JP2007256256A - Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis - Google Patents

Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis Download PDF

Info

Publication number
JP2007256256A
JP2007256256A JP2006289039A JP2006289039A JP2007256256A JP 2007256256 A JP2007256256 A JP 2007256256A JP 2006289039 A JP2006289039 A JP 2006289039A JP 2006289039 A JP2006289039 A JP 2006289039A JP 2007256256 A JP2007256256 A JP 2007256256A
Authority
JP
Japan
Prior art keywords
metal sample
analysis
sample
spark discharge
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006289039A
Other languages
Japanese (ja)
Other versions
JP4762852B2 (en
Inventor
Kazusane Mizukami
和実 水上
Hidekazu Nanba
英一 難波
Norisato Morishige
宣郷 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006289039A priority Critical patent/JP4762852B2/en
Publication of JP2007256256A publication Critical patent/JP2007256256A/en
Application granted granted Critical
Publication of JP4762852B2 publication Critical patent/JP4762852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating accurately and quickly a component concentration in a plate thickness-directional cross section of a metal sample, using a spark discharge emission analyzer. <P>SOLUTION: In this method of evaluating the thickness-directional component concentration of the metal sample by spark discharge emission analysis, a surface of the metal sample of a measuring object is polishedly inclination-worked preliminarily, an emission spectrum obtained from each analytical point is spectroscopically analyzed thereafter while moving the analytical points not to be overlapped with the fellow analytical points adjacent each other, along a surface inclination direction with a thickness of the metal sample getting thin, using the spark discharge emission analysis, and the concentration of the specified component corresponding to the each thickness of the metal sample is found based on an emission intensity of wavelength corresponding to the specified component. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属試料の厚み方向の成分濃度変化を評価する方法に関し、より詳しくは、スパーク放電発光分析を用いて迅速かつ正確に金属試料の厚み方向の成分濃度変化を評価する方法に関するものである。   The present invention relates to a method for evaluating a change in a component concentration in a thickness direction of a metal sample, and more particularly to a method for evaluating a change in a component concentration in a thickness direction of a metal sample quickly and accurately using spark discharge emission analysis. is there.

鉄鋼等の金属材料は、製鋼工程で成分を調整した後、熱延処理、冷延処理、焼鈍処理、表面処理等を経て最終製品としての性能、形状に仕上げて出荷される。この中で焼鈍処理過程に代表される熱処理工程においては、金属材料に含まれる成分元素は、様々な形態に変化し、最終製品の特性に影響する。例えば、酸に可溶で母材金属元素中に均一に固溶分散している鋼中のTi等の成分元素を用いてCをTiC析出物の形で固定し、加工特性や強度を向上させるIF鋼や、MnSやAlN等をインヒビターとして結晶粒の成長制御に使用する電磁鋼のように、鋼中の成分元素の析出形態や濃度分布は、最終的な製品特性を決めるうえで重要である。   Metal materials such as iron and steel are shipped after finishing the performance and shape as final products through hot rolling treatment, cold rolling treatment, annealing treatment, surface treatment and the like after adjusting the components in the steel making process. Among these, in the heat treatment process represented by the annealing treatment process, the component elements contained in the metal material change into various forms and affect the properties of the final product. For example, by fixing Ti in the form of TiC precipitates using component elements such as Ti in steel that is soluble in acid and uniformly dissolved in base metal elements, the processing characteristics and strength are improved. Like IF steel and electromagnetic steel that uses MnS, AlN, etc. as inhibitors to control grain growth, the precipitation form and concentration distribution of the constituent elements in the steel are important in determining the final product characteristics. .

特に薄板製品では、目的とする析出物を析出させ、結晶粒の大きさを制御するための、圧延処理及び熱処理、又は、表面にめっき層を付与したりする各種表面処理等を行う工程において、薄板の板厚断面中に各種成分元素の濃度勾配が発生し、これにより最終製品の品質に影響が生じる。そのため、薄板の板厚断面における成分元素の濃度勾配を評価することは、プロセスコントロール条件の最適化等の製造及び品質管理上重要となってくる。このため、最終的な製品特性に影響を及ぼす成分元素を分別、定量し、これらの成分元素の析出状態と濃度分布を、製造条件を制御することにより最終的な製品特性を最適化させる必要がある。   In particular, in thin plate products, in order to precipitate the desired precipitate and control the size of the crystal grains, in the process of performing various rolling treatments and heat treatments, or various surface treatments such as providing a plating layer on the surface, Concentration gradients of various component elements are generated in the thickness cross section of the thin plate, which affects the quality of the final product. Therefore, it is important to evaluate the concentration gradient of the component elements in the thickness cross section of the thin plate in terms of manufacturing and quality control such as optimization of process control conditions. For this reason, it is necessary to separate and quantify the component elements that affect the final product characteristics, and to optimize the final product characteristics by controlling the production conditions of the precipitation state and concentration distribution of these component elements. is there.

