JPS608737A - Surface flaw detecting method of metallic material - Google Patents

Surface flaw detecting method of metallic material

Info

Publication number
JPS608737A
JPS608737A JP11744483A JP11744483A JPS608737A JP S608737 A JPS608737 A JP S608737A JP 11744483 A JP11744483 A JP 11744483A JP 11744483 A JP11744483 A JP 11744483A JP S608737 A JPS608737 A JP S608737A
Authority
JP
Japan
Prior art keywords
light
flaw
crack
theta
running direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11744483A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
猛 北川
Wataru Fukuhara
福原 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11744483A priority Critical patent/JPS608737A/en
Publication of JPS608737A publication Critical patent/JPS608737A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To detect flaw with high precision not only a longitudinal crack but also a transverse crack or a crack of complex shape such as star crack by irradiating slantly outer light in band shape on a surface of a body to be inspected so that the light crosses a running direction of said body at a prescribed angle. CONSTITUTION:A light emitting source 12 and a projecting part 14 are connected by an optical fiber 16, the part 14 are connected by an optical fiber 16, the part 14 is arranged slantly above the inspecting body 18, and irradiates band- shaped light which forms an angle theta by the intersection of the running direction Y of the body 18. A photodetecting part 22 containing a linear image sensor for photodetecting reflected light forms a projecting and detecting part 24 combined with the part 14. The transverse cracking flaw perpendicular to the direction Y can be detected at >=90% rate in theta having 0-85 deg. range, and the longitudinal cracking flaw parallel to the direction Y can be detected at >=90% rate in theta having 20-90 deg. range. As the practical theta value, angular ranges having 30-85 deg. are effective.

Description

【発明の詳細な説明】 本発明は金属物体の表面探傷方法に係り、特に、走行中
の被検体の表面に外部から光を照射し、被検体からの反
射光を受光して、被検体の表面を探傷づるようにした金
属物体の表面探(扁方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting defects on the surface of a metal object, and in particular, the surface of a moving object is irradiated with light from the outside, and the reflected light from the object is received. This article relates to improvements in surface detection methods for metal objects that detect defects on the surface.

金属物体、特に、走行中の連鋳スラブ等の高温状態にあ
る板状金属物体の表面疵をオンラインで検出づる技術と
して、光学的方法が広く利用されている。
Optical methods are widely used as a technique for online detection of surface flaws on metal objects, particularly on plate-shaped metal objects that are in a high temperature state such as continuous casting slabs during running.

従来光学的な表面探傷方法として、小さい径の点状とな
し/=光を走査し、その反射光を受光づるフライング・
スポット法や、一定の面積をもつ照射野からの反射光を
小視野の受光系を走査づることにより、疵を検出するフ
ライング・イメージ法等が考案されている。
The conventional optical surface flaw detection method is a flying method that scans small diameter dots and/or light and receives the reflected light.
The spot method and the flying image method, which detects defects by scanning a light receiving system with a small field of view with reflected light from an irradiation field with a certain area, have been devised.

また、従来の投光に関づる公知の技術として、白色光を
集光して帯状に投光するもの、或いは、レーザ光を帯状
に広げて投光づるもの等が存在づる。
In addition, as conventional techniques related to light projection, there are those that condense white light and project the light into a band shape, or the methods that spread laser light into a band shape and project the light.

受光に関する公知の技術としては、微小視野の情報を光
電変換した後、電気的に一定周期で走査して読み出−!
l’、CCD等によるリニヤ・イメージセンサを利用J
るもの等が知られている。この受光系としてリニヤ・イ
メージ・センサを利用する手法は、投光の光源として白
色光、或いはレーザ光のいずれを用いる場合も、従来の
フライングイメージ法のような回転多面鏡が不要となる
ので技術的に優れている。又、この手法の受光系を利用
した場合、帯状の視野のみで充分であるため、被検体面
への照射も帯状で足りる。従って、面状に広げた投光系
より同一パワーの光源を用いた場合に、より照射光量密
度の高い反射光が1qられるので右利である。
As a known technology for light reception, information in a microscopic field of view is photoelectrically converted and then electrically scanned at a constant cycle and read out.
l', using a linear image sensor such as a CCD
There are some known examples. This method of using a linear image sensor as a light receiving system is a technology that eliminates the need for a rotating polygon mirror as in the conventional flying image method, regardless of whether white light or laser light is used as the light source. excellent in terms of Furthermore, when using the light receiving system of this method, only a band-shaped field of view is sufficient, and therefore a band-shaped field of view is sufficient for irradiating the object surface. Therefore, when a light source with the same power is used as compared to a planar light projection system, 1q of reflected light with a higher irradiation light amount density can be obtained, which is advantageous.

