JPH09257761A - Ultrasonic inspection of cast piece - Google Patents

Ultrasonic inspection of cast piece

Info

Publication number
JPH09257761A
JPH09257761A JP8071625A JP7162596A JPH09257761A JP H09257761 A JPH09257761 A JP H09257761A JP 8071625 A JP8071625 A JP 8071625A JP 7162596 A JP7162596 A JP 7162596A JP H09257761 A JPH09257761 A JP H09257761A
Authority
JP
Japan
Prior art keywords
inspection
slab
inclined plane
depth
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8071625A
Other languages
Japanese (ja)
Inventor
Kazumi Yasuda
一美 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8071625A priority Critical patent/JPH09257761A/en
Publication of JPH09257761A publication Critical patent/JPH09257761A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To inspect the distribution of the nonmetal enclosure present in a cast piece from the surface thereof to a specific depth in a depth direction by scanning a probe on the inclined plane having a specific angle of inclination formed by grinding the surface of the case piece. SOLUTION: When the nonmetal enclosure or air bubble present within a case piece 1 is inspected by a vertical ultrasonic flaw detection method using ultrasonic waves of 10MHz or more, a part of the surface 2 of the case piece 1 is ground to form an inclined plane 3 having a definite angle θ of inclination with respect to the surface 2. A probe is scanned on the inclined plane 3 to perform ultrasonic flaw detection. The angle θ of inclination is appropriately selected within a range of 0.03-0.2 radian (about 1.7-11.5 deg.) corresponding to the purpose of inspection. By this method, a flaw present within the region from the surface of the cast piece 1 to a depth of about 20mm can be inspected by using one inspection surface and inspection labor is reduced and a required time is shortened. By forming an image showing whether a flaw at each measuring point is detected, the distribution of the flaw in a depth direction can be displayed obviously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鉄鋼鋳片とくに連続
鋳造鋳片の内部に存在する非金属介在物又は気泡を検査
するための鋳片の超音波検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab ultrasonic inspection method for inspecting non-metallic inclusions or bubbles present inside a steel slab, particularly a continuous cast slab.

【0002】[0002]

【従来の技術】連続鋳造その他の方法で鋳造した鋳片を
圧延して鉄鋼製品を製造する場合に、鋳片の表面近傍に
存在する非金属介在物、気泡等の欠陥が表面疵の原因と
なる。とくに薄板製品の表面疵は、連続鋳造スラブの表
層からの深さ20mm以内に存在する非金属介在物に起因
して発生することが多く、表層近傍の非金属介在物の分
布を迅速に検査する方法が必要となっている。
2. Description of the Related Art When rolling slabs cast by continuous casting or other methods to produce steel products, defects such as non-metallic inclusions and bubbles existing near the surface of the slabs are the cause of surface defects. Become. In particular, surface defects of thin plate products often occur due to nonmetallic inclusions existing within a depth of 20 mm from the surface layer of the continuous cast slab, and the distribution of nonmetallic inclusions near the surface layer can be rapidly inspected. A method is needed.

【0003】近年、超音波探傷技術が進歩して、周波数
の高い超音波を用いることにより、10μ程度の微小な
介在物も検出できるようになってきたが、高周波の超音
波は減衰が大きく、表層から一定の深さ(例えば0.5
〜5mm程度)の範囲までしか検査できない。
In recent years, ultrasonic flaw detection technology has advanced, and it has become possible to detect minute inclusions of about 10 μ by using high frequency ultrasonic waves, but high frequency ultrasonic waves have large attenuation, A certain depth from the surface (for example 0.5
It is possible to inspect only up to the range of ~ 5mm).

