JPS58204348A - Method for detecting flaw on surface of metallic object - Google Patents

Method for detecting flaw on surface of metallic object

Info

Publication number
JPS58204348A
JPS58204348A JP8769282A JP8769282A JPS58204348A JP S58204348 A JPS58204348 A JP S58204348A JP 8769282 A JP8769282 A JP 8769282A JP 8769282 A JP8769282 A JP 8769282A JP S58204348 A JPS58204348 A JP S58204348A
Authority
JP
Japan
Prior art keywords
light
angle
slab
irradiated
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8769282A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
北川 孟
Kane Miyake
三宅 苞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8769282A priority Critical patent/JPS58204348A/en
Publication of JPS58204348A publication Critical patent/JPS58204348A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To enable the detection of the defect on a surface with high S/N ratio, by setting the angle between the incident direction of the irradiated light from the lateral side and the normal of the surface of a specimen at 15-55 deg. and detecting the scattering light of <20 deg. the angle to the incident direction of the irradiated light. CONSTITUTION:A laser light source 22 disposed in the diagonal direction intersecting orthogonally with the traveling direction of a continuous casting slab 20 on the lateral side of the traveling line of said slab irradiates external light in such a way that the angle theta1 between the normal on the surface of the slab 20 and the incident direction of the irradiated light attains 15-55 deg.. The laser light 22a is expanded to a belt shape up to the necessary visual field on the slab 20 by a cylindrical lens 24. On the other hand, a photodetection camera 26 disposed on the same lateral side as the light source 22 of the slab traveling line detects the scattered and reflected light of <20 deg. angle theta2 to the incident angle of the irradiated light and a signal processing circuit 28 outputs a defect signal. The S/N ratio of the defect signal is thus made >=2.0 and the defect detection with high accuracy is made possible.

Description

【発明の詳細な説明】 本発明は、金属物体表面探傷方法に係り、特に、連続鋳
造スラブ等の走行中の高−鋼材の表面欠陥tオンライン
で検出する際に用いるのに好適な、走行中の被検体のI
!面に外部から光を照射し、被検体表面による反射光を
受光して、被検体の表面欠陥を検出するようにし念金属
物体表面探傷方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting flaws on the surface of a metal object, and particularly to a method for detecting flaws on the surface of a metal object, which is suitable for online detection of surface defects in a high-grade steel material such as a continuously cast slab. I of the subject of
! This invention relates to an improvement in a method for detecting defects on the surface of a metal object by irradiating the surface with light from the outside and receiving light reflected by the surface of the object to detect surface defects on the object.

搬送ラインを走行中の被検体の表面に外部から光を照射
し、被検体表面による反射光を受光して、被検体の表面
欠陥を検出するようにした光学的表向探傷方法が知られ
ている。この光学的表面探傷方法は、例えば第1図に示
す如く、被検体10の走行ライン上方の、被検体直上方
向に配置した投光器12かも被検体10表面に扇状に拡
げて同時に照射された外部光或いは飛点走査きれる外部
光を利用し、同じく被検体走行ラインの被検体重2ヒ方
向に配置した受光器14により受光される反射光(D諸
物埋置の変化(光量変化又は回折パターン等ンから、被
検体100表面欠陥を検出するものである0例えば、前
記投光器12としてレーザ光源を用いた場合には、スポ
ット状の光点を地点走査方式で被検体100幅方向に走
査し、被検体10からの反射光を光電子増倍管やシリコ
ンフォトセル等からなる受光器14で受光して、各点の
光量変化から、欠陥部の幅方向位tt−検出する。
An optical surface flaw detection method is known in which surface defects on the test object are detected by irradiating light from the outside onto the surface of the test object while it is running on a conveyance line and receiving the reflected light from the test object surface. There is. In this optical surface flaw detection method, for example, as shown in FIG. 1, a projector 12 placed directly above the object 10 above the travel line of the object 10 is used to simultaneously irradiate the surface of the object 10 with external light spread in a fan shape. Alternatively, using external light that can scan flying spots, reflected light received by the light receiver 14, which is also placed in the direction of the subject's weight on the subject's travel line (D. For example, when a laser light source is used as the projector 12, a spot-shaped light point is scanned in the width direction of the object 100 using a spot scanning method. The reflected light from the specimen 10 is received by a light receiver 14 made of a photomultiplier tube, a silicon photocell, etc., and the widthwise position tt of the defective portion is detected from the change in the amount of light at each point.