従来、金属薄板の板厚断面の成分元素濃度の分布を測定する方法については、主として段削り化学分析法が用いられている。この方法は、図1に示すように金属薄板の表面から所定厚さまでを薬品により溶解させ(これを化学的段削りということもある)、この溶解処理を逐次実施して、溶解後の板厚の異なる複数の試料を作成する。これらの板厚の異なる試料を化学的に溶解せしめた溶液を、それぞれICP発光分光分析法や、ケルダール蒸留法を用いて各種金属元素やN等の非金属元素等を分析し、これらの板厚の異なる複数試料間の溶解溶液中の成分濃度の差から金属薄板の板厚方向の濃度分布を求めることができる。このような化学分析法は、成分濃度の測定絶対値として高い定量精度を持つ方法であるが、溶解処理により板厚の異なる複数の試料を作成するため、貴重な試料を大量に消費し、1回の分析で1点の分析値しかデータが取れないため、測定データが出るまでの時間が1成分元素当たり1週間と非常に長く、コスト的にも非常に高価となるという不都合があった。   Conventionally, the step chemical analysis method has been mainly used as a method for measuring the distribution of the concentration of component elements in the thickness cross section of a thin metal plate. In this method, as shown in FIG. 1, the metal sheet is melted from the surface to a predetermined thickness with chemicals (this is sometimes called chemical stepping), and this dissolution process is performed sequentially to obtain a plate thickness after melting. A plurality of samples having different values are prepared. These samples with different plate thicknesses were analyzed for various metal elements and non-metallic elements such as N using ICP emission spectroscopic analysis and Kjeldahl distillation, respectively. The concentration distribution in the plate thickness direction of the thin metal plate can be obtained from the difference in the component concentration in the dissolved solution between a plurality of samples having different thicknesses. Such a chemical analysis method is a method with high quantitative accuracy as a measurement absolute value of a component concentration. However, since a plurality of samples having different plate thicknesses are prepared by dissolution processing, a large amount of valuable samples are consumed. Since only one analysis value can be obtained in each analysis, the time until the measurement data is obtained is as long as one week per component element, which is very expensive in terms of cost.

一方、試料表面及び板厚断面の成分濃度分析法としては、グロー放電スペクトロメトリー(GDS)、X線光電子スペクトロメトリー(XPS)、二次イオン質量スペクトロメトリー(SIMS)、電子線プローブX線微小領域分析装置(EPMA)、オージェ電子スペクトロメトリー(AES)等が知られている(例えば、非特許文献1、特許文献2参照)。しかしながら、対象とする実際の金属試料の厚さが、数mmから0.2mmという金属薄板の板厚断面の成分濃度変化を測定する場合には、上記従来方法では、
1) 対象範囲に対して測定領域(数nm〜数十μm)が狭すぎる、
2) SIMSを除き、微量(<0.1%)の成分分析は不可能、
3) 多元素同時に測定できる元素数が少ない、
4) 試料調製、測定、評価に時間がかかる、
5) 測定装置本体、測定料金が非常に高価である、
等の実用上の問題点があった。
On the other hand, the component concentration analysis method for the sample surface and the plate thickness cross section includes glow discharge spectrometry (GDS), X-ray photoelectron spectrometry (XPS), secondary ion mass spectrometry (SIMS), electron probe X-ray micro area An analyzer (EPMA), Auger electron spectrometry (AES), and the like are known (see, for example, Non-Patent Document 1 and Patent Document 2). However, when measuring the component concentration change of the thickness cross section of a thin metal plate of a thickness of several mm to 0.2 mm, the actual metal sample of interest,
1) The measurement area (several nm to several tens of μm) is too narrow for the target range.
2) Except SIMS, component analysis of trace amount (<0.1%) is impossible,
3) Fewer elements can be measured simultaneously
4) Sample preparation, measurement and evaluation take time.
5) The measuring device itself, the measurement fee is very expensive,
There were practical problems such as.