【0004】したがって、これより深い位置に存在する
非金属介在物を検査するには、鋳片を切断して、例えば
表面に垂直な断面を形成させ、この垂直断面から超音波
を入射して非金属介在物の検査を行うことが必要とな
る。しかし、この場合は鋳片の表面は被検査材の側面と
なり、表面から3mm程度迄の範囲は、超音波探傷時に側
面(鋳片表面)からの散乱エコ−の影響が大きく、正確な
探傷が行えないという問題がある。
Therefore, in order to inspect non-metallic inclusions existing at a deeper position than this, a slab is cut to form, for example, a cross section perpendicular to the surface, and ultrasonic waves are incident from this vertical cross section to make a non-inclusion. It is necessary to inspect metal inclusions. However, in this case, the surface of the slab becomes the side surface of the material to be inspected, and in the range up to about 3 mm from the surface, the influence of scattering echo from the side surface (the surface of the slab) is large during ultrasonic flaw detection, and accurate flaw detection is performed. There is a problem that you cannot do it.

【0005】そのため、従来一回の測定で、鋳片の表面
から20mm程度迄の深さに存在する非金属介在物全体を
検査しうる、適当な超音波探傷法が得られていないのが
現状である。
For this reason, there is no conventional ultrasonic flaw detection method capable of inspecting all non-metallic inclusions existing at a depth of up to about 20 mm from the surface of the slab by a single measurement. Is.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高周波の超
音波を用いた垂直超音波探傷法により、鋳片の表面近傍
に存在する微小な非金属介在物又は気泡を検査するため
の簡便な方法を提供することを目的とし、とくに、一検
査面上で探触子を走査して超音波探傷することにより、
鋳片の表面から深さ20mm程度迄に存在する非金属介在
物又は気泡の、深さ方向の分布を検査しうる超音波検査
方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a simple method for inspecting minute non-metallic inclusions or bubbles present near the surface of a slab by a vertical ultrasonic flaw detection method using high frequency ultrasonic waves. For the purpose of providing a method, in particular, by scanning the probe on one inspection surface and ultrasonic flaw detection,
It is an object of the present invention to provide an ultrasonic inspection method capable of inspecting the distribution in the depth direction of nonmetallic inclusions or bubbles existing up to a depth of about 20 mm from the surface of a slab.

【0007】[0007]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたものであって、その要旨は、周波
数10MHz以上の超音波を用いて垂直超音波探傷法に
より鋳片の内部に存在する非金属介在物又は気泡を検査
するに際して、鋳片の表面を研削して鋳片の表面に対し
て0.03〜0.2ラジアンの傾斜角を有する傾斜平面
を形成させ、該傾斜平面上で探触子を走査して超音波探
傷を行うことを特徴とする鋳片の超音波検査方法であ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its gist is the inside of a slab by a vertical ultrasonic flaw detection method using ultrasonic waves having a frequency of 10 MHz or more. When inspecting non-metallic inclusions or air bubbles present in the slab, the surface of the slab is ground to form an inclined plane having an inclination angle of 0.03 to 0.2 radian with respect to the surface of the slab, and the inclination is It is an ultrasonic inspection method for a cast product, characterized by performing ultrasonic flaw detection by scanning a probe on a flat surface.

【0008】[0008]

【発明の実施の形態】図1は、本発明における超音波探
傷の検査面の形状の例を示す説明図で、鋳片1の表面2
の一部を研削し、表面2に対して一定の傾斜角θを有す
る傾斜平面3を形成させ、これを垂直超音波探傷の検査
面とする。
FIG. 1 is an explanatory view showing an example of the shape of an inspection surface for ultrasonic flaw detection according to the present invention.
Is partially ground to form an inclined flat surface 3 having a constant inclination angle θ with respect to the surface 2, and this is used as an inspection surface for vertical ultrasonic flaw detection.

【0009】鋳片内部の非金属介在物等の欠陥が圧延製
品の表面疵の原因となるか否かは、欠陥部の表面から深
さに依存し、一般には表面からの深さが5mm程度以内の
欠陥の影響が最も大きいが、場合によっては表面からの
深さが20mm程度の欠陥も問題となる場合がある。
Whether defects such as non-metallic inclusions inside the slab cause surface defects in the rolled product depends on the depth of the defective portion from the surface, and generally the depth from the surface is about 5 mm. Although the influence of defects within the range is the largest, depending on the case, a defect having a depth of about 20 mm from the surface may be a problem.

