204350A publication Critical patent/JPS58204350A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To enable the detection of the defect on a surface with high S/N ratio, by setting the angle between the normal on the surface of a specimen and the incident angle of irradiated light at 15-55 deg. and detecting the scattered light and specular reflected light of <20 deg. angle to the incident direction. CONSTITUTION:A laser light source 22 disposed in the diagonal direction intersecting orthogonally with the traveling direction of a continuous casting slab 20 on the lateral side of the traveling line of said slab irradiates external light in such a way that the angle theta1 between the normal on the surface of the slab 20 and the incident direction of the irradiated light attains 15-55 deg.. The laser light 22a is expanded to a belt shape up to the necessary visual field on the slab 20 by a cylindrical lens 24. On the other hand, a photodetection camera 26 disposed on the same lateral side as the light source 22 of the slab traveling line detects the scattered and reflected light of <20 deg. angle theta2 to the incident direction of the detected light. The outputs of the camera 26 and a camera 28 for detecting regular reflected light are compared in a comparator 34 via signal processing circuits 30, 32, and only the defect signal removed of the spurious defect signal by a scale, etc. is outputted.

Description

【発明の詳細な説明】 本発明は、金属物体表面探傷方法に係り、特に、連続特
進スラブ等の走行中の高温鋼材の表面欠陥をオンライン
で検出する際に用いるのに好適な、走11中の被検体の
表面に外部から光を照射し、被検体表面による反射光を
受光して、被検体の表面欠陥を検出するようにした金属
物体表面探傷方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting flaws on the surface of a metal object, and in particular, a method for detecting defects on the surface of a metal object during running 11, which is suitable for online detection of surface defects in a running high-temperature steel material such as a continuous express slab. The present invention relates to an improvement in a method for detecting defects on the surface of a metal object in which surface defects on the object are detected by irradiating light onto the surface of the object from the outside and receiving light reflected by the surface of the object.

搬送ラインを走行中の被検体の表面に外部から光を照射
し、被検体表面による反射光を受光して、被検体の表面
欠陥を検出するようにした光学的表面探傷方法が知られ
ている。この光学的表面探傷り法は、例えば第1図に示
す如く、被検体10の走4jライン上方の、被検体直上
方向に配置した投光器12から被検体10表面に扇状の
外部光或いは飛点走査される外部光を照射し、同じく被
検体走行ラインの被検体重、[方向に配置した受光器1
4により受光される反射光の諸物連鎖の変化(光量変化
又は回折パターン等)から、被検体10の表面欠陥を検
出するものである。例えば、前記投光器12としてレー
ザ光源を用いた場合には、スポット状の光点を飛点走査
方式で被検体10の幅方向に走査し、被検体10からの
反射光を光電子増倍tRヤシリコンフオトセル等からな
る受光器14で受光して、各点の光量変化から、欠陥部
の幅方向位置を検出する。又、前記投光器12として白
色光の棒状光源を用いた場合には、被検体10からの反
射光を、−次元イメージセンサからなる受光器14で飛
点走査方式により一点く一画素)ずつ順に受光する。
An optical surface flaw detection method is known in which surface defects on the test object are detected by irradiating light from the outside onto the surface of the test object while it is running on a conveyance line, and receiving the reflected light from the test object surface. . This optical surface flaw detection method, for example, as shown in FIG. External light is irradiated, and the light receiver 1 is placed in the direction of the subject's weight on the subject's travel line.
Surface defects on the object 10 are detected from changes in the chain of reflected light (changes in light amount, diffraction pattern, etc.) received by the detector 4. For example, when a laser light source is used as the projector 12, a spot-like light spot is scanned in the width direction of the subject 10 using a flying spot scanning method, and the reflected light from the subject 10 is photoelectron multiplied by tR. The light is received by a light receiver 14 made of a photo cell or the like, and the position of the defective portion in the width direction is detected from the change in the amount of light at each point. When a bar-shaped white light source is used as the light projector 12, the light reflected from the subject 10 is sequentially received by the light receiver 14, which is a -dimensional image sensor, one pixel at a time, using a flying spot scanning method. do.

このような光学的赤面探傷方法によれば、走行中の被検
体10の表面欠陥を非接触でオンライン測定できるとい
う特徴を有するが、従来は、雑音信号を欠陥信号と誤認
し、娯検出の頻度が高く、実用上の障害となっていた。
According to such an optical blush detection method, surface defects of the moving object 10 can be measured online in a non-contact manner. was high, which was an impediment to practical use.