又、従来の反射の技術としては、走行中の被検体に、幅
方向(走行方向に直交する方向)に広がった帯状照射野
を与え、その反射光量変化をCODセンサ等で検知しで
、疵を検出するものが知られ(いる。ところで、連鋳ス
ラブ等の金属表面疵は、主として割れ疵である。その形
状は走行方向に平行な縦割れ、走行方向に直交づる横割
れ(この中にはコーナ部の鍵割れ等も含まれる)等が主
たるものである。この外にスター・クラック等の復雑な
形状の疵も存在覆る。又通富、縦割れ、横割れと呼ばれ
ている疵も、微細に観察−4−ると多少どもジグザグな
形状を呈しており、走行方向に直交づる成分と平行な成
分を持っている。
In addition, conventional reflection technology involves applying a band-shaped irradiation field that spreads in the width direction (direction perpendicular to the running direction) to a moving subject, and detecting changes in the amount of reflected light using a COD sensor, etc., to detect defects. By the way, defects on metal surfaces such as continuous cast slabs are mainly cracks.The shapes are vertical cracks parallel to the running direction, and transverse cracks perpendicular to the running direction. (This includes cracks in keys at corners, etc.).In addition to these, there are also complex-shaped flaws such as star cracks.They are also called tsutomi, vertical cracks, and horizontal cracks. When the flaws are closely observed, they have a somewhat zigzag shape, with a component perpendicular to the running direction and a component parallel to the running direction.

しかしながら前記従来の幅方向に広がった帯状照射野を
与えるという手法は、被検体走行方面に平行/j縦割れ
疵の検出には比較的有利であったが、走行方向に直交づ
る債割れ疵、又は直交方向に近い疵の検出には極めて不
利であった。そしてたとえ検出で・きたとしてもそのj
qられた疵信号は完全に連続したものとはならないで、
とぎれとぎれのものが多いというのが実情であった。
However, the conventional method of applying a band-shaped irradiation field that spreads in the width direction is relatively advantageous in detecting vertical cracks parallel to the direction of travel of the object; Also, it was extremely disadvantageous for detecting flaws in near orthogonal directions. And even if it is detected, that j
The flaw signal is not completely continuous,
The reality was that many of them were disjointed.

A発明はこのような従来の問題点に鑑みてなされたもの
であって、リニヤ・イメージ・センサを利用する利点を
そのまま生かしつつ、縦割れのみならず横割れ或いはス
タークラックのような複雑な形状の疵等においても、高
精度な探傷を可能とし、しかも、その探傷が容易な金属
物体の表面探傷装置を提供することをその目的としCい
る。
Invention A was made in view of these conventional problems, and while taking advantage of the advantages of using a linear image sensor, it can be used to prevent not only vertical cracks but also horizontal cracks and complex shapes such as star cracks. The object of the present invention is to provide a surface flaw detection device for metal objects that enables highly accurate flaw detection even for flaws, etc., and that is easy to detect.

本発明は、走行中の被検体の表面に外部がら光を照射し
、被検体からの反射光を受光して、被検体の表面を探傷
するようにした金属物体の表面探傷75F1において、
被検体の斜め上方に配した投光部から被検体表面上に、
被検体の走行方向と所定の角度をなすように斜めに、且
つ帯状に外部光を照射し、この反射光を、該帯状照射野
を視野としたリニヤ・イメージ・センサにて受光し、該
受光信号に基いて被検体の表面を探傷することとし上記
目的を達成したものである。
The present invention provides a surface flaw detection 75F1 for a metal object in which the surface of a moving object is irradiated with external light and the surface of the object is detected by receiving reflected light from the object.
From the light emitter placed diagonally above the subject, onto the surface of the subject.
External light is irradiated obliquely and in a strip shape so as to form a predetermined angle with the running direction of the subject, and this reflected light is received by a linear image sensor with the strip-shaped irradiation field as a field of view. The above objective was achieved by detecting flaws on the surface of the object based on the signals.