【0010】したがって、図1における検査面先端の表
面からの深さhは、検査の目的に応じて5〜20mm程度
に設定する。また、傾斜平面の長さlは、超音波探傷の
走査ピッチや探傷所要時間を考慮して定めるられるが、
通常は50〜200mm程度にするのが適当である。傾斜
角θは、検査の目的に応じて0.03〜0.2ラジアン
(角度で約1.7°〜11.5°)の範囲で適宜選択す
る。
Therefore, the depth h from the surface of the tip of the inspection surface in FIG. 1 is set to about 5 to 20 mm depending on the purpose of the inspection. The length 1 of the inclined plane is determined in consideration of the scanning pitch of ultrasonic flaw detection and the time required for flaw detection.
Usually, it is suitable to set the thickness to about 50 to 200 mm. The inclination angle θ is appropriately selected within the range of 0.03 to 0.2 radian (angle is about 1.7 ° to 11.5 °) according to the purpose of inspection.

【0011】傾斜平面(検査面)の鋳片表面に対する傾
斜角θを上記の範囲に限定する理由は、θが0.2ラジ
アン以上では、一定の深さについて検査しうる範囲が狭
くなりすぎ、θが0.03ラジアン以下では、逆に検査
面が広すぎて探触子を走査するための所要時間が大きく
なりすぎ、いずれも本発明の超音波検査方法の目的に適
合しなくなるためである。
The reason why the inclination angle θ of the inclined plane (inspection surface) with respect to the surface of the slab is limited to the above range is that when θ is 0.2 radian or more, the inspectable range for a certain depth becomes too narrow. This is because if θ is 0.03 radians or less, the inspection surface is too wide, and the time required to scan the probe becomes too long, which is not suitable for the purpose of the ultrasonic inspection method of the present invention. .

【0012】一般に10MHz以上の高周波を用いた超
音波検査法では、超音波の減衰のため、欠陥が検出でき
る表面からの深さはせいぜい5mm程度迄である。したが
って、従来の超音波検査法で表面から20mm程度の深さ
まで検査しようとすると、表面から数mmづつ数段にわた
って研削し、それぞれの面で超音波探傷を行う必要があ
り、検査の手間や所要時間が大きかった。これに対し
て、本発明の方法を用いれば、表面から20mm程度の深
さまでの欠陥を一個の検査面で検査でき、検査の手間が
軽減され所要時間が大幅に短縮される。
Generally, in the ultrasonic inspection method using a high frequency of 10 MHz or more, the depth from the surface where defects can be detected is up to about 5 mm due to the attenuation of ultrasonic waves. Therefore, when it is attempted to inspect a depth of about 20 mm from the surface by the conventional ultrasonic inspection method, it is necessary to grind several steps from the surface over several steps and perform ultrasonic flaw detection on each surface. I had a lot of time. On the other hand, when the method of the present invention is used, defects up to a depth of about 20 mm from the surface can be inspected with one inspection surface, which reduces inspection time and drastically reduces the required time.

【0013】また、後の実施例に示すように、傾斜平面
上で超音波探触子を走査して所定の時間間隔で超音波探
傷を行い、各測定点で欠陥が検出されるか否かを画像化
することにより、非金属介在物等の欠陥の深さ方向の分
布を、一目瞭然に表示できる。とくに連続鋳造鋳片にお
いては、表層から一定の深さに非金属介在物の集積層が
形成されることが多いが、上記の表示方法によれば、こ
のような集積層の位置や介在物の密度を容易に判定する
ことができる。
Further, as shown in the following embodiment, the ultrasonic probe is scanned on the inclined plane to perform ultrasonic flaw detection at predetermined time intervals, and whether or not a defect is detected at each measurement point. By imaging, the distribution in the depth direction of defects such as non-metallic inclusions can be displayed at a glance. Particularly in continuous cast slabs, an accumulated layer of non-metallic inclusions is often formed at a certain depth from the surface layer. The density can be easily determined.