又、前記投光器12として白色光の棒状光源を用いた場
合には、被検体10かもの反射光を、−次元イメージセ
ンサかもなる受光器14で飛偉走査方式により一点(一
画素)ずつ順に受光する。
When a bar-shaped light source of white light is used as the light projector 12, the light reflected from the object 10 is sequentially received one point (one pixel) at a time by a light receiver 14, which may also be a -dimensional image sensor, using a flying scanning method. do.

このような光学的表面探傷方法によれば、走行中の被検
体100表面欠陥會非接触でオンライン測定できるとい
う特徴を有するが、従来は、雑音信号を欠陥信号と糾問
し、誤検出のm度が高(、実用上の障害となっていた。
This optical surface flaw detection method has the feature of being able to measure surface defects on the moving object 100 without contact, but conventionally, a noise signal is interpreted as a defect signal and the number of false detections is reduced. was high (and had become an obstacle in practical use).

又、被検体10として、例えば冷間圧延鋼板尋の常温被
検体が主として対象ときれており、連続鋳造スラブ等の
ような高温材の表面探傷にそのit用いることは、耐熱
性等の点で問題があった。更に、回転ミラ一部等、複雑
な機構t−有し、装置全体の耐熱対策及び調整が非常に
繁雑であった。
In addition, the test object 10 is mainly a room-temperature test object such as a cold-rolled steel plate, and it is difficult to use it for surface flaw detection of high-temperature materials such as continuous casting slabs due to its heat resistance. There was a problem. Furthermore, it has a complicated mechanism such as a part of the rotating mirror, and the heat resistance measures and adjustments for the entire device are extremely complicated.

本発明は、前記従来の欠点を解消するべくなされたもの
で、走行中の被検体の&面欠陥を、高いS/N比で精度
良(検出することができ、しかも、投光器や受光器の耐
熱対策が容易な金属物体表面探傷方法を提供することを
目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional art. The purpose of this invention is to provide a method for detecting flaws on the surface of a metal object that allows easy heat resistance measures.

本発明は、走行中の被検体の表面に外部から光を照射し
、被検体表面による反射光を受光して、被検体の表面欠
陥を検出するようにした金属物体表面探傷方法において
、被検体走行ライン側方の、被検体走行方向と直交する
斜め方向に配置した投光器から、被検体表面の法線と照
射光入射方向とのなす角度が15度〜55度となるよう
に被検体表面に外部光を照射し、被検体走行ラインの投
光器と同−側或いは/及び反対側の側方に配置した受光
器により受光される、照射光入射方向或いは/及び正反
射方向となす角度が20度以内の散乱反射光の変化から
、被検体の表面欠陥を検出するようにして、前記目的を
達成したものである。
The present invention provides a method for detecting surface flaws on the surface of a metal object in which surface defects on the object are detected by irradiating light from the outside onto the surface of a moving object and receiving reflected light from the surface of the object. A light projector placed on the side of the travel line in an oblique direction perpendicular to the travel direction of the test object is used to illuminate the surface of the test object such that the angle between the normal to the test surface and the incident direction of the irradiated light is between 15 degrees and 55 degrees. External light is irradiated and received by a light receiver placed on the same side and/or opposite to the projector of the subject travel line, and the angle between the irradiated light incident direction and/or specular reflection direction is 20 degrees. This object has been achieved by detecting surface defects on the object from changes in the scattered reflected light within a range of 1.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、前出第1図に示したような、投光器12によ
り走行中の被検体100表面に外部から光を照射し、被
検体10の&面による反射光を受光器14により受光し
て、被検体10のlI面欠陥を検出するようにした表面
探傷方法において、発明者等が、投光器12による照射
光入射方向と、受光器14による反射光受光方向とを種
々質えて最適な位愛関係について寮験した結果に基いて
なされたものである。
The present invention, as shown in FIG. In a surface flaw detection method for detecting defects on the II surface of a test object 10, the inventors determined the optimum position by varying the incident direction of the irradiated light from the light projector 12 and the direction of the reflected light received by the light receiver 14. This was based on the results of my dormitory experience regarding the relationship.