以下図面を参照しつつ本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図に本発明方法の一実施例が採用された、金属物体
の表面探傷装置の一例を示り。図において10が投光系
で、発光源12と、投光部14とに分離されており、こ
れが光ファイバ16によって結合されている。投光部1
4は、被検体18の斜め上方に配され、被検体18の表
面上に、被検体18の走行方向Yと所定の角度θをなづ
帯状の光を照射可能である。この帯状照射野20からの
反射光を受光JるリニA7・イメージ・センサを含む受
光部22は、投光部14と一体的橢造とされ単一の投受
光部24を形成している。
FIG. 1 shows an example of a surface flaw detection device for metal objects, in which an embodiment of the method of the present invention is adopted. In the figure, reference numeral 10 denotes a light projecting system, which is separated into a light emitting source 12 and a light projecting section 14, which are coupled by an optical fiber 16. Light projecting section 1
4 is disposed obliquely above the subject 18 and can irradiate the surface of the subject 18 with a band-shaped light at a predetermined angle θ with respect to the running direction Y of the subject 18 . A light receiving section 22 including a linear A7 image sensor that receives reflected light from the strip-shaped irradiation field 20 is integrally constructed with the light projecting section 14 to form a single light projecting/receiving section 24 .

帯状照射野20をリニヤ・イメージ・センサによつC搬
像する場合、投受光部24は一体構造とした方が視野調
整が容易で、保守性、作業性の面からし右利である。投
光系10の発光源12としでレーザ光源を用いると、レ
ーザ光は、パワーの集光性が極めて良好で距離よる減衰
が小さく、波長がそろっているので、干渉フィルタを用
いて効果的に自然光成分等の背mノイズをカットするこ
とがCきる。発光源12から出力されるレーザ光は、極
めて小さいスポットであるので、これをシリンドリカル
・レンズで広げると、極めて幅q法の小さい帯状照射野
20が得られる。なお、第1図C126は搬送ロール、
28は信号処理回路、30は記録計を示プ。
When C-carrying the band-shaped irradiation field 20 using a linear image sensor, it is easier to adjust the field of view when the light emitting/receiving section 24 has an integral structure, which is advantageous in terms of maintainability and workability. When a laser light source is used as the light emitting source 12 of the light projecting system 10, the laser light has extremely good power convergence, little attenuation due to distance, and uniform wavelengths, so it can be effectively illuminated using an interference filter. It is possible to cut background noise such as natural light components. Since the laser beam output from the light source 12 is an extremely small spot, if this spot is widened with a cylindrical lens, an extremely small strip-shaped irradiation field 20 with a width of q is obtained. In addition, C126 in FIG. 1 is a conveyance roll,
28 is a signal processing circuit, and 30 is a recorder.

第2図は、被検体18上の走行方向Yに平行な縦割れ疵
、垂直な横割れ疵に対づる本発明に基づく探傷装置の検
出能を、被検体走行方向Yと帯状照射野20とのなす角
度θを変えて評価したものである。走行方向Yに垂直な
横割れ疵はθがO度〜85度までの範囲で90%以上の
検出率が得られている。走行方向Yに平行な縦割れ疵に
関しでは、θが20度〜90度までの範囲で90%以上
の検出率が得られている。このように横削れ疵にあって
はθが85度以上、縦割れ疵にあつ′Cはθが20度未
満の範囲で検出率が落ちるのは、疵の方向と帯状照射野
20とのなず角が零に近くなるためであると考えられる
。ところで、θをあまり小さく設定しJぎると、帯状照
射野20の被検体幅方向Xをカバーづる長さが短くなり
、幅方向Xを全面走査するための装置の台数が増えると
いう欠点が生じる。このため実用上θの値としては、3
0度〜85度までの角度範囲が有効である。従つC1こ
の範囲のある一定の角度θだけ被検体走行方向Yから傾
斜して帯状光を照射し、その反射光量変化から被検体表
面の異常部(疵)を検出する。
FIG. 2 shows the detection ability of the flaw detection device based on the present invention for vertical cracks parallel to the running direction Y and horizontal cracks perpendicular to the running direction Y of the test object 18, depending on the running direction Y of the test object and the strip-shaped irradiation field 20. The evaluation was made by changing the angle θ formed by the angle θ. For horizontal cracks perpendicular to the running direction Y, a detection rate of 90% or more was obtained in the range of θ from 0 degrees to 85 degrees. Regarding vertical cracks parallel to the running direction Y, a detection rate of 90% or more was obtained in the range of θ from 20 degrees to 90 degrees. In this way, the detection rate decreases in the range where θ is 85 degrees or more for horizontal scratches and less than 20 degrees for vertical cracks, depending on the direction of the scratch and the band-shaped irradiation field 20. This is thought to be due to the fact that the angle becomes close to zero. By the way, if θ is set too small, the length of the band-shaped irradiation field 20 covering the subject width direction X becomes short, resulting in a disadvantage that the number of devices for scanning the entire width direction X increases. Therefore, in practice, the value of θ is 3
An angular range from 0 degrees to 85 degrees is valid. Accordingly, C1 irradiates a strip of light obliquely from the running direction Y of the subject by a certain angle θ in this range, and detects abnormalities (flaws) on the surface of the subject from changes in the amount of reflected light.