又、被検体10として、例えば冷間圧延鋼板等の常温被
検体が主たる対象とされており、連続鋳造スラブ等のよ
うな^温材の表面探傷にそのまま用いることは、耐熱性
等の点で問題があった。更に、回転ミラ一部等、複雑な
機構を有し、装置全体の耐熱対策及び調整が非帛にI!
!雑であった。
In addition, the test object 10 is mainly a room-temperature test object such as a cold-rolled steel plate, and using it as it is for surface flaw detection of a hot material such as a continuous casting slab is difficult in terms of heat resistance. There was a problem. Furthermore, it has a complicated mechanism such as a part of the rotating mirror, and the heat resistance and adjustment of the entire device is difficult!
! It was rough.

本発明は、前記従来の欠点を解消するべくなされたもの
で、走行中の被検体の表面欠陥を、高(XSN比でMl
良く検出することができ、しかも、投光器や受光器の耐
熱対策が容易な金属物体表面探傷り法を提供することを
目的とする。
The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and it is possible to eliminate surface defects of a moving object by a high (XSN ratio: Ml).
It is an object of the present invention to provide a method for detecting flaws on the surface of a metal object that allows for good detection and allows easy heat resistance measures for a projector and a light receiver.

本発明は、走行中の被検体の表面に外部から光を照射し
、被検体表面による反射光を受光して、被@体の表面欠
陥を検出するようにした金属物体表面像一方法において
、被検体走行ライン側方の、被検体走行方向と直交する
斜め方向に配置した投光器から、被検体表面の法線と照
射光入射方向とのなす角度が15度〜55度となるよう
に被検体表面に外部光を照射し、被検体走行ラインの投
光器と同−側或いは反対側の側方に配置した散乱反射光
受光器により受光される、照射光入射方向或いは正反射
方向となす角度が20度以内の散乱反射光の変化と、被
検体走行ラインの投光器と反対側の側方に配置した正反
射光受光器により受光される正反射光の変化から、被検
体の表面欠陥を検出するようにして、前記目的を達成し
たものである。
The present invention provides a method for imaging the surface of a metal object in which surface defects on the object are detected by irradiating light from the outside onto the surface of a moving object and receiving reflected light from the surface of the object. From a light projector placed on the side of the subject travel line in an oblique direction perpendicular to the subject travel direction, the subject is placed so that the angle between the normal to the subject surface and the incident direction of the irradiation light is 15 degrees to 55 degrees. External light is irradiated onto the surface, and the light is received by a scattered reflection light receiver placed on the same side of the object travel line as the projector or on the opposite side, and the angle made with the irradiation light incident direction or specular reflection direction is 20 Surface defects on the object to be inspected can be detected from changes in the scattered reflected light within a degree and changes in the specularly reflected light received by the specularly reflected light receiver placed on the opposite side of the object's travel line from the projector. The above objectives have been achieved.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、前出第1図に示したような、投光器12によ
り走行中の被検体10の表面に外部から光を照射し、被
検体10の表向による反射光を受光器14により受光し
て、被検体10の表面欠陥を検出するようにした表面探
傷方法において、発明者等が、投光112による照射光
入射方向と、受光器14による反射光受光方向とを種々
変えて最適な位置関係について実験した結果に基づいて
なされたものである。
The present invention, as shown in FIG. In a surface flaw detection method for detecting surface defects of the object 10, the inventors and others varied the incident direction of the irradiated light by the light emitting light 112 and the direction in which the reflected light was received by the light receiver 14 to find the optimal position. This was done based on the results of experiments on the relationship.

即ち、投光器12を、被検体走行ライン側方の、被検体
走行方向と、直交する斜め方向に配冒し、被検体表面の
法線と照射光入射方向とのなす角度θ1を変化させて、
被検体走行ラインの投光器12と同一側の側方に配置し
た受光器14により、照射光入射方向となす角度θ2が
10度の散乱反射光を受光し、これから被検体10の表
面欠陥を検出したところ、欠陥(主として縦割れ)信号
のS 、−′N比は、第2図に示す如くとなった。図か
ら明らかな如く、角度θ1が15度〜55y1の範囲内
にある場合には、欠陥信号のS/N比が、実用上欠陥信
号を弁別し得る水準であるS/N比2.0以上となり、
11度の高い欠陥検出が可能である。
That is, the projector 12 is placed on the side of the subject running line in an oblique direction orthogonal to the subject running direction, and the angle θ1 between the normal to the subject surface and the direction of incidence of the irradiation light is varied.
A light receiver 14 placed on the same side of the object travel line as the light projector 12 receives scattered reflected light having an angle θ2 of 10 degrees with the incident light direction, and surface defects on the object 10 are detected from this light. However, the S, -'N ratio of the defect (mainly vertical crack) signal was as shown in FIG. As is clear from the figure, when the angle θ1 is within the range of 15 degrees to 55y1, the S/N ratio of the defect signal is 2.0 or more, which is the level at which defect signals can be discriminated in practice. Then,
It is possible to detect defects as high as 11 degrees.