これらの従来の分析方法の問題点に鑑みて、本発明者は、スパーク放電発光分析法を用いて、金属試料に多数回のスパーク放電を行い、得られた発光スペクトルの内、特に発光初期の数百パルスを解析することにより、所定の式に従って介在物等の存在個数、粒径、含有量、又は平均粒径を求めることができる方法を提案した(例えば、特許文献1参照)。
また、本発明者は、上記スパーク放電発光分析において、介在物は選択放電を受けた後に、イオン化、原子化して発光に寄与するものの、母材に微細分散化していくことも確認した(例えば、特許文献3参照)。即ち、金属試料のスパーク放電発光分析におけるスパーク放電初期は、介在物が選択放電を受けて高いスペクトル線強度を与えるが、数百パルス以降になると、金属薄板の表層に存在していた介在物等の殆どは選択放電を受けて溶融、凝固を繰り返すことにより、母材に微細分散化していく。この結果、スパーク放電回数が数百パルス以降では、このようなスパーク放電時の成分元素の放電ミキシング現象により、金属試料の板厚方向の空間分解能が悪化し、金属試料の板厚断面の成分濃度を評価するためには測定精度上の課題が残されていた。
In view of the problems of these conventional analysis methods, the present inventor performed a spark discharge many times on a metal sample using a spark discharge emission analysis method. By analyzing several hundred pulses, a method has been proposed in which the number of inclusions, particle size, content, or average particle size can be determined according to a predetermined formula (see, for example, Patent Document 1).
In addition, in the spark discharge emission analysis, the present inventors also confirmed that inclusions are ionized, atomized and contribute to light emission after being subjected to selective discharge, but are finely dispersed in the base material (for example, (See Patent Document 3). That is, at the beginning of the spark discharge in the spark discharge emission analysis of a metal sample, the inclusions are subjected to selective discharge to give high spectral line intensity, but after several hundred pulses, the inclusions present in the surface layer of the metal thin plate, etc. Most of them are subjected to selective discharge and are repeatedly melted and solidified to be finely dispersed in the base material. As a result, when the number of spark discharges is several hundred pulses or more, the spatial resolution in the plate thickness direction of the metal sample deteriorates due to the discharge mixing phenomenon of the component elements during such spark discharge, and the component concentration in the plate thickness cross section of the metal sample In order to evaluate the above, there remains a problem in measurement accuracy.

氏平祐輔、昭晃堂、「化学分析」、1993年、254頁Yuhei Uhira, Shosodo, "Chemical Analysis", 1993, p. 254 特開平4-238250号公報JP-A-4-238250 特開平11-160257号公報Japanese Patent Laid-Open No. 11-160257 特開平2004-163400号公報JP 2004-163400 A

そこで、本発明は、従来技術の上記のような問題に鑑みて、スパーク放電発光分析法を用いて金属試料の板厚断面の成分濃度を迅速かつ正確に評価する方法を提供することを目的とするものである。また、本発明は、スパーク放電発光分析法を用いて金属試料の板厚断面の成分濃度の測定分解能を向上させための傾斜研磨加工を用いた金属試料の作成方法を提供することも目的とする。   Therefore, in view of the above-described problems of the prior art, the present invention aims to provide a method for quickly and accurately evaluating the component concentration of a plate thickness cross section of a metal sample using a spark discharge emission spectrometry. To do. Another object of the present invention is to provide a method for preparing a metal sample using an inclined polishing process for improving the measurement resolution of the component concentration of the plate thickness cross section of the metal sample using the spark discharge optical emission spectrometry. .