疵の形状は以下の手順により判定される。The shape of the flaw is determined by the following procedure.

(なわも、被検体の検査面上の適当な基準熱を原点とし
、仮想的に直交座標を設定し、幅方向Xを×軸、走行方
向Yをy軸とづる。今1時間の関数として得られる疵信
号の座標上の値が、(1)式のようになった場合、縦割
れ疵と判定づる。
(Also, set the origin at an appropriate reference temperature on the inspection surface of the subject, set virtual orthogonal coordinates, and set the width direction X as the x axis and the traveling direction Y as the y axis. When the value on the coordinates of the obtained flaw signal is as shown in equation (1), it is determined that the flaw is a vertical crack.

ここで、A、Bは定数、■は被検体走行速度、[は疵信
号発生時〆1からの経過時間である。
Here, A and B are constants, ■ is the traveling speed of the object to be inspected, and [ is the elapsed time from 1 when the flaw signal was generated.

一方、座標上の10が(2)式のようになつ1こ場合は
、横割れと判定づる。
On the other hand, if 10 on the coordinates is 1 as shown in equation (2), it is determined that there is a transverse crack.

x = (C−vt) D、 V =C・・・(2)こ
こで、C,Dは定数である。
x = (C-vt) D, V = C... (2) Here, C and D are constants.

更に、〈3)式のように座標位置が変化づる場合は、一
般に被検体走行方向Yとある傾角αをなづ線状疵と判別
づる。
Furthermore, when the coordinate position changes as shown in equation (3), it is generally determined that the linear flaw is a line-shaped flaw that is connected to the traveling direction Y of the subject and a certain inclination α.

X = (vL−E)/ (F−tan (π/2−θ
))y = (F−vt−E ・ しan(yr/2 
− θ ) )7(’iニーtan (π/2−〇>)
−−−(3)ここで、E、Fは定数である。そして、任
意の時間の座標値x、■の値からFを算出し、(4)式
よりその疵の傾角αをめる。
X = (vL-E)/(F-tan (π/2-θ
)) y = (F-vt-E ・ shian(yr/2
- θ ) )7('i nee tan (π/2-〇>)
---(3) Here, E and F are constants. Then, F is calculated from the coordinate value x at an arbitrary time and the value of ■, and the inclination angle α of the flaw is calculated from equation (4).

tan −iF −(vt−[)’/x)=π/2−’
cy・<4)また、それぞれの場合に、疵信号の発生時
点からの経過時間により、疵の長さを計算することがで
きる。
tan −iF −(vt−[)′/x)=π/2−′
cy<4) Furthermore, in each case, the length of the flaw can be calculated based on the elapsed time from the time when the flaw signal is generated.

次に、本発明の実施例を熱間で連鋳スラブの表面疵を検
出りるために適用した例について述べる。
Next, an example will be described in which an embodiment of the present invention is applied to detect surface flaws in a hot continuously cast slab.

連鋳スラブの表面疵は、全長あるいは部分的に直線状を
なJ゛割れ疵が殆んどである。部分的に直線状をなすジ
グザグな形状の割れ疵や、スター・クラックなどの複雑
な形状の割れ疵も、この方法の探傷では、とぎれること
のない疵情報が得られる。
Most of the surface flaws on continuous cast slabs are full-length or partially linear J-cracks. With this flaw detection method, uninterrupted information on cracks can be obtained, even for cracks with a zigzag shape that is partially straight, or cracks with complex shapes such as star cracks.

