JPS58216950A - Ultrasonic flaw detection - Google Patents
Ultrasonic flaw detectionInfo
- Publication number
- JPS58216950A JPS58216950A JP57101028A JP10102882A JPS58216950A JP S58216950 A JPS58216950 A JP S58216950A JP 57101028 A JP57101028 A JP 57101028A JP 10102882 A JP10102882 A JP 10102882A JP S58216950 A JPS58216950 A JP S58216950A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- wave
- waves
- angle
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/223—Supports, positioning or alignment in fixed situation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
- G01N29/0618—Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は鋼塊から分塊圧延され、又は連続鋳造され喪ブ
ルーム、角ビレット等の角鋼片等の角金属片の表層部に
存する疵を検出する超音波探傷方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method for detecting flaws existing in the surface layer of square metal pieces such as square steel pieces such as bloom blooms and square billets that are bloomed from steel ingots or continuously cast. .
線材等の圧延製品に対する品質が厳しく要求される今日
、製鋼、圧延、精整に至る各工程で品質向上の為の努力
が為され、品質の進歩も著しいものかあシ、この品質の
進歩に伴ってさらに高度の品質が要求されつつある。こ
の喪め、線材等の素材となるとビレット、ブルーム等の
断面形状が略正方形状の長尺角材(以下角鋼片という)
の内部に存する欠陥を低減させることが厳しく要求され
ておシ、内部中央に存在する欠陥は勿論のこと、表面及
び表面直下のいわゆる皮下近傍の浅い部分(以下総称し
て表msという)に存在する欠陥についても厳しいチェ
ックが要求されている。Today, where the quality of rolled products such as wire rods is strictly required, efforts are being made to improve quality in each process from steelmaking, rolling, and finishing, and the progress in quality has been remarkable. Accordingly, even higher quality is being required. When it comes to materials such as wire rods, billets and blooms, the cross-sectional shape is approximately square (hereinafter referred to as square steel billets).
There is a strict requirement to reduce defects existing inside the skin, and not only defects existing in the center of the interior, but also defects existing on the surface and in the shallow area just below the surface, so-called subcutaneous area (hereinafter collectively referred to as table ms). Strict checks are also required for defects.
従来、角鋼片の探傷方法としては、その表面から内部に
向って垂直に超音波を送、受信する方法が採用されてい
るが、このような方法による場合は、内部中央に存在す
る疵の発見が可能であって取扱いも容易であるという超
音波の利点を有する反面、角鋼片表層部に存する欠陥が
検出できないという問題点があった。特に角部における
表層部の欠陥の発見はほとんど不可能であった。Traditionally, the method of flaw detection for square steel pieces involves transmitting and receiving ultrasonic waves vertically from the surface to the inside, but with this method, it is difficult to detect flaws in the center of the inside Although ultrasonic waves have the advantage of being able to perform a wide range of measurements and are easy to handle, there is a problem in that defects existing in the surface layer of a square steel slab cannot be detected. It was almost impossible to detect surface defects, especially at corners.
本発明は斯かる問題点を解消すべくなされたものでアシ
、角鋼片等の角金属片の角部近傍及び面部表層部に存在
する有害疵の種類を弁別し、を九その位置標定を容易に
かつ高精度に行い得るようにした超音波探傷方法の提供
を目的とする。The present invention has been made to solve this problem, and it is possible to distinguish the types of harmful flaws that exist near the corners and on the surface layer of square metal pieces such as reeds and square steel pieces, and to easily locate the flaws. The purpose of this invention is to provide an ultrasonic flaw detection method that can be carried out quickly and with high precision.
本発明方法は、長手方向に搬送される角金属片の側面に
斜角探触子を設け、該探触子によシ縦波、横波及び表面
波の各超音波を発し、縦波によp角鋼片の入射面と隣接
面とが形成する角部を、横波によシ入射面の隣接面表層
部を夫々探傷せしめ、表面波によシ疵位置を標定するも
のである。In the method of the present invention, an oblique probe is provided on the side surface of a rectangular metal piece that is conveyed in the longitudinal direction, and each ultrasonic wave of longitudinal waves, transverse waves, and surface waves is emitted by the probe. The corner formed by the entrance surface and the adjacent surface of a p-angle steel piece is subjected to flaw detection on the surface layer of the adjacent surface of the entrance surface using transverse waves, and the flaw position is located using the surface waves.
以下本発明方法を詳述する。まず角鋼片角部表層部に存
在する欠陥の超音波縦波と横波の検出能力を比較すべく
、第1図に示すように角鋼片1の角部表層部に人工欠陥
Sを設けて超音波縦波、横波による斜角探傷を行った。The method of the present invention will be explained in detail below. First, in order to compare the detection ability of ultrasonic longitudinal waves and transverse waves of defects existing in the surface layer of the corner of a square steel piece 1, an artificial defect S was provided on the surface layer of the corner of a square steel piece 1 as shown in Fig. 1, and the ultrasound Oblique flaw detection was performed using longitudinal waves and transverse waves.