即ち、投光器12を、被検体走行ライン側方の、被検体
走行方向と直交する斜め方向に配置し、被検体表面の法
線と照射光入射方向とのなす角R’+を変化させて、被
検体走行ラインの投光器12と同一側の側方に配着した
受光器14により、照射光入射方向となす角度0.が1
0度の散乱反射光を受光し、これから被検体10の表面
欠陥を検出し次ところ、欠陥(主として縦割れ)信号の
S/N比は、第2図に示す如くとなった0図から明らか
な如く、角度θ、が15Jf〜5b度の範囲内にある場
合には、欠陥信号の8/N比が、実用上欠陥信号を弁別
し得る水準であるS/N比2.0以上となり、精度の高
い欠陥検出が可能である。
That is, the projector 12 is placed on the side of the subject running line in an oblique direction perpendicular to the subject running direction, and the angle R'+ between the normal to the subject surface and the incident direction of the irradiation light is varied. The light receiver 14 arranged on the same side of the subject travel line as the light emitter 12 allows the angle 0.00000000000 to be made with the direction of incidence of the irradiated light. is 1
After receiving the scattered reflected light at 0 degrees and detecting surface defects on the object 10, the S/N ratio of the defect (mainly vertical cracks) signal is clear from the 0 degree diagram shown in Figure 2. As shown, when the angle θ is within the range of 15Jf to 5b degrees, the 8/N ratio of the defect signal becomes 2.0 or more, which is a level that can practically discriminate the defect signal, Highly accurate defect detection is possible.

又、投光器12による照射光入射方向と被検体表面の法
線とのなす角度0.を45度に固定して、前記受光器1
4による散乱反射光受光方向と前記投光器12による照
射光入射方向とのなす角度−曾t−変化させ、散乱反射
光から検出される欠陥信号O8/N比の変化状lIIを
調べたところ、第3図に示すような結果が得られた。図
から明らかな如く、角f1が±20度以内であれば、欠
陥信号のS/N比は2.0以上であり、精度の高い欠陥
検出が可能である。
Also, the angle between the direction of incidence of the irradiated light from the projector 12 and the normal to the surface of the subject is 0. is fixed at 45 degrees, and the receiver 1
When the angle between the receiving direction of the scattered reflected light by 4 and the incident direction of the irradiated light by the projector 12 was varied by t, and the variation lII of the defect signal O8/N ratio detected from the scattered reflected light was investigated, The results shown in Figure 3 were obtained. As is clear from the figure, if the angle f1 is within ±20 degrees, the S/N ratio of the defect signal is 2.0 or more, and highly accurate defect detection is possible.

更に、投光器12による照射光入射方向を、ライン側方
の斜め方向とした場合には、第4図(4)に示す如(、
縦割れ10mの肩部かもの正反射光に近い反射光が強調
されて散乱反射光となるので、このように、投光器′1
2t−ライン側方の斜村上方に置(方法は、特に走行方
向と平行な縦割れの検出に対して有効である。第4図(
B)は、入射角度45度の場合の受光波形を示したもの
であり、ビークAが欠陥信号である。又、被検体10か
もの垂直距離が小さい状態でも、耐熱対策が容易である
。更に、投光器と反射点の距Mを大きくとる必要がな(
、現場に多いほこりの影響に拘らず、十分な光が反射点
に到達する。
Furthermore, when the incident direction of the irradiated light from the projector 12 is set to the diagonal direction to the side of the line, as shown in FIG.
Since the reflected light close to the specular reflected light from the shoulder of the 10m vertical crack is emphasized and becomes scattered reflected light, the projector '1
2t - above the diagonal village on the side of the line (the method is particularly effective for detecting longitudinal cracks parallel to the running direction. Fig. 4 (
B) shows a received light waveform when the incident angle is 45 degrees, and beak A is a defect signal. Further, even when the vertical distance between the object 10 and the object 10 is small, heat resistance measures can be easily taken. Furthermore, there is no need to increase the distance M between the projector and the reflection point (
, Sufficient light reaches the reflection point, regardless of the influence of dust that is abundant at the site.