本実施例Cは、ローラ・エプロン出側(ピンチロール出
側)に°C1トーチカット前の連防スラブ表面探偏の場
合を示づ。この位置での探傷の特徴は、トーチカット後
の場合と比べると、(1)より上流であるので、鋳込み
操業の適正化への表面情報のフィードバックが容易であ
る;(2)附加重量などを考慮したスラブ切断長の」ン
トロールが可能である;などておる。
Embodiment C shows a case in which the surface of a continuous slab is probed on the roller apron exit side (pinch roll exit side) before being cut with a °C1 torch. The characteristics of flaw detection at this position, compared to the case after torch cutting, are (1) since it is further upstream, it is easier to feed back surface information to optimize casting operations; (2) it is easier to feed back surface information for optimization of casting operations; It is possible to control the cutting length of the slab.

投射光としては、レーザ光を用いた。レーザ光の波長は
、投射光からの反射成分をより効果的に受光づべく、被
検体自発光のエネルギの小さいスペクトル領域、即ち、
なるべく赤外領域を外した領域である可視の短波長を選
ぶことが望ましく、本実施例では、波長500nm近傍
のレーザ光を発振するアルゴン・レーザが最適な発光源
として選択された。この発光源と投光部とは、光ファイ
バで結合し、100m近い距離を高い伝送効率で伝送し
た。これにより、設置条件の厳しい現場でも容易に装置
の設置ができた。尚、レーザ発光源と投光部との間の光
ファイバは、400mm以上の波長を持つ9W以上の出
力のレーザ光を、該光ファイバへの受熱温度が200℃
以下の条件下で、100mの長さ当たりの伝送パワーの
減衰退が5dB以下という高い伝送効率を持っている。
Laser light was used as the projection light. In order to more effectively receive the reflected component from the projected light, the wavelength of the laser light is set in a spectral region where the energy of the subject's self-luminescence is low, i.e.
It is desirable to select a short visible wavelength outside the infrared region as much as possible, and in this example, an argon laser that emits laser light with a wavelength of around 500 nm was selected as the optimal light emitting source. The light emitting source and the light projecting unit were coupled through an optical fiber, and the light was transmitted over a distance of nearly 100 meters with high transmission efficiency. This made it possible to easily install the device even on sites with strict installation conditions. Note that the optical fiber between the laser emission source and the light projecting unit is capable of transmitting a laser beam with a wavelength of 400 mm or more and an output of 9 W or more, at a heat receiving temperature of 200°C.
Under the following conditions, the transmission power has a high transmission efficiency of less than 5 dB per 100 m length.

その為、投、受光部のレンズ系を含めたものでも、パワ
ーの減衰は、約90111の光ファイバ長の場合でわず
か50%以下であった。投光部より出力されるレーザ光
はシリンドリカルレンズによって、被検体上で幅約3龍
、長さ′約1mの帯状に照射される。この帯状照射野と
スラブ走行方向Yとのなづ所定の角度θは45°とした
。帯状照射野がらの反射光は、1o24素子あるいは2
o48素子をしつり−ア・イメージ・センサにて受光し
、その光量変化から只常部(疵)を高分解能で判別づる
こととした。
Therefore, even including the lens systems of the light emitting and light receiving sections, the power attenuation was only 50% or less in the case of an optical fiber length of about 90111 mm. The laser beam output from the light projecting section is irradiated onto the subject by a cylindrical lens in the form of a belt approximately 3 meters wide and approximately 1 meter long. The predetermined angle θ between this belt-shaped irradiation field and the slab running direction Y was set to 45°. The reflected light from the band-shaped irradiation field is 1024 elements or 2
The O48 element was used to receive light using an image sensor, and it was decided that normal parts (flaws) could be determined with high resolution from changes in the amount of light.