人工欠陥8は直径1閾のドリル穴を深さdrMiのとこ
ろに設け、この人工欠陥の深さdffII+を4通シに
変化させて、超音波縦波及び横波にて検出した場合の検
出状況(エコー高さ)を第2図(イ)〜(ハ)に示して
いる。この場合、超音波の入射角度も種々変化させて屈
折角度θを変化させておシ、第2図(イ)は屈折角度θ
が67度の場合、同じく(ロ)は73度、(ハ)は83
度の場合であシ、夫々縦波による結果を実線、横波によ
る結果を破線で示している。第2図よシ明らかなように
、屈折角度が65〜85度の範囲では縦波斜角による検
出能力が横波斜角による場合よりも10dB以上(3倍
以上)良好であった。特に屈折角度が約83度以上にな
ると横波による測定は不可能である。Artificial defect 8 is created at a depth drMi with a diameter of 1 threshold, and the depth dffII+ of this artificial defect is changed four times to detect the detection situation using ultrasonic longitudinal waves and transverse waves ( echo height) are shown in Figures 2 (a) to (c). In this case, the incident angle of the ultrasonic wave is also varied to change the refraction angle θ.
If is 67 degrees, then (b) is 73 degrees and (c) is 83 degrees.
In the case of degrees, the results for longitudinal waves are shown by solid lines, and the results for transverse waves are shown by broken lines. As is clear from FIG. 2, when the refraction angle was in the range of 65 to 85 degrees, the detection ability using the longitudinal wave oblique angle was 10 dB or more (more than 3 times) better than that using the transverse wave oblique angle. In particular, when the refraction angle is about 83 degrees or more, measurement using transverse waves is impossible.
第3図(イ)、(ロ)は縦波、横波斜角探傷によシ同−
欠陥を夫々4 MHz 、 5 MHzの周波数によシ
屈折角度を73度として探傷した場合の検出結果を夫々
探傷器ブラウン管による表示状態にて示したものであシ
、縦波による探傷結果の方がノイズが低く、縦波による
探傷が横波よりも探傷結果が良好なることがわかる。Figure 3 (a) and (b) are the same for longitudinal wave and shear wave angle flaw detection.
The detection results are shown when defects are detected at frequencies of 4 MHz and 5 MHz, respectively, and at a refraction angle of 73 degrees, as displayed on a cathode ray tube. It can be seen that the noise is low and the flaw detection results using longitudinal waves are better than those using transverse waves.
一方、面部表層部の欠陥について調査した結果を以下に
示す。第4図(イ)、(ロ)、(ハ)は、夫々−辺11
0 mmの角鋼片の約1/3(中37r面)のところに
面よシ深さ!馴における放電加工によシ段は走水平方向
に延びる人工欠陥8、垂直方向に延びる人工欠陥8(い
ずれも長さ2M)、さらに直径errsのドリル穴(探
触子の接する面と平行となった横穴)Sを示しく加工深
さは放電加工の場合は加工面よj)5mm、 ドリル
穴は30 mm ) s第4図に)は第4図(イ)、(
ロ)、←→に示した人工欠陥8を横波斜角によシ探1し
た場合(周波数5[11z)の屈折角度と検出能力(エ
コー高さ)の関係を夫々破線、一点鎖線、実線で示した
ものであシ、屈折角度が40〜50度の範囲において探
傷結果が最も良好であった。従って角部表層部の縦波に
よる探傷は屈折角度が65〜86度となるように、また
横波による面部表層部の探傷は屈折角度が40〜50度
となるようにすれば良好な探傷結果が得られる。On the other hand, the results of investigating defects in the surface layer of the surface portion are shown below. Figure 4 (a), (b), and (c) are respectively - side 11
There is a surface depth at about 1/3 (middle 37r surface) of a 0 mm square steel piece! During the electric discharge machining process, the steps include an artificial defect 8 extending in the horizontal direction, an artificial defect 8 extending vertically (both 2M in length), and a drill hole with a diameter of errs (parallel to the surface in contact with the probe). In case of electric discharge machining, the machining depth is 5 mm, and the drilled hole is 30 mm.
b) When the artificial defect 8 shown in ←→ is detected using a transverse wave oblique angle, the relationship between the refraction angle and the detection ability (echo height) at frequency 5 [11z] is shown by the broken line, dashed-dotted line, and solid line, respectively. As shown, the flaw detection results were the best in the range of refraction angle of 40 to 50 degrees. Therefore, when detecting flaws in the surface layer of corners using longitudinal waves, the refraction angle should be 65 to 86 degrees, and when detecting flaws in the surface layer of surface areas using transverse waves, the refraction angle should be 40 to 50 degrees to obtain good results. can get.