伺、前記角度01をあまり小さくすると、投光視野の遠
近感が強調され、焦点合せ及び信号処理の際のアドレス
付けに支障をもたらすことがある。
However, if the angle 01 is made too small, the perspective of the projected field of view will be emphasized, which may cause problems in addressing during focusing and signal processing.

一方、角度0.が太であるほど、被検体10の上下動の
影響は受けにくくなるものの、被検体10の上面に近く
なるので、特に高温材の耐熱の面では不利となる。又、
被検体10の下面を反転せずに検査する場合には投光器
12を配設するためのビットの深さを太き(する必要も
生じる。従って、上述の如き、15度〜551fの範囲
内が好ましく、特に、寮用上は、20度〜50度の範囲
がより有効である。
On the other hand, the angle is 0. The thicker it is, the less it will be affected by vertical movement of the subject 10, but since it will be closer to the top surface of the subject 10, this will be disadvantageous, especially in terms of heat resistance of high-temperature materials. or,
When inspecting the lower surface of the object 10 without inverting it, it becomes necessary to increase the depth of the bit for arranging the projector 12. Therefore, as mentioned above, within the range of 15 degrees to 551 Preferably, a range of 20 degrees to 50 degrees is particularly effective for dormitory use.

本発明は、上記のような知見に基いてなされたものであ
る。
The present invention has been made based on the above findings.

以下図面を参照して、本発明に係る金属物体表面探傷方
法が採用された連続鋳造スラブの表面探傷装置の実施例
t−tf−細に説明するO本実施例は、第5図に示す如
(、連続鋳造スラブ20υ走行ライン側方のスラブ走行
方向と直交する斜め方向に配置された、連続鋳造スラブ
20表向の法紐と照射光入射方向とのなす角度θ1が、
15度〜55度となるように連続鋳造スラブ200表面
に外部光を照射するレー°ザ光源22と、該レーザ光源
22により発振されたレーザ光22mを、連続鋳造スラ
ブ20上の必要視野幅迄帯状に広げるためのシリンドリ
カルレンズ24と、スラブ走行ラインの前記レーザ光源
22と同一側の側方に配置され、照射光入射方向となす
角層θ曾が20f以内の散乱反射光を受光するための受
光力成されている。第5図において、30は、受光カメ
ラ26の受光部に配設これた、レーザ光源22から照射
されたレーザ光22mの使用波長域のみを通過させるこ
とfCよって、連続鋳造スラブ20の自発光エネルギの
影響を除去し、検出精[[めるための干渉フィルタであ
る。
Hereinafter, with reference to the drawings, an embodiment of a continuous casting slab surface flaw detection apparatus employing the metal object surface flaw detection method according to the present invention will be described in detail. (The angle θ1 between the webbing on the surface of the continuous casting slab 20, which is arranged in an oblique direction orthogonal to the slab running direction on the side of the continuous casting slab 20υ running line, and the irradiation light incident direction is,
A laser light source 22 irradiates external light onto the surface of the continuous casting slab 200 at an angle of 15 degrees to 55 degrees, and 22 m of laser light oscillated by the laser light source 22 is applied to the required viewing width on the continuous casting slab 20. A cylindrical lens 24 for spreading it into a band shape, and a cylindrical lens 24 disposed on the same side of the slab running line as the laser light source 22, for receiving scattered reflected light within 20 f of the stratum corneum θ which forms the incident direction of the irradiated light. The light receiving power is made up. In FIG. 5, 30 is disposed in the light receiving part of the light receiving camera 26, and allows only the usable wavelength range of the laser light 22m irradiated from the laser light source 22 to pass fC.Therefore, the self-luminous energy of the continuous casting slab 20 is This is an interference filter that removes the influence of noise and improves detection accuracy.