今、スラブ表面上、検査開始時の帯状照射野の左端を原
点とし、軸方向Xにx軸、走行方向Yにy@Ilを仮想
的に設定づる。レーザ光で照射される走査範囲内で得ら
れる疵信号の各時刻のX、y座標を検知し、一方では、
適当な条件で疵の閾がりを判定づる。そして、繋がりあ
りと判定された疵に関し、疵信号の発生時点からの経過
時間から疵長さを締出する。
Now, on the slab surface, the left end of the band-shaped irradiation field at the start of the inspection is set as the origin, the x axis is set in the axial direction X, and y@Il is set virtually in the running direction Y. The X and Y coordinates at each time of the flaw signal obtained within the scanning range irradiated with laser light are detected, and on the other hand,
Determine the flaw threshold under appropriate conditions. Regarding the flaws that are determined to be connected, the flaw length is excluded from the elapsed time from the time when the flaw signal was generated.

第3図にその具体的流れを示づ。まず、疵のy座標が一
定かどうかの判断を行う。もし、一定であればそれは、
オシレーションマークか横割れである。オシレーション
マークと横割れの区別は以下の手順で行う。まず、オシ
レーションマークはほぼ等間隔に出現づることからそれ
らの疵信号の出方が等間隔かとうかの判別を実行づる。
Figure 3 shows the specific flow. First, it is determined whether the y-coordinate of the flaw is constant. If it is constant, it is
It's either an oscillation mark or a horizontal crack. To distinguish between oscillation marks and horizontal cracks, follow the steps below. First, since the oscillation marks appear at approximately equal intervals, it is determined whether the flaw signals appear at equal intervals or not.

次に、A−シレーションマータと疵とでは信号の周波数
成分が異なる。第4図に波形を例示覆る。同図(a )
は周波数解析により得られたオシレージ門ンンークの波
形である。同図(1))は受光系によって1qられた波
形である。この波形からオシレーションマークの波形成
分を差し引くと同図(C)の波形のような真の疵波形が
得られる。この図にみられるJ、うにオシレーションマ
ーク底部の横割れ波形も分離できる。jス上の2つの操
作により精度よく(各割れと副シレーションンータとは
区別される。
Next, the frequency components of the signals are different between the A-silation pattern and the flaw. FIG. 4 shows an example of the waveform. Figure (a)
is the waveform of the oscillator gate obtained by frequency analysis. (1) in the same figure is a waveform that has been multiplied by 1q by the light receiving system. By subtracting the waveform component of the oscillation mark from this waveform, a true flaw waveform such as the waveform shown in FIG. 3(C) is obtained. The horizontal crack waveform at the bottom of the J and uni oscillation marks seen in this figure can also be separated. The two operations on the surface accurately distinguish each crack from the subsilation center.

オシレーションマークの情報は不要なので出力せず、横
割れの被検体上のxy座標位置とその長さを出力づる。
Since the information on the oscillation mark is unnecessary, it is not outputted, but the xy coordinate position of the horizontal crack on the specimen and its length are outputted.

次に、疵のy座標が一定でない信号のうち、X座標が一
定かどうかの判別を実行し、もし、それが一定であれば
、縦割れと判定し、同様にその被検体上のxy座標位置
とその長さを出力−4る。
Next, among the signals in which the y-coordinate of the flaw is not constant, it is determined whether the Output the position and its length -4.

次に、疵のX座標が一定でない疵信号を対象に前記く4
)式の計算方法でその傾角αをめる。
Next, the above four
) Calculate the inclination angle α using the calculation method of the formula.

傾角σがある長さごとに変化づる疵信号については、順
次変化したその傾角αを計算するとともに、伯9の繋り
を判別し、繋り有りと判別された場合は1個のジグザグ
状の割れと判定して出力する。
For a flaw signal whose inclination angle σ changes for each length, the inclination angle α that changes sequentially is calculated, and the connection of the squares is determined. If it is determined that there is a connection, one zigzag-shaped It is judged as a crack and output.

そしてこれら走行方向Yに対して傾角をもつ疵について
もそれらの被検体上のxy座標位置とその長さを出力づ
る。
For these flaws having an angle of inclination with respect to the running direction Y, the xy coordinate positions and lengths thereof on the object to be inspected are also output.

これら疵判定フローにおいて、計算機内では、X軸方向
およびy軸方向のアドレスが極くわずかに離れた疵信号
はたがいに連続したものであるとする最適ブロッキング
パラメータ、疵として判定した後ある値以下の小さいも
のはノイズとして無視づる最適フィルタリングパラメー
タ等が設定されている。
In these flaw determination flows, the computer uses an optimal blocking parameter that assumes that flaw signals whose addresses are very slightly apart in the X-axis direction and the Y-axis direction are consecutive signals. Optimal filtering parameters are set such that small values are ignored as noise.