第5図(イ)、(ロ)は1つの斜角探触子について面郁
表amの欠陥を探傷した場合の監視範囲を測定するため
に、深さ1mm、直径2 mmのドリル穴による人工欠
陥を夫々周波数を2 MHz 、 5 MHzとして探
傷した場合における探触子距離(探触子と底位置の真上
の探傷面上の位置との距離)とエコー高さとの関係を示
し友ものであシ、それぞれ−(idB(I&大エコー高
さがt7gになる位置)の走査範囲は周波数2MHzの
場合は約30 mm 、 5 Mllzの場合は約12
鵬であシ、探傷周波数は低い方が良いこと(ビーム拡が
り幅が広く、必要探触子数が少なくて良い)がわかる。Figures 5 (a) and (b) show an artificial hole drilled with a depth of 1 mm and a diameter of 2 mm to measure the monitoring range when detecting defects on the surface of the surface am using one angle probe. This graph shows the relationship between the probe distance (the distance between the probe and the position on the detection surface directly above the bottom position) and the echo height when defects are detected at frequencies of 2 MHz and 5 MHz, respectively. The scanning range of -(idB (position where I & large echo height is t7g)) is approximately 30 mm for a frequency of 2 MHz and approximately 12 mm for a frequency of 5 Mllz.
It is clear from Peng that the lower the flaw detection frequency, the better (the beam spread is wider and the number of probes required is smaller).
今回の場合検出すべき欠陥の大きさよシ2Ml]zを選
定した。In this case, the size of the defect to be detected was selected as 2Ml]z.
第6図(イ1.+口)、(ハ)は1辺130 mmの角
ビレットの1側面表層部に夫々人工欠陥を設けて屈折角
度を45度とし、角鋼片搬送速度30m/mで横波斜角
探傷を行った場合の試験材の断面模式図、第7FgJは
その探傷結果を示しておシ、第6図(イ)は探触子の接
触している面から68rtms深さ3mmの位置に径3
mmのドリル穴を設けてあり、(ロ)は隣接面から65
[l1mの位置に深さ2anのスリットを設けてあシ、
またヒ→は隣接面から62M5深さ211mの位置に径
2mmのドリル穴を設けてあり、いずれの場合も良好な
探傷結果が得られ丸。Figures 6 (A1. A schematic cross-sectional view of the test material when angle flaw detection was performed. No. 7FgJ shows the flaw detection results. diameter 3
A drill hole of mm is provided, and (b) is 65 mm from the adjacent surface.
[A slit with a depth of 2 ann is made at a position of 1 m,
In addition, a drill hole with a diameter of 2 mm was provided at a position of 62 M5 and a depth of 211 m from the adjacent surface, and good flaw detection results were obtained in both cases.
以上の結果をまとめると、周波数2MHz〜5MHzの
縦波によ多、屈折角度を65・−80度として、角鋼片
角部表層部の、また同じ周波数範囲の横波によシ屈折角
度を40〜50度として面部表層部の探傷を行うように
必要個数探触子を各面に配置し超音波入射面のIiJ接
面を探傷すれば角鋼片表層部に存在する有害欠陥の検出
が可能となる。さらに本方法の特徴として表面波によ)
底位置の標定を行わしめるものである。表面波は角金属
片の表面だけを伝播するものであるため、表面および表
面近傍の疵の検出が可能である。一方縦波、横波による
斜角探傷では表層部及び内部欠陥の検出が可能である。To summarize the above results, when longitudinal waves with a frequency of 2 MHz to 5 MHz are applied, the refraction angle is set to 65 and -80 degrees, and the refraction angle is set to 40 to -80 degrees for transverse waves in the same frequency range on the surface of the corner of a square steel piece. If the necessary number of probes are placed on each surface so as to detect flaws in the surface layer of the surface at a 50 degree angle, and the IiJ contact surface of the ultrasonic incident surface is detected, harmful defects existing in the surface layer of the square steel piece can be detected. . Furthermore, a feature of this method is that it uses surface waves)
This is for locating the bottom position. Since surface waves propagate only on the surface of a rectangular metal piece, it is possible to detect flaws on and near the surface. On the other hand, oblique flaw detection using longitudinal waves and transverse waves allows detection of surface and internal defects.
従って縦波によル屈折角度を65〜80度として入射面
の隣接面と対向面の角部表層部の斜角探傷を行い、また
横波にて屈折角度を40〜50、 度として入射面の隣
接面の表層部の斜角探傷を行い、かつ表面波にて角鋼片
の表面及びその近傍の探傷を行い、縦波又は横波で検出
されかつ表面波でも検出された疵は表面近傍に存在する
ものであるとし、縦波又は横波でしか検出されない疵は
内部に存在するものとして識別する。Therefore, oblique flaw detection is performed on the surface layer of the corners of the adjacent surface and the opposite surface of the incident surface using a longitudinal wave with a refraction angle of 65 to 80 degrees, and with a shear wave at a refraction angle of 40 to 50 degrees. Oblique flaw detection is performed on the surface layer of the adjacent surface, and flaw detection is performed on the surface of the square steel piece and its vicinity using surface waves.Flaws detected by longitudinal waves or transverse waves and also detected by surface waves exist near the surface. flaws that can only be detected by longitudinal waves or transverse waves are identified as being internal.