又、投光!112による照射光入射方向と被検体表面の
法線とのなす角度θ1を45度に固定して、餉紀受光1
14による散乱反射光受光方向と前記投光!112によ
る照射光入射方向とのなす角度θ2を変化させ、散乱反
射光から検出される欠陥信号のS/N比の変化状態を調
べたところ、第3図に示すような結果が得られた。図か
ら明らかな如く、角度θ2が±20度以内であれば、欠
陥信号のS/N比は2.0以上であり、精度の^い欠陥
検出が可能である。
Also, projecting light! By fixing the angle θ1 between the incident direction of the irradiated light and the normal line of the object surface to 45 degrees,
14 and the direction of receiving the scattered reflected light and the above-mentioned light projection! The change in the S/N ratio of the defect signal detected from the scattered reflected light was investigated by changing the angle θ2 between the beam and the incident direction of the irradiated light by 112, and the results shown in FIG. 3 were obtained. As is clear from the figure, if the angle θ2 is within ±20 degrees, the S/N ratio of the defect signal is 2.0 or more, and highly accurate defect detection is possible.

更に、投光器12を、同じく被検体走行ライン側方の、
被検体走行方向と直交する斜め方向に配置し、被検体表
面の法線と照射光入射方向とのな1p1度θ1を変化さ
せて、被検体走行ラインの投光器12と反対側の側方の
、被検体表面の法線と反射光受光方向とのなす角度が前
記角度θ1と等しい正反射光受光位置に配置した受光器
14により正反射光を受光し、これから被検体1oの表
面欠陥を検出したところ、欠陥信号のS y’ N比は
、第4図に示す如くとなった。図から明らかな如く、正
反射光から求めた欠陥信号に関しても、前記の散乱反射
光から求めた欠陥信号と同様に、角度θ1が15度〜5
5度の範囲内であれば、S / N比2.0以上となり
、精度の高い欠陥検出が可能である。
Furthermore, the projector 12 is also placed on the side of the subject travel line.
It is arranged in a diagonal direction orthogonal to the subject running direction, and the angle θ1 between the normal to the subject surface and the irradiation light incident direction is changed by 1p1 degrees, so that the light on the side opposite to the projector 12 of the subject running line is The specularly reflected light was received by the light receiver 14 placed at the specularly reflected light receiving position where the angle between the normal to the surface of the subject and the direction of receiving the reflected light was equal to the angle θ1, and surface defects on the subject 1o were detected from this. However, the S y'N ratio of the defect signal was as shown in FIG. As is clear from the figure, for the defect signal obtained from specularly reflected light, the angle θ1 is 15 degrees to 5
If it is within the range of 5 degrees, the S/N ratio will be 2.0 or more, and highly accurate defect detection is possible.

又、投光器12による照射光入射方向を、ライン側方の
斜め方向とした場合には、第5図(A)に示す如く、縦
割れ10aの肩部がらの正反射光に近い反射光が強調さ
れて散乱反射光となり、又、縦割れ10aによる正反射
光の減資率も強調されるので、このように、投光器1.
、・2をライン側方の斜め上方に置く方法は、特に走、
行方向と平行な縦割れの検出に対して有効である。又、
被検体1゜からの垂1距離が小さい状態でも、耐熱対策
が容躬である。更に、投光器と反射点の踊離を大きくと
る必要がなく、現場に多い埃の影響に拘わらず、十分な
光が反射点に到達する。
Furthermore, when the incident direction of the light irradiated by the projector 12 is set to an oblique direction to the side of the line, the reflected light close to the regular reflected light from the shoulder of the vertical crack 10a is emphasized, as shown in FIG. In addition, the reduction rate of specularly reflected light due to the vertical crack 10a is also emphasized, so that the projector 1.
,・The method of placing 2 diagonally above the side of the line is especially useful for running,
This method is effective for detecting vertical cracks parallel to the row direction. or,
Even when the vertical distance from the subject is small, heat-resistant measures are advisable. Furthermore, there is no need to provide a large distance between the projector and the reflection point, and sufficient light reaches the reflection point regardless of the influence of dust that is abundant at the site.

尚、前記角度θ看をあまり小さくすると、投光視野の遠
近感が強請され、焦点合せ及び信号処理り際のアドレス
付けに支障をもたらすことがある。
Incidentally, if the angle θ is too small, the perspective of the projected field of view is forced, which may cause problems in addressing during focusing and signal processing.