【0014】さらに、傾斜平面上の各測定点での欠陥部
反射波信号は、欠陥部の深さの情報を含んでいるから、
この信号をコンピュータでデータ処理することにより、
鋳片の深さ方向の欠陥の密度分布を算出することができ
る。この場合、本発明の検査方法においては、一個の検
査面で検査し得る深さ方向の範囲が、従来の超音波探傷
法に比して、著しく広いことが特徴である。
Further, since the defect reflected wave signal at each measurement point on the inclined plane contains information on the depth of the defect,
By processing this signal with a computer,
The density distribution of defects in the depth direction of the slab can be calculated. In this case, the inspection method of the present invention is characterized in that the range in the depth direction that can be inspected by one inspection surface is significantly wider than that of the conventional ultrasonic flaw detection method.

【0015】[0015]

【実施例】超音波探傷器と映像処理装置を組合せた測定
装置を用いて、本発明に係る超音波検査方法を実施し
た。図2は、本実施例における測定装置の構成を示す図
である。
EXAMPLE An ultrasonic inspection method according to the present invention was carried out using a measuring device in which an ultrasonic flaw detector and an image processing device were combined. FIG. 2 is a diagram showing the configuration of the measuring apparatus in this embodiment.

【0016】図2に示すように、被検査材4を傾斜平面
3を水平にして水槽5内に浸漬静置し、超音波探触子6
を傾斜平面3上でXY方向に走査し、各格子点で探触子
6からパルス状の超音波を発信して探傷を行う。被検査
材の表面及び欠陥部(非金属介在物等)の界面から反射
され探触子6で受信された信号波は、超音波探傷器7で
増幅され、マイクロコンピュータ8で演算処理されてメ
モリー部に記録され、画像表示装置9で所定の形式に表
示される。
As shown in FIG. 2, the material to be inspected 4 is immersed and left in the water tank 5 with the inclined plane 3 being horizontal, and the ultrasonic probe 6
Are scanned in the XY directions on the inclined plane 3 and pulsed ultrasonic waves are transmitted from the probe 6 at each lattice point to perform flaw detection. The signal wave reflected from the surface of the material to be inspected and the interface between the defective parts (non-metallic inclusions, etc.) and received by the probe 6 is amplified by the ultrasonic flaw detector 7, processed by the microcomputer 8 and stored in the memory. It is recorded in a copy and displayed in a predetermined format on the image display device 9.

【0017】被検査材は薄板製造用の低炭アルミキルド
鋼の連続鋳造鋳片で、連々鋳継目部の鋳片のL面(湾曲
連鋳機の湾曲内側の面)の表層部分より採取した。
The material to be inspected was a continuously cast slab of low carbon aluminum killed steel for producing thin plates, which was sampled from the surface layer portion of the L surface (the inner surface of the curve of the curved continuous casting machine) of the slab at the continuous seam.

【0018】図3は、本実施例における被検査材の研削
面の形状と検査結果を示す図で、同図に示すように、鋳
片の表層を含む50×50mmの被検査材を表面から研削
して、傾斜角θが0.11ラジアン(6.3°)の傾斜平
面を形成させた。この被検査材を傾斜平面を水平にして
水中に浸して静置し、この傾斜平面を検査面として、こ
の上で探触子を走査して検査面全体について超音波探傷
を行った。超音波探傷の条件は下記のとおりである。
FIG. 3 is a diagram showing the shape of the ground surface of the material to be inspected and the inspection result in this embodiment. As shown in FIG. 3, a material of 50 × 50 mm including the surface layer of the slab is inspected from the surface. Grinding was performed to form an inclined plane having an inclination angle θ of 0.11 radian (6.3 °). The material to be inspected was immersed in water with the inclined plane being horizontal and allowed to stand still, and the inclined plane was used as an inspection surface, and the probe was scanned on this to perform ultrasonic flaw detection on the entire inspection surface. The conditions of ultrasonic flaw detection are as follows.