第8図は本発明方法の実施に使用する角鋼片の超音波探
傷装置を、角鋼片搬送方向上流側からの略示正面図であ
シ、角鋼片1をその長手方向に対角線が夫々鉛直、水平
となるようにローラ8にて搬送(いわゆるダイヤ送p)
されている。角鋼片lの搬送方向左右両側(角鋼片1の
搬送方向下流側に向って左、右とする。以下同じ)には
取付ホルダ2,2が夫々設けられている。両取付ホルダ
2.2は同形状をなし、対向するように設けられておシ
、左側の取付ホルダ2について説明すると、角鋼片lの
左側上面及び下面と平行になった上板21及び下板22
を、角鋼片の左側角部の左方にて、角鋼片1側に凹部を
形成したコの字状の連結部材23にて連結し、該連結部
材23に取付ブロック24を固着し、該取付ブロック2
4に、該取付ブ四ツク24の左方にトラニオン支持され
、そのロッドの進出方向を右方としたエアシリンダ3の
ロッド31先端を取付けている。そして取付ホルダ2の
上板21及び取付ブロック24夫々には、上端を角鋼片
1の搬送域の上方に係止された引張シバネ5.6の下端
が夫々係止されておシ、取付ホルダ2全体を角鋼片1の
曲)等に追従するように吊持している。また取付ホルダ
2の上板21及び下板22には、連結部材230凹部に
嵌合するようにガイドローラ4が枢支されており、該ガ
イドローラ4にて角鋼片1の左側角部を案内するように
なっている。FIG. 8 is a schematic front view of an ultrasonic flaw detection device for square steel pieces used in carrying out the method of the present invention, viewed from the upstream side in the direction of conveyance of the square steel piece 1. Conveyed by roller 8 so that it is horizontal (so-called diamond feeding)
has been done. Attachment holders 2, 2 are provided on both the left and right sides of the square steel piece 1 in the conveyance direction (left and right when facing the downstream side of the square steel piece 1 in the conveyance direction; the same applies hereinafter). Both mounting holders 2.2 have the same shape and are provided to face each other.The left mounting holder 2.2 has an upper plate 21 and a lower plate parallel to the left upper and lower surfaces of the square steel piece l. 22
are connected to the left side of the left corner of the square steel piece by a U-shaped connecting member 23 with a recess formed on the side of the square steel piece 1, and a mounting block 24 is fixed to the connecting member 23, and the mounting block 2
4 is supported by a trunnion on the left side of the mounting block 24, and the tip of the rod 31 of the air cylinder 3 is attached with the rod extending direction to the right. The upper plate 21 and the mounting block 24 of the mounting holder 2 are respectively fixed with the lower ends of tension springs 5.6 whose upper ends are fixed above the conveying area of the square steel piece 1. The whole is suspended so as to follow the curve of the square steel piece 1. Further, a guide roller 4 is pivotally supported on the upper plate 21 and lower plate 22 of the mounting holder 2 so as to fit into the recess of the connecting member 230, and the left corner of the square steel piece 1 is guided by the guide roller 4. It is supposed to be done.
取付ホルダ2の上板21の角鋼片lと対向する面の上流
側部上側角部寄シ及び下流側部屋側角部寄りには夫々探
触子ホルダ71.72が、夫々2つの押バネ11,11
,11.11にて支持されている。第9図は角鋼片1の
左側上面の探触子ホルダ71.72について上流側から
みた略示正面図、第10図は第9図の矢符方向からの平
面図である。各探触子ホルダ71.γ2の角鋼片1と対
向する面の各四隅には転動車9,9.・・・、9,9、
・・・が夫々枢支されておシ、探触子ホルダ71.72
と角鋼片1の左側上面との間にギャップを形成し、該ギ
ャップ内に接触媒体としての水が導水管12.12,1
2.12よ)送給されている。Probe holders 71 and 72 are mounted on the upper corner of the upstream side of the surface facing the square steel piece l of the upper plate 21 of the mounting holder 2, and the probe holders 71 and 72 are mounted on the upper corner of the downstream side of the room, respectively, and two push springs 11 are mounted on the upper plate 21 of the mounting holder 2, respectively. ,11
, 11.11. FIG. 9 is a schematic front view of the probe holder 71, 72 on the upper left surface of the square steel piece 1, seen from the upstream side, and FIG. 10 is a plan view taken from the direction of the arrow in FIG. Each probe holder 71. Rolling wheels 9, 9. ..., 9, 9,
... are respectively pivotally supported, and the probe holder 71.72
A gap is formed between the upper left surface of the square steel piece 1, and water as a contact medium flows into the gap.
2.12) has been sent.
上流側の探触子ホルダ71内の上流側部及び下流側部に
は夫々斜角探触子が2個ずつ合計4個設けられておシ、
上流側部の角鋼片lの上側角部に近い位置には超音波と
して縦波を発する斜角探触子aが設けられ、該探触子a
よシ左側角部寄シの位置には超音波として表面波を発す
る斜角探触子すが設けられておシ、また下流側部には角
鋼片lの上側角部から左側角部にかけて超音波として横
波を発する2つの斜角探触子c、dが設けられている。Two bevel probes are provided in each of the upstream and downstream parts of the upstream probe holder 71, for a total of four probes.
An oblique probe a that emits longitudinal waves as ultrasonic waves is provided at a position close to the upper corner of the square steel piece l on the upstream side, and the probe a
An oblique probe that emits surface waves as ultrasonic waves is installed at the left side corner approach. Two angle probes c and d are provided that emit transverse waves as sound waves.