−h、角度θ1が大であるほど、被検体10の上上動の
影響は受けにくくなるものの、被検体10の上面に近く
なるので、特に高温材の耐熱の面では不和となる。又、
被検体10の下面を反転せずに検査する場合には投光器
12を配設するためのピットの深さを大きくTる必要も
生じる。従って、上述の如き、15度〜551![の範
囲内が好ましく、特に、実用上は、20度〜50度の範
囲がより有効である。
-h, the larger the angle θ1 is, the less it will be affected by the upward movement of the subject 10, but since it will be closer to the top surface of the subject 10, this will be a problem, especially in terms of heat resistance of high-temperature materials. or,
When inspecting the lower surface of the object 10 without inverting it, it is also necessary to increase the depth T of the pit in which the light projector 12 is disposed. Therefore, as mentioned above, 15 degrees ~ 551! It is preferably within the range of [, and in particular, the range of 20 degrees to 50 degrees is more effective in practice.

更に、被検体10の上面に、第5図(A>に示づ如く、
縦割れ10.8とスケール11等の疑似欠陥信号発生源
が存在した場合、散乱反射光受光器によって受光される
受光信号は、第5図(B)に示す如くとなるのに対し、
正反射光受光器によつ(受光される信@は、第5図(C
)に示す如くとなるので、両者の出力信号を比較するこ
とによって、スケール等の疑似欠陥信号発生源に影響さ
れない、精度の良い表面欠陥の検出が可能である。
Furthermore, as shown in FIG. 5 (A>), on the upper surface of the subject 10,
If there are sources of pseudo-defect signals such as vertical cracks 10.8 and scale 11, the light reception signal received by the scattered reflection light receiver will be as shown in FIG. 5(B).
The signal received by the specular reflection light receiver is shown in Figure 5 (C
), by comparing the output signals of the two, it is possible to detect surface defects with high precision without being influenced by sources of pseudo-defect signals such as scale.

第5図(B)、(C)において、ビークAは疑似欠陥信
号、ビークBは欠陥信号である。
In FIGS. 5(B) and 5(C), beak A is a pseudo defect signal and beak B is a defect signal.

本発明は、−F記のような知見に基いてなされたもので
ある。
The present invention has been made based on the knowledge as described in -F.

以下図面を参照して、本発明に係る金属物体表面探傷方
法が採用された連続鋳造スラブの表面探傷装置の実施例
を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a continuous casting slab surface flaw detection apparatus employing a metal object surface flaw detection method according to the present invention will be described in detail below with reference to the drawings.

本実施例は、第6図に示す如く、連続鋳造スラブ20の
走行ライン側方のスラブ走行方向と直交する斜め方向に
配置された連続鋳造スラブ20表面の法線と照射光入射
方向とのなす角度θ1が、15度〜5511となるよう
に連続鋳造スラブ2゜の表面に外部光を照射するレーザ
光122と、該レーザ光源22により発振されたレーザ
光22aを、連続鋳造スラブ20上の必!視野幅まで帯
状に広げるためのシリンドリカルレンズ24と、スラブ
走行ラインの前記レーザ光源22と同一側の側りに配置
された、照射光入射方向となす角度θ2が20[1以内
の散乱反射光を受光するための散乱反射光受光カメラ2
6と、スラブ走行ラインのレーザ光源22と反対側の側
方の、連続鋳造スラブ20表面の法線と反射光受光方向
とのなす角度が前記角度θ1と等しい正反射光受光位置
に配−された、正反射光を受光するための正反射光受光
カメラ28と、前記散乱反射光受光カメラ26出力の散
乱反射光信号を処理するための散乱反射光信号51!l
理回路30と、前記正反射光受光カメラ28出力の正反
射光信号を処理するための正反射光信号処理回路32と
、前記散乱反射光信号処理回路30と正反射光信号処理
回路32の出力を比較して、スケール等による疑似欠陥
信号が除去された欠陥信号のみを出りする比較回路34
とから構成されている。第6図において、36.38は
、それぞれ散乱反射光受光カメラ26及び正反射光受光
カメラ28の受光部に配設された、レーザ光線22から
照射されたレーザ光22aの使用波長域のみを通過させ
ることによって、連続鋳造スラブ20の自発光エネルギ
の影響を除去し、検出精度を高めるための干渉フィルタ
である。
In this embodiment, as shown in FIG. 6, the normal line of the surface of the continuous casting slab 20, which is disposed on the side of the running line of the continuous casting slab 20 in an oblique direction orthogonal to the slab running direction, and the irradiation light incident direction The laser beam 122 that irradiates the surface of the continuous casting slab 2° with external light so that the angle θ1 is 15 degrees to 5511 degrees, and the laser beam 22a oscillated by the laser light source 22 are applied to the continuous casting slab 20 as required. ! A cylindrical lens 24 for widening the field of view in a strip shape and a cylindrical lens 24 disposed on the same side of the slab running line as the laser light source 22 are arranged to suppress scattered reflected light whose angle θ2 with the irradiation light incident direction is within 20[1]. Scattered reflected light receiving camera 2 for receiving light
6, and is arranged at a specularly reflected light receiving position on the side opposite to the laser light source 22 of the slab traveling line, where the angle between the normal to the surface of the continuous casting slab 20 and the reflected light receiving direction is equal to the angle θ1. In addition, a specular reflection light receiving camera 28 for receiving specular reflection light, and a scattering reflection light signal 51 for processing the scattering reflection light signal output from the scattering reflection light receiving camera 26! l
a specular reflection light signal processing circuit 32 for processing the specular reflection light signal output from the specular reflection light receiving camera 28; and outputs of the scattering reflection light signal processing circuit 30 and the specular reflection light signal processing circuit 32. A comparison circuit 34 outputs only defect signals from which pseudo defect signals due to scale etc. have been removed.
It is composed of. In FIG. 6, 36 and 38 pass only the usable wavelength range of the laser beam 22a irradiated from the laser beam 22 disposed in the light receiving parts of the scattered reflection light receiving camera 26 and the specular reflection light receiving camera 28, respectively. This is an interference filter for removing the influence of self-luminous energy of the continuous casting slab 20 and improving detection accuracy.