【0019】 超音波周波数: 75MHz 深さ方向の探傷範囲: 表面下 0.5〜1.5mm 走査ピッチ: 50μm 各走査点で超音波探傷を行い、反射信号波をコンピュー
タで解析して上記探傷範囲に欠陥が存在するか否かを判
断し、画像処理により欠陥部を黒点で表示した結果が図
3である。同図にみられるように、非金属介在物等の欠
陥が鋳片の表面から2〜3mm、及び4〜5mmの深さ位置
に多く存在していることが分かる。
Ultrasonic frequency: 75 MHz Depth flaw detection range: 0.5 to 1.5 mm below the surface Scanning pitch: 50 μm Ultrasonic flaw detection is performed at each scanning point, and the reflected signal wave is analyzed by a computer to detect the flaw detection range. FIG. 3 shows a result in which it is determined whether or not there is a defect and the defective portion is displayed as a black dot by image processing. As can be seen in the figure, many defects such as non-metallic inclusions are present at depths of 2 to 3 mm and 4 to 5 mm from the surface of the cast slab.

【0020】このように、非金属介在物等の欠陥の集積
する位置と集積の密度を一目で判断しうるように表示で
きることが本発明の効果の一つである。本実施例におい
ては、鋳片の表面から5mm程度の深さ迄に限って検査し
たが、傾斜平面の長さ又は傾斜角度をさらに大きくする
ことにより、より深い範囲まで検査しうることは云うま
でもない。
As described above, it is one of the effects of the present invention that the position where the defects such as non-metal inclusions are accumulated and the density of the accumulation can be displayed at a glance so that they can be judged at a glance. In the present embodiment, the test was conducted only up to a depth of about 5 mm from the surface of the slab, but it is needless to say that the test can be conducted to a deeper range by further increasing the length or the tilt angle of the inclined plane. Nor.

【0021】[0021]

【発明の効果】本発明により、鋳片の表面から20mm程
度迄に存在する非金属介在物等の欠陥の深さ方向の分布
を簡便かつ迅速に検査することが可能になった。これに
より、鋳片段階で圧延時の疵の発生率を予測することが
容易になり、鋳片の手入れの要否の判定や、用途又は向
き先の指定が早期に行えるようになった。
According to the present invention, it becomes possible to easily and quickly inspect the distribution in the depth direction of defects such as non-metallic inclusions existing up to about 20 mm from the surface of the cast slab. As a result, it becomes easier to predict the rate of occurrence of flaws during rolling at the stage of slab, and it becomes possible to determine whether maintenance of the slab is necessary and to specify the purpose or direction of the slab at an early stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における超音波探傷の検査面の形状の例
を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of the shape of an inspection surface for ultrasonic flaw detection according to the present invention.

【図2】本実施例における測定装置の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a measuring device according to the present embodiment.

【図3】本実施例における被検査材の研削面の形状と検
査結果を示す図である。
FIG. 3 is a diagram showing a shape of a ground surface of a material to be inspected and an inspection result in this example.

【符号の説明】[Explanation of symbols]

1 鋳片 2 表面 3 傾斜平面 4 被検査材 5 水槽 6 探触子 7 超音波探傷器 8 マイクロコンピュータ 9 画像表示装置 h 検査面先端の表面からの深さ l 傾斜平面の長さ θ 傾斜角 1 cast piece 2 surface 3 inclined plane 4 material to be inspected 5 water tank 6 probe 7 ultrasonic flaw detector 8 microcomputer 9 image display device h depth from the surface of the tip of the inspection surface 1 length of inclined plane θ inclination angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 周波数10MHz以上の超音波を用いて
垂直超音波探傷法により鋳片の内部に存在する非金属介
在物又は気泡を検査するに際して、鋳片の表面を研削し
て鋳片の表面に対して0.03〜0.2ラジアンの傾斜
角を有する傾斜平面を形成させ、該傾斜平面上で探触子
を走査して超音波探傷を行うことを特徴とする鋳片の超
音波検査方法。
1. When inspecting for non-metallic inclusions or bubbles present inside a slab by a vertical ultrasonic flaw detection method using ultrasonic waves with a frequency of 10 MHz or more, the surface of the slab is ground by grinding the surface of the slab. The ultrasonic inspection of the slab is characterized in that an inclined plane having an inclination angle of 0.03 to 0.2 radians is formed with respect to, and ultrasonic flaw detection is performed by scanning the probe on the inclined plane. Method.
JP8071625A 1996-03-27 1996-03-27 Ultrasonic inspection of cast piece Withdrawn JPH09257761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8071625A JPH09257761A (en) 1996-03-27 1996-03-27 Ultrasonic inspection of cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8071625A JPH09257761A (en) 1996-03-27 1996-03-27 Ultrasonic inspection of cast piece