前記レーザ光源22としては、例えば出力5Wのアルゴ
ンレーザを用いることができる。一般に、′i!6湛物
体t−被検体とした場合、被検体の自発光エネルギは、
赤外及びBJ視の長波長側に強いエネルギ成分を持つの
で、反射光を受光して欠陥信号を得る一合には、なるべ
く自発光成分の少ない短波長の光を投射した方が有オリ
である。アルゴンレーザは、最強波長成分が500 n
m近傍の波長を持つので、連続鋳造スラブのようなi#
ib鋼材の自発光成分の比較的弱い波長域に該当し、且
つ、この種のレーザは、連続して比較的強い出力が得ら
れるので、表面探傷の光源としてを;有効である。
As the laser light source 22, for example, an argon laser with an output of 5 W can be used. In general, ′i! 6 When the object is t-object, the self-luminous energy of the object is:
Since it has strong energy components on the long wavelength side of infrared and BJ views, it is better to project short wavelength light with as few self-luminous components as possible in order to receive the reflected light and obtain a defect signal. be. The strongest wavelength component of the argon laser is 500 nm.
Since it has a wavelength near m, i# like a continuous casting slab
This type of laser corresponds to a wavelength range in which the self-luminous component of ib steel is relatively weak, and since this type of laser can continuously obtain a relatively strong output, it is effective as a light source for surface flaw detection.

前記受光カメラ26としては、例えば電荷結合デバイス
を用いた電子走g:、型イメージ七ンサが焦点面に配設
されたものを用いることができる。受光カメラのレンズ
は、被検体−受光カメラ間距離帯状投光面0幅等をこよ
り%棗47!0径に選足されている。4.2048素子
のセンサを用いて視野幅1mi検査する場合、その幾何
学的分解能は約0.5mmとなる@ 前にレーザ51i2z、シリンドリカルレンズ24等を
含む投光装置、及び、前記受光カメラ26、干渉フィル
タ30等を含む受光装置は、いずれも、連続鋳造スラブ
20の斜め方向に十分大きい距離を保って配置され、且
つ、長時間連続使用可能なように、気体或いは液体によ
る耐熱対策が施きれている。
As the light-receiving camera 26, it is possible to use, for example, one in which an electron beam sensor using a charge-coupled device is disposed on the focal plane. The lens of the light-receiving camera is selected to have a diameter of 47.0% based on the distance between the subject and the light-receiving camera, the width of the band-shaped light projection surface, etc. 4. When inspecting a field of view width of 1 mi using a sensor with 2048 elements, the geometric resolution is approximately 0.5 mm. , the light receiving device including the interference filter 30, etc., are arranged at a sufficiently large distance in the diagonal direction of the continuous casting slab 20, and are heat-resistant with gas or liquid so that they can be used continuously for a long time. It's broken.

以下、作用t−説明する。The effect will be explained below.

表面温Hsoo℃以上の連続鋳造スラブ20は、製造ラ
インを矢印Bの方向にけぼ一定の速度で走行しており、
少なくとも被検面が平坦とみなし得る状態となっている
。レーザ光源22から発振されたレーザ光22&は、シ
リンドリカルレンズ24により帯状に連続鋳造スラブ2
0上に投光される。連続鋳造スラブ20の被検面によっ
て反射されたレーザ光は、干渉フィルタ301−介して
受光カメラ26に入射し、帯状光の像が、受光カメラ2
6ρ焦点面に一次元情報として入力され、信号処理回路
28で欠陥信号化されて出力される。
The continuous casting slab 20 with a surface temperature of Hsoo°C or higher is running on the production line at a constant speed in the direction of arrow B.
At least the surface to be inspected is in a state that can be considered flat. Laser light 22& oscillated from the laser light source 22 is continuously cast into a strip-shaped slab 2 by a cylindrical lens 24.
The light is projected onto 0. The laser beam reflected by the test surface of the continuous casting slab 20 enters the light receiving camera 26 through the interference filter 301, and an image of the band-shaped light is displayed on the light receiving camera 26.
The information is input to the 6ρ focal plane as one-dimensional information, converted into a defect signal by the signal processing circuit 28, and output.