前記レーザ光ai22としては、例えば出力5wのアル
ゴンレーザを用いることができる。一般に、高温物体を
被検体とした場合、被検体の自発光エネルギは、赤外及
び可視の長波長側に強い1ネルギ成分を持つので、反射
光を受光して欠陥信号を得る場合には、なるべく自発光
成分の少ない短波長の光を投射した方が有利である。ア
ルゴンレーザは、最強出力の波長成分が50011−近
傍の波長を持つので、連続鋳造スラブのような高温鋼材
の自発光成分の比較的弱い波長域に該当し、且つ、この
種のレーザは、連続して比較的強い出力が得られるので
、表面探傷の光源としては有効である。
As the laser beam ai22, for example, an argon laser with an output of 5 W can be used. Generally, when a high-temperature object is used as the test object, the self-luminous energy of the test object has a strong 1-energy component on the long wavelength side of infrared and visible wavelengths, so when obtaining a defect signal by receiving reflected light, It is advantageous to project light of a short wavelength with as few self-luminous components as possible. Since the wavelength component of the strongest output of the argon laser has a wavelength in the vicinity of 50011, it falls within the wavelength range where the self-luminous component of high-temperature steel materials such as continuous casting slabs is relatively weak. It is effective as a light source for surface flaw detection because it can provide a relatively strong output.

前記散乱反射光受光カメラ26及び正反射光受光カメラ
28としては、例えば電荷結合デバイスを用いた電子走
査型イメージセンサが焦点面に配設されたものを用いる
ことができる。各受光カメラのレンズは、被検体−受光
カメラ間距離、帯状投光面の幅等により、最適な口径に
選定されている。今、2048@子のセンサを用いて視
野幅1−を検査する場合、その幾何学的分解能は約Q、
5m−となる。
As the scattered reflection light receiving camera 26 and the specular reflection light receiving camera 28, for example, an electronic scanning image sensor using a charge-coupled device can be used, which is disposed on the focal plane. The lens of each light-receiving camera is selected to have an optimal aperture depending on the distance between the subject and the light-receiving camera, the width of the band-shaped light projection surface, and the like. Now, when inspecting the field of view width 1- using a sensor of 2048 @ child, its geometric resolution is approximately Q,
It becomes 5m.

前記レーザ光源22、シリンドリカルレンズ24等を含
む投光装置、前記散乱反射光受光カメラ26、干渉フィ
ルタ36等を含む散乱反射光受光装置、前記正反射光受
光カメラ28、干渉フィルタ38等を含む正反射光受光
装置は、いずれも、連続鋳造スラブ20の斜め方向に十
分大きい距−を保って配置され、且つ、長時間連続使用
可能なように、気体或いは液体による耐熱対策が施され
ている。
A light projection device including the laser light source 22, the cylindrical lens 24, etc.; a scattering reflected light receiving device including the scattered reflected light receiving camera 26; an interference filter 36; a regular reflecting light receiving camera 28; All of the reflected light receivers are arranged at a sufficiently large distance in the diagonal direction of the continuous casting slab 20, and are heat-resistant with gas or liquid so that they can be used continuously for a long time.

以下作用を説明する。The action will be explained below.