そして探触子aは、右側下面の上側角部近傍の表層部に
向って屈折角が65〜80度となるように縦波を発し、
探触子すは右側上面に向って表面波を発し、該表面波を
該右側上面表層部に沿って伝播せしめるものである。ま
た探触子c、dは屈折角が40〜60度となるように超
音波横波を入射させ、該横波を右側上面の表層部に伝播
せしめるものである。Then, the probe a emits a longitudinal wave toward the surface layer near the upper corner of the lower right side so that the refraction angle is 65 to 80 degrees,
The probe emits a surface wave toward the upper right surface and propagates the surface wave along the surface layer of the upper right surface. Further, the probes c and d allow ultrasonic transverse waves to be incident thereon at a refraction angle of 40 to 60 degrees, and propagate the transverse waves to the surface layer of the upper right surface.
下流側の探触子ホルダ72内にも上流側部及び下流側部
夫々に探触子が2個ずつ合計4個設けられ、上流側部に
は横波を発する斜角探触子c、dが角鋼片1の左側角部
から上側角部にかけて設けられ、下流側部には角鋼片1
の左側角部から上側角部にかけて、縦波を発する斜角探
触子a、表面波を発する斜角探触子すが設けられている
。そして探触子ホルダ72内の探触子a−dは、左側下
面の表層部に向って超音波を発し、探触子aは角鋼片l
の左側角部近傍の表層部に縦波を伝播し、探触子すは左
側下面の表層部全域に沿って表面波を伝播し、さらに探
触子c、dは左側下面の表1―部全域に沿って横波を伝
播せしめるものである。従って超音波縦波4角鋼片lの
角部近傍を、横波は超音波入射面の隣接面表層部を、ま
た表面波は同じく隣接表面を探傷するものである。In the probe holder 72 on the downstream side, a total of four probes are provided, two on each of the upstream and downstream sides, and the upstream side has beveled probes c and d that emit transverse waves. The square steel piece 1 is provided from the left corner to the upper corner of the square steel piece 1, and the square steel piece 1 is provided on the downstream side.
An oblique angle probe a that emits longitudinal waves and an oblique angle probe S that emits surface waves are provided from the left corner to the upper corner. Then, the probes a to d in the probe holder 72 emit ultrasonic waves toward the surface layer of the lower left surface, and the probe a is
A longitudinal wave is propagated to the surface layer near the left corner of the probe, and the surface wave is propagated along the entire surface layer of the lower left surface of the probe. This allows transverse waves to propagate along the entire area. Therefore, the ultrasonic longitudinal wave detects flaws in the vicinity of the corners of the four-sided steel billet l, the transverse wave detects flaws in the surface layer of the surface adjacent to the ultrasonic incident surface, and the surface wave detects flaws in the adjacent surface.
取付ホルダ2の下板22の角鋼片の左側下面と対向する
面にも同様に押バネ11.11.・・・にて支持され、
上流側左側角部寄り及び下流何丁側角部寄りに夫々位置
する探触子ホルダ71及び72が設けられていて、前述
した如く転動車9,9・・・、導水管12.12・・・
が設けられており上流側の探触子ホルダ71内の上流側
で角鋼片lの右側角部に近い位置に縦波を発する超音波
斜角探触子aが設けられ、該探触子aよシ下側角部寄り
の位置に表面波を発する探触子すが設けられ、さらに下
流側には横波を発する斜角探触子c、dが設けられてシ
シ、また下流側の探触子ホルダ72内には、上流側に横
波を発する2つの斜角探触子c、dが設けられ、各探触
子c、dの下流側に、角鋼片1の下側角部に近い位置か
ら縦波を発する斜角探触子a1表面波を発する探触子す
が夫々設けられている。Similarly, push springs 11.11. Supported by...
Probe holders 71 and 72 are provided, respectively, located near the left corner on the upstream side and near the corner on the downstream side, and as described above, the rolling wheels 9, 9..., water pipes 12, 12...・
An ultrasonic angle probe a that emits longitudinal waves is provided at a position close to the right corner of the square steel piece l on the upstream side of the upstream probe holder 71, and the probe a A probe that emits surface waves is provided near the lower corner, and beveled probes c and d that emit transverse waves are provided on the downstream side. Inside the child holder 72, two beveled probes c and d that emit transverse waves on the upstream side are provided, and on the downstream side of each probe c and d, a position close to the lower corner of the square steel piece 1 is provided. An oblique probe a1 that emits a longitudinal wave from a surface wave and a probe a1 that emits a surface wave are provided, respectively.
一方、左側の取付ホルダ2の右方には該取付ホルダ2と
対向して右側の取付ホルダ2が設けられている。右側の
取付ホルダ2も左側の取付ホルダ2と左右逆勝手となっ
て略同様の構造をしているが、上板21.下板22に取
付けられた探触子ホルダ71.72,71.72の位置
が異っている。On the other hand, on the right side of the left mounting holder 2, a right mounting holder 2 is provided facing the mounting holder 2. The mounting holder 2 on the right side has almost the same structure as the mounting holder 2 on the left side with the right and left sides reversed, but the upper plate 21. The positions of the probe holders 71.72, 71.72 attached to the lower plate 22 are different.