本実施例においては、投光器として、レーザ光源22t
−用いているので、レーザ光源22及びシリントリカル
レンズ24の部分と高温材である連続鋳造スラブ20と
のパスラインの距離、及び、連[Iftスラブ20と受
光カメラ26とのパスラインの距離を大きくとることが
可能であり、銅熱対策上一層有利である。即ち、レーザ
光は、強い指向性を持っており、そのビームが非常に小
さく、エネルギ密度が極めて高いため、距離に対する減
衰が殆んど無く、シリンドリカルレンズ24で横に広げ
ても、十分に高いエネルギ密度が得られる。
In this embodiment, a laser light source 22t is used as a projector.
- The distance between the pass line between the laser light source 22 and the cylindrical lens 24 and the continuous casting slab 20, which is a high-temperature material, and the distance between the pass line between the continuous casting slab 20 and the light receiving camera 26. It is possible to take a large value, which is more advantageous in terms of countermeasures against copper heat. In other words, the laser beam has strong directivity, the beam is very small, and the energy density is extremely high, so there is almost no attenuation over distance, and even if it is spread horizontally with the cylindrical lens 24, it has a sufficiently high energy density. Energy density is obtained.

又、レーザ光の特性として、その波長成分が単一である
ので、本実施例のように、使用するレーザに適した干渉
フィルタ301に、受光カメラ26のレンズ前面に取付
けることによって、レーザ光のみを極めて選択的に受光
することが可能であり、自発光エネルギの影響を効果的
に除去することが容易である。尚、投光器の種類は、こ
れに限定ばれず、例えば、白色光を投射する水鎖灯を用
いることも可能である。
Furthermore, since the characteristic of laser light is that its wavelength component is single, as in this embodiment, by attaching an interference filter 301 suitable for the laser used to the front of the lens of the light receiving camera 26, only the laser light can be filtered. It is possible to receive light extremely selectively, and it is easy to effectively eliminate the influence of self-luminous energy. Note that the type of projector is not limited to this, and for example, it is also possible to use a water chain lamp that projects white light.

又、本寮施例においては、レーザ光源22からの光を、
連続鋳造スラブ200表面に帯状に投光し、その反射光
を、電子走査型のイメージセンサで受光して出力信号を
得るようにしているので、信号噴出し走査を、従来の機
械的走査より格段に高速化できる。従って、被検体の走
行速度が1000隔/分以上の場合でも、応答すること
が可能である。
In addition, in the main dormitory example, the light from the laser light source 22 is
Since light is projected in a band shape onto the surface of the continuous casting slab 200 and the reflected light is received by an electronic scanning image sensor to obtain an output signal, signal ejection scanning is much more effective than conventional mechanical scanning. The speed can be increased to Therefore, it is possible to respond even when the traveling speed of the subject is 1000 intervals/minute or more.

又、光電子増倍管やシリコンフォトセル、増幅語勢で受
光器を構成した場合に比べて、受光器が小型であり、耐
湿、耐熱、#I4wI等のしやへい対策が行いやすい。
In addition, compared to a case where the light receiver is configured with a photomultiplier tube, a silicon photocell, or an amplification device, the light receiver is smaller, and it is easier to take measures against humidity, heat resistance, #I4wI, etc.

更に、*傷装置全体として、回転部分がないので、保守
も容易でるる。
Furthermore, since there are no rotating parts in the scratching device as a whole, maintenance is easy.