表面濃度500℃以上の連続鋳造スラブ20は、製造ラ
インを矢印Cの方向にほぼ一定の速度で走行しており、
少なくとも被検面が平坦とみなし得る状態となっている
。レーザ光源22から発振されたレーザ光22aは、シ
リンドリカルレンズ24により帯状に連続鋳造スラブ2
0上に投光される。連続鋳造スラブ20の被検面によっ
て反射されたレーザ光は、散乱反射光受光カメラ26及
び正反射光受光カメラ28に入射し、帯状光の像が、各
受光カメラ26.28の焦点面に一次元情報として入力
され、各信号処理回路30,32で欠陥信号化された後
、比較回路34で、各欠陥信号の被検体幅方向アドレス
も考謙して、疑似欠陥信号が除去され、真正の欠陥信号
のみが出力される。
The continuous casting slab 20 with a surface concentration of 500° C. or more is running on the production line at a substantially constant speed in the direction of arrow C,
At least the surface to be inspected is in a state that can be considered flat. The laser beam 22a emitted from the laser light source 22 is applied to the continuous casting slab 2 in a strip shape by a cylindrical lens 24.
The light is projected onto 0. The laser light reflected by the surface to be inspected of the continuous casting slab 20 enters the scattered reflection light receiving camera 26 and the specular reflection light receiving camera 28, and a band-shaped light image is firstly focused on the focal plane of each light receiving camera 26, 28. After being input as original information and converted into defect signals by each signal processing circuit 30 and 32, a comparison circuit 34 also considers the address of each defect signal in the width direction of the object, removes false defect signals, and converts it into a genuine defect signal. Only defect signals are output.

本実施例においては、投光器として、レーザ光源22を
用いているので、レーザ光源22及びシリンドリカルレ
ンズ24の部分と、^温、材である連続鋳造スラブ20
とのパスラインの距離、及び、連続鋳造スラブ20と各
受光カメラ26.28とのパスラインの距離を大きくと
ることが可能であり、耐熱対策上一層有利である。即ち
、レーザ光は、強い指向性を持っており、そのビームが
非常に小さく、エネルギ密度が極めて^いため、距離に
対する減衰がほとんど無く、シリンドリカルレンズ24
で横に広げても、十分に^いエネルギ密度が得られる。
In this embodiment, since the laser light source 22 is used as the projector, the laser light source 22 and the cylindrical lens 24 are connected to the continuous casting slab 20, which is the material.
It is possible to increase the distance between the pass line between the continuous casting slab 20 and each of the light receiving cameras 26 and 28, which is more advantageous in terms of heat resistance. That is, the laser beam has strong directivity, the beam is very small, and the energy density is extremely high, so there is almost no attenuation with distance, and the cylindrical lens 24
Even if it is spread horizontally, a sufficiently high energy density can be obtained.

又、レーザ光の特性として、その波長成分が単一である
ので、本実施例のように、使用するレーザに適した干渉
フィルタ36.38を、各受光カメラ26.28のレン
ズ前面に取付けることによって、レーザ光のみを極めて
選択的に受光することが可能であり、自発光1ネルギの
影響を効果的に除去することが容易である。尚、投光器
の種類は、これに限定されず、例えば、白色光を投射す
る水銀灯を用いることも可能である。
Furthermore, as a characteristic of laser light, its wavelength component is single, so as in this embodiment, an interference filter 36, 38 suitable for the laser to be used is attached to the front surface of the lens of each light receiving camera 26, 28. Therefore, it is possible to receive only the laser beam extremely selectively, and it is easy to effectively eliminate the influence of self-luminous energy. Note that the type of projector is not limited to this, and for example, a mercury lamp that projects white light can also be used.

又、本実施例においては、レーザ光源22からの光を、
連続鋳造スラブ20の表面に帯状に投光し、その反射光
を、電子走査型のイメージセンサで受光し−(出力信号
を得るようにしているので、信号取出し走査を、従来の
機械的走査より格段に^透化できる。従って、被検体の
走行速度が10001、/分収上の場合でも、応答する
ことが可能である。又、光電子増倍管やシリコンフォト
セル、増幅器等で受光器を構成した場合に比べて、受光
器が小型rあり、耐湿、耐熱、耐酸等の遮蔽対策が行い
やりい。更に、探傷装置全体として、回転部分がないの
で、保守も容易である。
Furthermore, in this embodiment, the light from the laser light source 22 is
Light is projected in a band shape onto the surface of the continuous casting slab 20, and the reflected light is received by an electronic scanning image sensor to obtain an output signal, so signal extraction scanning is easier than conventional mechanical scanning. It is extremely transparent. Therefore, it is possible to respond even when the traveling speed of the object is above 10001/min. Also, it is possible to respond by using a photomultiplier tube, silicon photocell, amplifier, etc. Compared to the case where the flaw detection device is configured, the light receiver is smaller, and it is easier to take shielding measures such as moisture resistance, heat resistance, acid resistance, etc.Furthermore, since there are no rotating parts in the flaw detection device as a whole, maintenance is easy.