この方法を用いて連鋳スラブの表面疵を熱間オンライン
で検査した結果、下流工程、製品において有害とみなさ
れる各種紙は、従来に比し極めて精度よく検出できるこ
とが確認された。
As a result of hot online inspection of surface flaws on continuous cast slabs using this method, it was confirmed that various types of paper that are considered harmful to downstream processes and products can be detected with much higher accuracy than conventional methods.

不発司の用途は、本実施例に限定されることなく、熱延
鋼板、酸洗鋼板、冷延鋼板、表面処理鋼板、などの分野
で有効に利用できる。j;た、本発明は、これら鋼材、
鋼板だ(ブでなく他の板状金属板、紙などのシー1−状
非金属被検体の高速走行のAンライン検査に適用しても
極めて良好な結果が得られる。
The application of the fugitive steel is not limited to this example, but can be effectively used in fields such as hot-rolled steel sheets, pickled steel sheets, cold-rolled steel sheets, and surface-treated steel sheets. j; The present invention also provides these steel materials,
Very good results can be obtained even when applied to high-speed A-line inspection of sheet-shaped nonmetallic objects such as sheet metal plates, paper, etc., rather than steel plates.

jス上説明して来た如く、本発明によれば、縦割れ9み
ならず横割れ、或いはスタークラックのような複雑な形
状の表面疵等(Cつぃ(も高精度に探傷できるという効
果が得られる。
As explained above, according to the present invention, not only vertical cracks 9 but also horizontal cracks and surface flaws with complex shapes such as star cracks can be detected with high precision. Effects can be obtained.

しかも受光にあたって、リニヤ・イメージ・センサを利
用づるようにしたため、発光源として白色光、あるいは
レーザ光のいずれを用いる場合であっても、従来のフラ
イング・イメージ法のような回転多面鏡を必要とせず、
更に、帯状の視野による検出ができるため、投光を面状
に拡げる場合に比し、それだ(ブ照射光量密度を高く維
持できるという、リニヤ・イメージ・センサを用いた効
果が相乗的に得られるものである。
Moreover, since a linear image sensor is used to receive light, there is no need for a rotating polygon mirror as in the conventional flying image method, even when using white light or laser light as a light source. figure,
Furthermore, since detection can be performed using a strip-shaped field of view, compared to the case where the projected light is spread out over a planar surface, the effect of using a linear image sensor, which is that the density of the irradiated light can be maintained at a high level, is synergistically obtained. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の一実施例が採用された、金属物
体の表面探傷装圃の斜視説明図、第2図は、被検体の走
行方向と帯状照射野とのなJ所定の角度θを変えた場合
の縦割れと横割れの検出率の変化を示1線図、 第3図は、前記装置で用いられ−Cいる、各種紙の判別
手順を示J流れ図、 第4図(a)(b)(c)は、Aシレージョンマークと
横割れとの判別を説明するだめの線図である。 12・・・発光源、 14・・・投光部、18・・・被
検体、 20・・・帯状照射野、22・・・リ−17・
イメージ・センサ、X・・・幅方向、 Y・・・走行方
向、θ・・・所定の角度。 代理人 高 矢 論 (ほか1名) 第1図 第2図 ”−−一、線割れ庇 □積別れ逃 OO30a 600 90″ □θ 第3図
FIG. 1 is a perspective view of a surface flaw detection field for a metal object in which an embodiment of the method of the present invention is adopted, and FIG. Fig. 3 is a flowchart showing the procedure for discriminating various types of paper used in the above-mentioned device. Figures a), (b), and (c) are diagrams illustrating how to distinguish between A sillage marks and horizontal cracks. DESCRIPTION OF SYMBOLS 12... Light emitting source, 14... Light projecting part, 18... Subject, 20... Band-shaped irradiation field, 22... Lee-17.
Image sensor, X...width direction, Y...travel direction, θ...predetermined angle. Agent Takaya Ron (and 1 other person) Figure 1 Figure 2"--1, Line split eave □ Product separation escape OO30a 600 90" □θ Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)走行中の被検体の表面に外部から光を照射し、被
検体からの反射光を受光して、被検体の表面を探傷する
ようにした金属物体の表面探傷方法において、被検体の
斜め上方に配した投光部から被検体表面上に、被検体の
走行方向と所定の角度をなすように斜めに、且つ帯状に
外部光を照射し、この反射光を、該帯状照射野を視野と
したリニヤ・イメージ・センサにて受光し、該受光信号
に基いて被検体の表面を探傷する金属物体の表面探傷方
法。
(1) A surface flaw detection method for metal objects in which the surface of a moving object is irradiated with light from the outside and the reflected light from the object is received to detect flaws on the surface of the object. External light is irradiated obliquely and in a strip shape onto the surface of the subject from a light projector placed diagonally above so as to form a predetermined angle with the running direction of the subject, and this reflected light is used to illuminate the strip-shaped irradiation field. A method for detecting defects on the surface of a metal object, in which light is received by a linear image sensor as a field of view, and the surface of the object is detected based on the received light signal.
(2)前記所定の角度を、30度〜85度とした特許請
求の範囲第1項記載の金属物体の表面探傷方法。
(2) The method for detecting defects on the surface of a metal object according to claim 1, wherein the predetermined angle is from 30 degrees to 85 degrees.
JP11744483A 1983-06-29 1983-06-29 Surface flaw detecting method of metallic material Pending JPS608737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11744483A JPS608737A (en) 1983-06-29 1983-06-29 Surface flaw detecting method of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11744483A JPS608737A (en) 1983-06-29 1983-06-29 Surface flaw detecting method of metallic material