即ち、上板21に取付けられた上流側の探触子ホルダ7
1は角鋼片1の右側角部近傍にあシ、下流側の探触子ホ
ルダ72は上側角部近傍にある。また下板22に取付け
られ念上流側の探触子ホルダ71は角鋼片lの下側角部
近傍にあシ、下流側の探触子ホルダ72は角鋼片lの右
側角部近傍にある。そして各探触子ホルダ内に前述の如
く、縦波を発する探触子aが角鋼片の夫々の角部に近因
位置に設けられ、表面波を発する探触子すが探触子aの
内側方に設けられ、横波を発する探触子C1dが角鋼片
lの角部に近い位置から遠ざかるように配されている。That is, the upstream probe holder 7 attached to the upper plate 21
1 is located near the right corner of the square steel piece 1, and the downstream probe holder 72 is located near the upper corner. Further, the probe holder 71 on the upstream side attached to the lower plate 22 is located near the lower corner of the square steel piece l, and the downstream probe holder 72 is located near the right corner of the square steel piece l. In each probe holder, as mentioned above, a probe a that emits longitudinal waves is installed at a position close to each corner of the square steel piece, and the probe a that emits a surface wave A probe C1d, which is provided on the inner side and emits transverse waves, is arranged so as to move away from a position near the corner of the square steel piece l.
第11図、第12図は夫々探触子ホルダ71.71・・
・、72.72・・・内の探触子から発せられる超音波
の伝播状態を示す模式図であシ、上流側に位置する4つ
の探触子ホルダ71.71・・・は角鋼片1の搬送方向
と直交する同一面上に位置し、各探触子ホルダ71内に
位置する探触子a、bと探触子c、dは、夫々反対方向
に超音波を発して、その探触子ホルダ71の位置する側
面に隣接する側面の表層部に沿っであるいは面に対して
斜めに超音波を伝播せしめる。また下流側に位置する4
つの探触子ホルダ’12.’12.・・・は角鋼片1の
搬送方向と直交する同一面上に位置し、各探触子ホルダ
72内の探触子a、bと探触子C・dは夫々反対方向に
超音波を発して、その探触子ホルダ72の位置する側面
に隣接する側面の表層部に沿って、あるいは面に対し斜
めに超音波を伝播せしめる。Figures 11 and 12 show probe holders 71, 71, respectively.
This is a schematic diagram showing the propagation state of ultrasonic waves emitted from the probes in... Probes a, b and probes c, d, which are located on the same plane orthogonal to the transport direction of the probe holder 71 and located in each probe holder 71, emit ultrasonic waves in opposite directions to detect the probes. The ultrasonic waves are propagated along the surface layer of the side surface adjacent to the side surface on which the feeler holder 71 is located or obliquely to the surface. Also, 4 located on the downstream side
Two probe holders '12. '12. ... are located on the same plane perpendicular to the conveyance direction of the square steel piece 1, and the probes a, b and probes C and d in each probe holder 72 emit ultrasonic waves in opposite directions. Then, the ultrasonic waves are propagated along the surface layer of the side surface adjacent to the side surface on which the probe holder 72 is located, or obliquely to the surface.
叙上の如逃構成の装置によシ探傷を行う場合は、搬送さ
れる角鋼片lの左右の角部にガイドローラ4.4を転接
させるべくエアシリンダ3,3のロッド31を進出させ
、各探触子ホルダ7L、71・・・72 、72 、・
・・内の転動車9,9・・・を角鋼片l側面に接触させ
る。そして導水管tg、t2.・・・によ勺接触媒質の
水を、角鋼片1llII面と各探触子ホルダ71.71
、・・・、’12,72.・・・内の探触子t、b、
o、dとの間のギャップ内に充填し、斯かる状態にて夫
々の探触子龜、b、c、dより超音波を発せしめて探傷
を行う。When performing flaw detection using the device with the above-mentioned escape structure, the rods 31 of the air cylinders 3, 3 are advanced to bring the guide rollers 4.4 into rolling contact with the left and right corners of the square billet l being conveyed. , each probe holder 7L, 71...72, 72,...
The rolling wheels 9, 9... inside are brought into contact with the side surface of the square steel piece l. and water pipes tg, t2. ...Sprinkle couplant water onto the 1llII surface of the square steel piece and each probe holder 71.71
,...,'12,72. ...probes t, b,
It is filled in the gap between the probes o and d, and in this state, flaw detection is performed by emitting ultrasonic waves from the respective probe heads b, c, and d.
この場合、各探触子ホルダ71.71・・・、72゜7
2・・・は押バネ11,11.・・・にて角鋼片!の各
側面に押圧されているため、各側面と各探触子との間の
ギャップは常に一定となっておシ、各探触子の感度変化
を最小としている。また押バネ11゜11、・・・の外
、取付ホルダ2.2全体を吊持する引張バネ6.5,6
.6にて各探触子は角鋼片の曲シ、ねじれ等に追従し、
角鋼片1の各側面との間のギャップを一定としている。In this case, each probe holder 71, 71..., 72°7
2... are push springs 11, 11. A square piece of steel! Since the probe is pressed against each side of the probe, the gap between each side and each probe is always constant, minimizing the change in sensitivity of each probe. In addition to the push springs 11゜11,..., tension springs 6.5, 6 that suspend the entire mounting holder 2.2.