本発明は、上記課題を解決するものであり、その発明の要旨は以下の通りである。
(1) 測定対象物である金属試料の表面を予め傾斜研磨加工した後、スパーク放電発光分析法を用いて該金属試料の厚みが薄くなる表面傾斜方向にそって隣接する分析点同士が重畳しないように分析点を移動させつつ、各分析点から得られる発光スペクトルを分光分析し、特定成分に対応する波長の発光強度から金属試料の各厚みに対応する特定成分の濃度を求めることを特徴とするスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。
(2) 前記金属試料の試料台上の固定位置を水平方向に移動させることにより、該金属試料表面の分析点を移動させることを特徴とする上記(1)に記載のスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。
(3) 前記分析点当りのスパーク放電回数は10〜2000回とし、該分析点から得られる各発光スペクトルの特定成分に対応する波長の発光強度の平均値から、該分析点に対応する金属試料の厚みにおける特定成分の濃度を求めることを特徴とする上記(1)又は(2)に記載のスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。
(4) 前記分析点当りのスパーク放電周波数は500Hz以下とし、該分析点から得られる各発光スペクトルの特定成分に対応する波長の発光強度の平均値から、該分析点に対応する金属試料の厚みにおける特定成分の濃度を求めることを特徴とする上記(1)〜(3)のいずれかに記載のスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。
(5) 前記スパーク放電周波数が100Hz以下であることを特徴とする(4)に記載のスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。
This invention solves the said subject, and the summary of the invention is as follows.
(1) After preliminarily polishing the surface of the metal sample that is the object to be measured, adjacent analysis points do not overlap with each other along the surface inclination direction in which the thickness of the metal sample is reduced using the spark discharge emission spectrometry. In this way, the emission spectrum obtained from each analysis point is spectrally analyzed while moving the analysis point, and the concentration of the specific component corresponding to each thickness of the metal sample is obtained from the emission intensity of the wavelength corresponding to the specific component. To evaluate the concentration of components in the thickness direction of a metal sample by spark discharge emission spectrometry.
(2) The metal by spark discharge emission analysis according to (1) above, wherein the analysis point on the surface of the metal sample is moved by horizontally moving a fixed position of the metal sample on the sample stage. Sample thickness direction component concentration evaluation method.
(3) The number of spark discharges per analysis point is 10 to 2000, and the metal sample corresponding to the analysis point is obtained from the average value of the emission intensity of the wavelength corresponding to the specific component of each emission spectrum obtained from the analysis point. The method for evaluating the concentration of components in the thickness direction of a metal sample by spark discharge emission analysis as described in (1) or (2) above, wherein the concentration of the specific component in the thickness of the metal is determined.
(4) Spark discharge frequency per analysis point is 500 Hz or less, from the average value of the emission intensity of the wavelength corresponding to a specific component of each emission spectrum obtained from the analysis point, the thickness of the metal sample corresponding to the analysis point The method for evaluating the concentration of components in the thickness direction of a metal sample by spark discharge emission analysis according to any one of the above (1) to (3), wherein the concentration of the specific component in is determined.
(5) The method for evaluating the concentration of components in the thickness direction of a metal sample by spark discharge emission analysis according to (4), wherein the spark discharge frequency is 100 Hz or less.

本発明によれば、スパーク放電発光分析において、予め金属試料の板厚が徐々に薄くなるように、金属試料表面を傾斜研磨等により試料裏面に対して傾斜させ、この試料の表面傾斜方向に分析点を移動させながら発光スペクトルを測定することで、従来の化学分析法に比べて短い分析時間で迅速に、かつ高い精度での板厚方向の成分濃度分析を多元素同時に実行できる。
本発明法を、例えば、鉄鋼等の薄板製造工程における焼鈍過程における各種成分元素の侵入、濃化、純化等の金属薄板の板厚断面における成分濃度変化の評価に適用することで、製品の品質を迅速かつ正確に評価し、その結果を基に製品の製造工程条件の適正な制御を行うことが可能となり、産業上において極めて価値の高い発明である。
According to the present invention, in the spark discharge emission analysis, the metal sample surface is inclined with respect to the sample back surface by inclined polishing or the like so that the plate thickness of the metal sample is gradually reduced in advance, and the analysis is performed in the surface inclination direction of the sample. By measuring the emission spectrum while moving the points, the component concentration analysis in the plate thickness direction can be performed simultaneously in multiple elements quickly and with high accuracy in a shorter analysis time than in the conventional chemical analysis method.
By applying the method of the present invention to the evaluation of changes in the concentration of components in the thickness cross section of a thin metal sheet, such as invasion, concentration, and purification of various component elements in the annealing process in the manufacturing process of a thin sheet such as steel, the quality of the product It is possible to evaluate the manufacturing process quickly and accurately, and to appropriately control the manufacturing process conditions of the product based on the result, which is an extremely valuable invention in industry.

本発明においてスパーク放電発光分析対象とされる金属試料は、各種金属製品の製造工程から製品品質評価のために分取された金属材料であるが、本発明では、特に板厚が0.2〜5mm程度の金属試料の板厚断面濃度分布の測定を好ましい対象とする。金属試料の金属としては、純鉄、鉄鋼、アルミニウム、銅、チタン、ステンレス鋼、シリコンウエハー、インジュウム等、特に限定されない。
また、金属試料の中で、薄板製品を製造した後、さらに、薄板表面に各種の表面処理材、例えば焼鈍分離材のように薄板表面に薬品を塗布し熱処理により表面に化学的にグラス皮膜を形成させた薄鋼板や、薄板表面に電気的又は化学的めっき表面処理等を施した表面処理鋼板も本発明の対象となる。
In the present invention, the metal sample to be subjected to spark discharge emission analysis is a metal material separated for product quality evaluation from the manufacturing process of various metal products. In the present invention, the plate thickness is particularly about 0.2 to 5 mm. Measurement of the plate thickness cross-sectional concentration distribution of the metal sample is a preferred object. The metal of the metal sample is not particularly limited, such as pure iron, steel, aluminum, copper, titanium, stainless steel, silicon wafer, and indium.
In addition, after manufacturing a thin plate product among metal samples, various surface treatment materials such as an annealing separator are applied to the surface of the thin plate and a glass film is chemically formed on the surface by heat treatment. The formed thin steel plate and the surface-treated steel plate in which the surface of the thin plate is subjected to electrical or chemical plating surface treatment are also objects of the present invention.