Publications (1)

Publication Number Publication Date
JPS608737A true JPS608737A (en) 1985-01-17

Family

ID=14711799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11744483A Pending JPS608737A (en) 1983-06-29 1983-06-29 Surface flaw detecting method of metallic material

Country Status (1)

Country Link
JP (1) JPS608737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168580A (en) * 2008-01-15 2009-07-30 Saki Corp:Kk Device for inspecting object to be inspected
ITVR20090029A1 (en) * 2009-03-10 2010-09-11 Microtec Srl METHOD FOR IDENTIFYING FAULTS IN TIMBER.
JP2010230450A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Object surface inspection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168580A (en) * 2008-01-15 2009-07-30 Saki Corp:Kk Device for inspecting object to be inspected
ITVR20090029A1 (en) * 2009-03-10 2010-09-11 Microtec Srl METHOD FOR IDENTIFYING FAULTS IN TIMBER.
JP2010230450A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Object surface inspection apparatus

Similar Documents

Publication Publication Date Title
JPH08178867A (en) Flat steel hot flaw-detecting device
KR20030088342A (en) Method and Apparatus for Detecting Defects in a Continuously Moving Strip of Transparent Material
JPS608737A (en) Surface flaw detecting method of metallic material
JP2000298102A (en) Surface inspecting device
JPS58204353A (en) Method for detecting flaw on surface of metallic object
JP4018347B2 (en) Surface inspection apparatus and surface inspection method
JPS58204348A (en) Method for detecting flaw on surface of metallic object
JP2000314707A (en) Device and method for inspecting surface
JP3097253B2 (en) Ultrasonic flaw detector for band-shaped plate
JPH1177363A (en) Method for inspecting fillet weld part, and device used therefor
JP2003028808A (en) Method and apparatus for surface inspection
JPS58204356A (en) Method for detecting flaw on surface of metallic object
JP3490792B2 (en) Surface inspection equipment
JPH07306161A (en) Method for detecting segregation of metallic material
JP2698696B2 (en) Surface flaw inspection method
JPS58204352A (en) Method for detecting flaw on surface of metallic object
JPS58204349A (en) Method for detecting flaw on surface of metallic object
JP2698697B2 (en) Surface flaw inspection method
JPS58216950A (en) Ultrasonic flaw detection
JP3800133B2 (en) Ultrasonic flaw detection method and apparatus for welded steel pipe welds
JPS58204351A (en) Method for detecting flaw on surface of metallic object
JPH05203630A (en) Ultrasonic flaw detection for square steel
US20020132039A1 (en) Process and apparatus for fault detection in a liquid sheet and curtain coating process
JPS58204355A (en) Method for detecting flaw on surface of metallic object
JPS58204350A (en) Method for detecting flaw on surface of metallic object