伺、前記実施例においては、受光カメラ26が、スラブ
走行ラインのレーザ光源22と同一側の倒万に配置これ
、該受光カメラ26により、照射光入射方向となす角度
が20m以内の散乱反射光を受光するようにされていた
が、散乱反射光を受光する方法は、これに限だされず、
受光カメラ26を、スラブ走行ライ1ンのレーザ光源2
2と反対側の一方に配置して、前記受光カメラ26によ
り、正反射方向となす角度が20m以内の散乱反射光を
受光することも可能である。
In the above embodiment, the light receiving camera 26 is placed on the same side of the slab running line as the laser light source 22, and the light receiving camera 26 detects scattered reflected light within 20 m at an angle with the incident direction of the irradiated light. However, the method of receiving scattered reflected light is not limited to this method.
The light receiving camera 26 is connected to the laser light source 2 of the slab running line 1.
It is also possible to arrange the light receiving camera 26 on one side opposite to the light receiving camera 26 to receive scattered reflected light having an angle of 20 m or less with respect to the specular reflection direction.

前記実施例においては、本発明が高温材である連続鋳造
スラブの探傷に適用されていたが、本発明の適用範囲は
これに限定ばれず、より高速で走行する仕上圧延機出側
の熱延鋼帯のオンライン探傷、酸洗ラインのオンライン
探傷、冷延鋼帯、鋼板のオンライン探傷等にも同様に適
用できることは明らかである。
In the above embodiments, the present invention was applied to flaw detection of continuously cast slabs, which are high-temperature materials, but the scope of application of the present invention is not limited to this, and is applicable to hot rolling on the exit side of finishing rolling mills running at higher speeds. It is clear that the present invention can be similarly applied to online flaw detection of steel strips, online flaw detection of pickling lines, online flaw detection of cold rolled steel strips, steel plates, etc.

以上説明した通り、本発明によれば、連続鋳造スラブ等
の走行中の被検体の表面欠陥を、高いS/N比で精度良
(検出することができ、しかも、投光器や受光器の耐熱
対策も容易であるという優れた効果を有する。
As explained above, according to the present invention, it is possible to accurately detect surface defects on a moving object such as a continuously cast slab with a high S/N ratio. It also has the excellent effect of being easy to use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の表面探傷方法が行われて(・る状態を
示す斜視図、第2図に工、本発明の原理を示す、被検体
表面の法線と照射光入射方向とのなす角度と、散乱反射
光の変化から検出した欠陥信号のS/N比との関係の一
例を示す線図、第3図は、同じく、照射光入射方向と散
乱反射光受光方向とのなす角度と、散乱反射光の変化か
ら検出した欠陥信号のS/N比との関係の一例を示す線
図、第4図(A)は、同じく、縦割れをMする被検体の
表面に斜め方向から照射光を入射している状態を示す断
面図、第4図(8)は、同じく散乱反射光の変化状態を
示す線図、嬉5図は、本発明に係る金属物体表面探傷方
法が採用された連続鋳造スラブの表面探m装置の実施例
の構成全示1、一部ブロック線図を含む斜視図である。 10・・・被検体、10m・・・縦割γL、、12・・
・投光器、14・・・受光器、20・・・連続鋳造スラ
ブ、22・・・レーザ光源、24・・・シリンドリカル
レンズ、26・・・受光カメラ、28・・・信号処理回
路、30・・・干渉フィルタ。 代理人  高 矢   論 (ほか1名)
Fig. 1 is a perspective view showing a state in which a conventional surface flaw detection method is performed. Figure 3 is a diagram showing an example of the relationship between the angle and the S/N ratio of a defect signal detected from changes in scattered reflected light. , a diagram showing an example of the relationship between the defect signal and the S/N ratio detected from the change in scattered reflected light; FIG. Fig. 4 (8) is a cross-sectional view showing the state in which light is incident, and Fig. 4 (8) is a line diagram showing the changing state of scattered reflected light. FIG. 1 is a perspective view showing the entire configuration of an embodiment of a surface probing device for continuous casting slabs, including a partial block diagram. 10...Object to be inspected, 10m...Vertical division γL, 12...
- Emitter, 14... Light receiver, 20... Continuous casting slab, 22... Laser light source, 24... Cylindrical lens, 26... Light receiving camera, 28... Signal processing circuit, 30...・Interference filter. Agent Takaya Ron (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (り走行中の被検体の表面に外部から光を照射し、被検
体表面による反射光を受光して、被検体の表面欠陥全検
出するようにした金属物体表面探傷方法において、被検
体走行ライン側方の、被検体走行方向と直交する斜め方
向に配置し九投光器から、被検体表面の法線と照射光入
射方向とのなす角度が15度〜55度となるように被検
体表面に外部光を照射し、被検体走行ラインの投光器と
同−側或いは/及び反対側の側方に配置した受光器によ
り受光される、照射光′人射方向或いは/及び正反射方
向となす角度が2of:以内の散乱反射光の変化から、
被検体の表面欠陥を検出するようにしたことを特徴とす
る金属物体の表面探傷方法。
(In a metal object surface flaw detection method in which light is irradiated from the outside onto the surface of a moving object and the reflected light from the surface of the object is received to detect all surface defects on the object. Nine projectors are placed on the side in a diagonal direction perpendicular to the running direction of the subject, and external light is applied to the subject's surface so that the angle between the normal to the subject's surface and the direction of incidence of the irradiated light is 15 degrees to 55 degrees. Light is irradiated and received by a light receiver placed on the same side of the subject travel line as the projector and/or on the opposite side. : From the change in scattered reflected light within
A method for detecting surface flaws on a metal object, characterized by detecting surface defects on the object.
JP8769282A 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object Pending JPS58204348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8769282A JPS58204348A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8769282A JPS58204348A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Publications (1)