尚、前記実施例においては、散乱反射光受光カメラ26
が、スラブ走行ラインのレーザ光源22と同一側の側方
に配Ifされ、該受光カメラ26により、照射光入射す
向と′なす角度が20It以内の散乱反射光を受光づる
ようにされていたが、散乱反射光を受光する15法は、
これに限定されず、散乱反射光受光カメラ26を、スラ
ブ走行ラインのレーザ光m22と反2→側の側h、即ら
、正反射光受光カメラ28と同一側の側方に配置して、
前記受光カメラ26により、正反射方向となす角度が2
0度以内の散乱反射光を受光づることも司能である。
In the above embodiment, the scattered reflected light receiving camera 26
was arranged on the same side of the slab running line as the laser light source 22, and the light receiving camera 26 was configured to receive scattered reflected light having an angle of 20 It or less with respect to the incident direction of the irradiated light. However, the 15 method for receiving scattered reflected light is
However, the scattered reflection light receiving camera 26 is arranged on the side h opposite to the laser beam m22 of the slab traveling line, that is, on the same side as the specular reflection light receiving camera 28,
The light receiving camera 26 makes an angle of 2 with the direction of specular reflection.
It is also capable of receiving scattered reflected light within 0 degrees.

前記実施例においては、本発明が、高温材である連続鋳
造スラブの探傷に適用されていたが、本発明の適用範囲
はこれに限定されず、より^速で走行する仕上圧延機出
側の熱延鋼帯のオンライン探傷、酸洗ラインのオンライ
ン探傷、冷延綱帯、鋼板のオンライン探傷等にも同様に
適用できることは明らかである。
In the above embodiments, the present invention was applied to flaw detection on continuously cast slabs, which are high-temperature materials. It is clear that the present invention can be similarly applied to online flaw detection of hot rolled steel strips, online flaw detection of pickling lines, online flaw detection of cold rolled steel strips, steel plates, etc.

以↓説明した通り、本発明によれば、連続鋳造スノ1等
の走tl中の被検体の表面欠陥を、高いSN比(゛軸度
良く検出づることがてき、しかも、投光器ヤノ受光器の
耐熱対策も容易C゛ある。又、スケール等の疑似欠陥の
彰會を受0ることがない等の優れた効果を有づる。
As explained below, according to the present invention, it is possible to detect surface defects on an object to be inspected during running, such as continuous casting snow 1, with a high signal-to-noise ratio (accuracy), and moreover, It is easy to take measures against heat resistance.It also has excellent effects such as not suffering from pseudo-defects such as scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の表面探傷方法が行われている状態を示
4斜視図、第2図は、本発明の原理を示す、i1!検体
表面の法線と照射光入射方向とのなす角度と、散乱反射
光の変化から検出した欠陥信号のS・N比との関係の一
例を示f線図、第3図は、同じく照射光入射方向と散乱
反射光受光方向とのなす角度と、散乱反射光の変化から
検出した欠陥信号のS、′N比との関係の一例を示す線
図、第4図は、同じく、被検体表面の法線と照射光入射
方向とのなす角度と、正反射光の変化から検出した欠陥
16月のS 、/ N比との関係の一例を示す線図、W
4b図(A)は、同じく縦刷れとスケールを有する被検
体の表面に斜め方向かう照射光を大剣している状態を示
す断面図、第5図(B)、(C)は、それぞれ、同じく
散乱反射光及び正反射光の変化状態を示す線図、第6図
は、本発明に係る金属物体表面探傷方法が採用された連
続鋳造スラブの表面探傷装菅の実施例の構成を示す、一
部ブロック線図を含む斜視図である。 10・・・被検体、   10a・・・縦割れ、11・
・・スケール、  12・・・投光器、14・・・受光
器、   20・・・連続鋳造スラブ、22・・・レー
ザ光源、24・・・シリンドリカルレンズ、26・・・
散乱反射光受光カメラ、 28・・・正反射光受光カメラ、 30・・・散乱反射光信目処N回路、 32・・・正反射光信号処理回路、34・・・比較回路
、36.38・・・干渉フィルタ。 代理人  高 矢  論 (ほか1名) 第1図 第2図 −片度θC
FIG. 1 is a perspective view showing a state in which a conventional surface flaw detection method is being performed, and FIG. 2 is a perspective view showing the principle of the present invention. i1! Figure 3 shows an example of the relationship between the angle between the normal to the specimen surface and the incident direction of the irradiated light and the S/N ratio of the defect signal detected from changes in the scattered reflected light. FIG. 4 is a diagram showing an example of the relationship between the angle between the incident direction and the scattered reflected light receiving direction and the S,'N ratio of the defect signal detected from the change in the scattered reflected light. A diagram showing an example of the relationship between the angle between the normal line and the incident direction of the irradiated light and the S,/N ratio of the defect detected from the change in specularly reflected light, W
Figure 4b (A) is a cross-sectional view showing the state in which the irradiation light is directed diagonally to the surface of the subject that also has vertical prints and scales, and Figures 5 (B) and (C) are respectively FIG. 6 is a diagram showing the state of change of scattered reflected light and specular reflected light. FIG. FIG. 2 is a perspective view partially including a block diagram. 10... Subject, 10a... Vertical crack, 11.
...Scale, 12... Emitter, 14... Light receiver, 20... Continuous casting slab, 22... Laser light source, 24... Cylindrical lens, 26...
Scattered reflected light receiving camera, 28...Specular reflected light receiving camera, 30...Scattered reflected light target N circuit, 32...Specular reflected light signal processing circuit, 34...Comparison circuit, 36.38...・Interference filter. Agent Takaya Ron (and 1 other person) Figure 1 Figure 2 - Single degree θC