Publications (1)

Publication Number Publication Date
JPH09257761A true JPH09257761A (en) 1997-10-03

Family

ID=13466033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8071625A Withdrawn JPH09257761A (en) 1996-03-27 1996-03-27 Ultrasonic inspection of cast piece

Country Status (1)

Country Link
JP (1) JPH09257761A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923997C2 (en) * 1998-05-27 2003-05-15 Nsk Ltd Ultrasonic detection method and ultrasonic defect detection device for bearing rings
US6725720B2 (en) 2000-12-25 2004-04-27 Nsk Ltd. Rolling bearing, and method of ultrasonically detecting flaws in bearing raceway ring of rolling bearing
DE10034031B4 (en) * 1999-07-14 2006-05-18 Nsk Ltd. Method for testing a component of a continuously variable toroidal transmission
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis
CN109358116A (en) * 2018-11-29 2019-02-19 山东钢铁股份有限公司 Alloy steel bar ultrasonic examination reference block and its application method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923997C2 (en) * 1998-05-27 2003-05-15 Nsk Ltd Ultrasonic detection method and ultrasonic defect detection device for bearing rings
DE10034031B4 (en) * 1999-07-14 2006-05-18 Nsk Ltd. Method for testing a component of a continuously variable toroidal transmission
US6725720B2 (en) 2000-12-25 2004-04-27 Nsk Ltd. Rolling bearing, and method of ultrasonically detecting flaws in bearing raceway ring of rolling bearing
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis
JP4762852B2 (en) * 2006-02-23 2011-08-31 新日本製鐵株式会社 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry
CN109358116A (en) * 2018-11-29 2019-02-19 山东钢铁股份有限公司 Alloy steel bar ultrasonic examination reference block and its application method

Similar Documents

Publication Publication Date Title
JP2010243375A (en) Extended crack detection method, apparatus, and program
JP5260045B2 (en) Method and apparatus for ultrasonic inspection of cast bar
EP3985387A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JPH09257761A (en) Ultrasonic inspection of cast piece
US4898034A (en) High temperature ultrasonic testing of materials for internal flaws
KR101942792B1 (en) Steel material quality evaluation method and quality evaluation device
JP4511487B2 (en) Inspection method of damage and corrosion thinning phenomenon caused by hydrogen
JP2009058238A (en) Method and device for defect inspection
KR102044990B1 (en) Ultrasonic testing method
JPH05333000A (en) Ultrasonic flaw detector
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP5243215B2 (en) Method for detecting and evaluating defects in the center of round steel bars
KR870001259B1 (en) Steel piece inspection using electronic beam
TWI674406B (en) Method for detecting central porosity of steel slab
JP5638052B2 (en) Ultrasonic flaw detection inspection method for cast bars
JP2863328B2 (en) Water immersion ultrasonic inspection method
JP2006234807A (en) Defect detecting method
CN110702791B (en) Method for detecting edge of part through ultrasonic imaging
JP2004177168A (en) In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection
JP2726359B2 (en) Ultrasonic flaw detector for cylindrical surface
JPH0332746B2 (en)
JPH05126808A (en) Ultrasonic flaw detecting method
Pandey et al. Evaluation of internal and subsurface quality of continuously cast billets and slabs by ultrasonic techniques
JP2531873B2 (en) Surface defect inspection method
JPH02102450A (en) Flaw detecting method for pressure container or the like

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603