.. At step 6, each probe follows the bending, twisting, etc. of the square steel piece,
The gap between each side of the square steel piece 1 is constant.
なお上述の実施例においては、縦波、横波9表面波の各
超音波のみを発する探触子を使用したが、これに替えて
複数の振動子を内蔵し縦波、横波。In the above-mentioned embodiment, a probe that only emits longitudinal waves, transverse waves, and surface waves was used, but instead of this, a plurality of built-in transducers are used to emit longitudinal waves, transverse waves, and surface waves.
表面波を発する複合型の探触子を用いてもよい。A composite probe that emits surface waves may also be used.
また横波を発する探触子を、角鋼片の各側面上に搬送方
向と直交する方向に24a並設したが、角鋼片寸法に合
せてその数を増加させてもよく、さらに各探触子ホルダ
71.72を取付ホルダ2に対して摺動自在として、寸
法の異なる角鋼片が搬送される場合にも適応できるよう
にしてもよい。In addition, although the probes that emit transverse waves are arranged in parallel on each side of the square steel piece in the direction perpendicular to the conveying direction, the number may be increased according to the size of the square steel piece, and each probe holder 71 and 72 may be made slidable with respect to the mounting holder 2, so that it can be adapted to the case where square steel pieces of different sizes are transported.
以上詳述したように本発明は、長手方向に搬送される角
金属片の疵を検出する超音波探傷方法において、縦波に
て入射面と隣接面とが形成する角部表面近傍を、横波に
て入射面の隣接面表層部を夫々探傷し、また表面波によ
シ疵位置の標定を行うべく、これら3種類夫々の超音波
を探触子にて角金属片内に伝播させるものであるので、
角金属片の表層部の探傷が高精度にかつ確実になされ、
特に角部の探傷も高精度に行い得、を丸底位置の標定が
確実に行える等本発明は角金属片の非破壊検査の精度向
上に寄与する処多大である0As described in detail above, the present invention is an ultrasonic flaw detection method for detecting flaws in a rectangular metal piece transported in the longitudinal direction. Each of these three types of ultrasonic waves is propagated into the rectangular metal piece using a probe in order to detect flaws in the surface layer of the adjacent surface of the incident surface and to locate the flaw position using surface waves. Because there is
The surface layer of square metal pieces can be detected with high precision and reliability.
In particular, the present invention has many features that contribute to improving the precision of non-destructive testing of square metal pieces, such as being able to perform flaw detection at corners with high precision and ensuring the position of the round bottom.
第1図は斜角探傷法の模式図、第・2図(イ)−?+今
は第1図の探傷結果を示すグラフ、第3図(イ)、(ロ
)は探傷器ブラウン管による信号波形写真、第4図(イ
)、(ロ)、P→は人工欠陥の状態を示す模式図、に)
は各人工欠陥を横波斜角によシ探傷した場合の屈折角度
とエコー高さの関係を示すグラフ、′第6閏イ)、(ロ
)は探触子距離とエコー高さを示すグラフ、第6図(イ
)、(ロ)、(ハ)は横波斜角探傷法の模式図、第7図
はgs図の探傷結果を示すグラフ、第8図は本発明方法
の実施に使用する装置の略示正面図、第9図は1つの探
触子ホルダの概略図、第10図は笥9図の矢符方向図、
@11図、第12図は夫々超音波伝播状態を示す模式図
である。
l・・・角鋼片、2・・・取付ホルダ、3・・・エアシ
リンダ 4・・・ガイドルーラ 6,6・・・引張シバ
ネ 71.72・・・探触子ホルダ 8・・・ローラ
a、b、c、d・・・探触子
特 峰 出 願 人 住友金属工業株式会社代理人 弁
理士 河 野 登 夫
第0図
褌 10 図
第 11 図
第T2図Figure 1 is a schematic diagram of the angle angle flaw detection method, Figure 2 (a) -? + This is a graph showing the flaw detection results in Fig. 1, Fig. 3 (a) and (b) are photographs of signal waveforms from the cathode ray tube of the flaw detector, and Fig. 4 (a), (b), and P→ are the states of artificial defects. Schematic diagram showing
is a graph showing the relationship between the refraction angle and the echo height when each artificial defect is detected using a shear wave oblique angle; Figures 6 (a), (b), and (c) are schematic diagrams of the transverse wave angle flaw detection method, Figure 7 is a graph showing the gs diagram flaw detection results, and Figure 8 is the equipment used to implement the method of the present invention. FIG. 9 is a schematic diagram of one probe holder, FIG. 10 is a diagram in the direction of the arrow in FIG. 9,
@Figures 11 and 12 are schematic diagrams showing the state of ultrasonic propagation, respectively. l... Square steel piece, 2... Mounting holder, 3... Air cylinder 4... Guide ruler 6, 6... Tension spring 71.72... Probe holder 8... Roller
a, b, c, d...Probe characteristics Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono Figure 0 Loincloth Figure 10 Figure 11 Figure T2
Claims (1)
波探傷方法において、縦波にて入射面と隣接面とが形成
する角部表面近傍を、横波にて入射面の隣接面表層部を
夫々探傷し、また表面波によシ疵位置の標定を行うべく
、これら3種類夫々の超音波を角金属片内に伝播させる