Claims (1)

【特許請求の範囲】[Claims] 〈1)走行中の被検体の表向に外部/Jlら光を熊躬し
、被検体表面による反射光を受光して、被検体の表面欠
陥を検出づるようにした金属物体表面探傷り法において
、被検体走行ライン側方の、被検体走行ラインと直交づ
る斜め方向に配置した投光器から、被検体表面の払線と
照射光入射方向とのなづ角度が15度〜55度となるよ
うに被検体表面に外部光を照射し、被検体走行ラインの
投光器と同−側或いは反対側の側方に配置した散乱反射
光受光器により受光される、照射光入射方向或いは止反
側方向とな寸角度が20度以内の散乱反射光の変化と、
被検体走行ラインの投光器と反対側の側りに配置した正
反射光受光器により受光される正反射光の変化から、被
検体の表面欠陥を検出するようにしたことを特徴とする
金属物体表面探傷り沫。
(1) A metal object surface flaw detection method in which external light is directed onto the surface of a moving object, and the reflected light from the surface of the object is received to detect surface defects on the object. , from a projector placed on the side of the subject running line in an oblique direction orthogonal to the subject running line, so that the angle between the line on the subject's surface and the direction of incidence of the irradiated light is 15 degrees to 55 degrees. External light is irradiated onto the surface of the test object, and the light is received by a scattered reflection light receiver placed on the same side of the test object travel line as the projector or on the opposite side. Changes in scattered reflected light within a dimension angle of 20 degrees,
A surface of a metal object, characterized in that surface defects on the object to be inspected are detected from changes in specularly reflected light received by a specularly reflected light receiver placed on the opposite side of the object's travel line to the projector. Detecting damage.
JP8769482A 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object Pending JPS58204350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8769482A JPS58204350A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8769482A JPS58204350A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Publications (1)

Publication Number Publication Date
JPS58204350A true JPS58204350A (en) 1983-11-29

Family

ID=13922028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8769482A Pending JPS58204350A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Country Status (1)

Country Link
JP (1) JPS58204350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405806A2 (en) * 1989-06-30 1991-01-02 Jaguar Cars Limited Method of and apparatus for inspecting surfaces for defects
JP2014025809A (en) * 2012-07-26 2014-02-06 Jfe Steel Corp Method and apparatus for detecting scratch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405806A2 (en) * 1989-06-30 1991-01-02 Jaguar Cars Limited Method of and apparatus for inspecting surfaces for defects
US5086232A (en) * 1989-06-30 1992-02-04 Jaguar Cars Limited Methods of and apparatus for inspecting surfaces for defects
JP2014025809A (en) * 2012-07-26 2014-02-06 Jfe Steel Corp Method and apparatus for detecting scratch

Similar Documents

Publication Publication Date Title
JPH03267745A (en) Surface property detecting method
JPH0329318B2 (en)
JPS6036013B2 (en) Metal surface defect inspection method
JPS58204353A (en) Method for detecting flaw on surface of metallic object
JPH11316195A (en) Surface defect detecting device of transparent plate
JPS58204350A (en) Method for detecting flaw on surface of metallic object
JPH0694642A (en) Method and equipment for inspecting surface defect
JPS58204356A (en) Method for detecting flaw on surface of metallic object
JP2873450B2 (en) Defect inspection device using light
JPS58204348A (en) Method for detecting flaw on surface of metallic object
JP2004069571A (en) Surface inspection apparatus
JPH0520695B2 (en)
JP3432273B2 (en) Foreign matter inspection device and foreign matter inspection method
JPS58204355A (en) Method for detecting flaw on surface of metallic object
JPS58204349A (en) Method for detecting flaw on surface of metallic object
JPH0228815B2 (en)
JPH1194750A (en) Method and apparatus for inspecting photoreceptor drum
JP2000314707A (en) Device and method for inspecting surface
JPH07306161A (en) Method for detecting segregation of metallic material
JPH08304052A (en) Lens inspection method and device
JPS58204352A (en) Method for detecting flaw on surface of metallic object
JPS58204354A (en) Method for detecting flaw on surface of metallic object
JPH07286968A (en) Surface defect inspecting device
JPH03115844A (en) Detection of surface defect
JP3406951B2 (en) Surface condition inspection device