Publication Number Publication Date
JPS58204348A true JPS58204348A (en) 1983-11-29

Family

ID=13921974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8769282A Pending JPS58204348A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Country Status (1)

Country Link
JP (1) JPS58204348A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152965U (en) * 1985-03-14 1986-09-22
WO1991017009A1 (en) * 1990-05-01 1991-11-14 The Broken Hill Proprietary Company Limited The inspection of continuously cast metals
JP2008275424A (en) * 2007-04-27 2008-11-13 Jfe Steel Kk Surface inspection device
WO2015055060A1 (en) * 2013-10-16 2015-04-23 湖南镭目科技有限公司 Online detecting method for continuous casting slab surface quality

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152965U (en) * 1985-03-14 1986-09-22
WO1991017009A1 (en) * 1990-05-01 1991-11-14 The Broken Hill Proprietary Company Limited The inspection of continuously cast metals
JP2008275424A (en) * 2007-04-27 2008-11-13 Jfe Steel Kk Surface inspection device
WO2015055060A1 (en) * 2013-10-16 2015-04-23 湖南镭目科技有限公司 Online detecting method for continuous casting slab surface quality

Similar Documents

Publication Publication Date Title
JPH03267745A (en) Surface property detecting method
JPH08178867A (en) Flat steel hot flaw-detecting device
JPS58204353A (en) Method for detecting flaw on surface of metallic object
JPS58204348A (en) Method for detecting flaw on surface of metallic object
JP2005156420A (en) Inspection method and device of surface irregularity
JPH08189821A (en) Bending measuring apparatus for long material and method therefor
EP1210586A1 (en) Detection of inclusions in glass
JP2005134362A (en) Inspection method and inspection device for surface irregularity
JPH0694642A (en) Method and equipment for inspecting surface defect
JPS58204350A (en) Method for detecting flaw on surface of metallic object
JPH0511573B2 (en)
JPS58204349A (en) Method for detecting flaw on surface of metallic object
JPS58204356A (en) Method for detecting flaw on surface of metallic object
JP2000314707A (en) Device and method for inspecting surface
JPH061168B2 (en) Shape defect detection device
JPS58204351A (en) Method for detecting flaw on surface of metallic object
JPS58204355A (en) Method for detecting flaw on surface of metallic object
JP2020139942A (en) Device and method for inspecting surface
JPS58204352A (en) Method for detecting flaw on surface of metallic object
JPS608737A (en) Surface flaw detecting method of metallic material
JP3174615B2 (en) Projection optical system in defect inspection equipment
JP2698696B2 (en) Surface flaw inspection method
JPS58204354A (en) Method for detecting flaw on surface of metallic object
JP3254599B2 (en) Anomaly detection device
JPH0617874B2 (en) Automatic inspection method for plate surface