ことを特徴とする超音波探傷方法01. In an ultrasonic flaw detection method for detecting flaws in a rectangular metal piece transported in the longitudinal direction, longitudinal waves are used to detect the vicinity of the corner surface formed by the incident surface and the adjacent surface, and transverse waves are used to detect the surface of the adjacent surface of the incident surface. Ultrasonic flaw detection method 0 characterized by propagating each of these three types of ultrasonic waves into a rectangular metal piece in order to detect flaws in each part and to locate flaw positions using surface waves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57101028A JPS58216950A (en) | 1982-06-11 | 1982-06-11 | Ultrasonic flaw detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57101028A JPS58216950A (en) | 1982-06-11 | 1982-06-11 | Ultrasonic flaw detection |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58216950A true JPS58216950A (en) | 1983-12-16 |
JPH0332746B2 JPH0332746B2 (en) | 1991-05-14 |
Family
ID=14289724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57101028A Granted JPS58216950A (en) | 1982-06-11 | 1982-06-11 | Ultrasonic flaw detection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58216950A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60131454A (en) * | 1983-12-21 | 1985-07-13 | Tokyo Keiki Co Ltd | Ultrasonic flaw detector for rectangular billet |
JP2005037407A (en) * | 2004-11-05 | 2005-02-10 | Jfe Steel Kk | Ultrasonic defect detection method, and ultrasonic flaw detector |
JP2015068639A (en) * | 2013-09-26 | 2015-04-13 | Jfeスチール株式会社 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
EP3584572A1 (en) * | 2018-06-18 | 2019-12-25 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | Test head forceps for ultrasonic crack detection, kit for ultrasonic crack production and use of the test head forceps for ultrasonic crack detection |
-
1982
- 1982-06-11 JP JP57101028A patent/JPS58216950A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60131454A (en) * | 1983-12-21 | 1985-07-13 | Tokyo Keiki Co Ltd | Ultrasonic flaw detector for rectangular billet |
JP2005037407A (en) * | 2004-11-05 | 2005-02-10 | Jfe Steel Kk | Ultrasonic defect detection method, and ultrasonic flaw detector |
JP2015068639A (en) * | 2013-09-26 | 2015-04-13 | Jfeスチール株式会社 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
EP3584572A1 (en) * | 2018-06-18 | 2019-12-25 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | Test head forceps for ultrasonic crack detection, kit for ultrasonic crack production and use of the test head forceps for ultrasonic crack detection |
Also Published As
Publication number | Publication date |
---|---|
JPH0332746B2 (en) | 1991-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100064495A1 (en) | Quality control method and manufacturing method for pipe | |
JPH04265853A (en) | Method and apparatus for identifying flaw depth in checking of tubular product | |
JP4345734B2 (en) | Quality inspection method for welded steel pipe welds | |
JP5558666B2 (en) | Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe | |
JP2004333387A (en) | Ultrasonic inspection method for welded part | |
RU2651431C1 (en) | Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation | |
JPS58216950A (en) | Ultrasonic flaw detection | |
JP2009058238A (en) | Method and device for defect inspection | |
KR870001259B1 (en) | Steel piece inspection using electronic beam | |
JP2002022714A (en) | Ultrasonic flaw detector for welded steel pipe | |
KR102232470B1 (en) | A flaw detector with angle adjustment | |
RU2644438C1 (en) | Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation | |
JPS6078345A (en) | Method and device for on-line detection of inclusion of thin steel band | |
JP3629908B2 (en) | Line focus type ultrasonic flaw detection method and apparatus | |
RU2785302C1 (en) | Ultrasonic method for assessing defects in the rail head and determining the profile of the tread surface | |
Kenderian et al. | Laser-air hybrid ultrasonic technique for dynamic railroad inspection applications | |
JP3800133B2 (en) | Ultrasonic flaw detection method and apparatus for welded steel pipe welds | |
JPS6234099B2 (en) | ||
JPH0599902A (en) | Apparatus for inspecting rectangular steel material | |
RU198395U1 (en) | DEVICE FOR DETECTING DEFECTS IN THE SOLE OF RAIL RAILS AND FEATURES OF THE SOLE | |
JPS60205356A (en) | Ultrasonic flaw detecting method of steel tube weld zone | |
-C. Wooh et al. | Nondestructive characterization of planar defects using laser-generated ultrasonic shear waves | |
JPH08261992A (en) | Ultrasonic flaw detector | |
JP2002257800A (en) | Ultrasonic flaw detection method and device for square billet | |
RU2231783C2 (en) | Ultrasonic flaw detector |