以下、図面を参照して、本発明の実施の形態について説明する。
本発明における金属試料の厚み方向の特定成分濃度の評価は、測定対象物である金属試料の表面を予め傾斜研磨した後、スパーク放電発光分析法を用いて該金属試料の厚みが薄くなる表面傾斜方向に沿って隣接する分析点同士が重畳しないように分析点を移動させつつ、各分析点から得られる発光スペクトルを分光分析し、特定成分に対応する波長の発光強度から金属試料の各厚みに対応する特定成分の濃度を求めることを特徴とする。
Embodiments of the present invention will be described below with reference to the drawings.
The evaluation of the concentration of the specific component in the thickness direction of the metal sample in the present invention is performed by subjecting the surface of the metal sample to be measured to a slanted surface in advance, and then using the spark discharge emission spectrometry, the surface slope in which the metal sample is thinned. Spectral analysis of the emission spectrum obtained from each analysis point while moving the analysis point so that adjacent analysis points do not overlap each other along the direction, and from the emission intensity of the wavelength corresponding to the specific component to each thickness of the metal sample The concentration of the corresponding specific component is obtained.

図2に平面研削盤を用いて測定対象物である金属試料の表面を傾斜研磨する方法の実施形態の一例を示す。なお、以下の説明で定盤表面(加工前の試料表面と平行)上の2次元方向をX方向、Y方向とし、試料表面の傾斜方向をX方向とし、X方向と垂直な方向をY方向とし、また、定盤表面の法線方向をZ方向とする。   FIG. 2 shows an example of an embodiment of a method for slant polishing the surface of a metal sample as a measurement object using a surface grinder. In the following explanation, the two-dimensional direction on the surface of the surface plate (parallel to the sample surface before processing) is the X direction and the Y direction, the sample surface tilt direction is the X direction, and the direction perpendicular to the X direction is the Y direction. And the normal direction of the surface of the surface plate is the Z direction.

本発明において金属試料の傾斜研磨を行う方法としては、図2に示すように、例えば、数値制御(NC)平面研削盤と金属試料2の傾きを調節するための調整台5を用いて行える。通常、数値制御(NC)平面研削盤は、金属試料の平均厚みが均一になるように平面研削するために用いられ定盤の上に金属試料を磁力で固定する。切削条件を設定するために、事前に研削砥石1と金属試料2との間隔(Z方向)をμm単位で測定し、試料表面における平面研削砥石の稼動範囲(X方向、Y方向)を決定した後に、試料表層を定めた切削深さ分だけを回転砥石1で研磨しながら、試料2を平面研削することにより所望の厚みで金属試料を研磨加工することができる。   In the present invention, as a method of performing the slant polishing of the metal sample, as shown in FIG. 2, for example, a numerical control (NC) surface grinder and an adjusting table 5 for adjusting the tilt of the metal sample 2 can be used. Normally, a numerically controlled (NC) surface grinder is used for surface grinding so that the average thickness of the metal sample is uniform, and the metal sample is fixed on the surface plate by a magnetic force. In order to set the cutting conditions, the distance (Z direction) between the grinding wheel 1 and the metal sample 2 was measured in μm in advance, and the working range of the surface grinding wheel on the sample surface (X direction, Y direction) was determined. Thereafter, the metal sample can be polished to a desired thickness by subjecting the sample 2 to surface grinding while polishing with the rotating grindstone 1 only for the cutting depth that defines the sample surface layer.

本発明では、この数値制御(NC)平面研削盤を用いて、図2に示すように、調整台5により支え台3に固着された金属試料2を所定の傾きに調整して定盤4上に固定した後、上記のように研削砥石1を定盤面に水平なX軸及びY軸方向及び定盤4面に垂直なZ軸方向に移動させつつ金属試料表面を繰り返し研磨加工することで、金属試料の厚みが連続的に薄くなる表面が傾斜した金属試料2を得ることができる。   In the present invention, using this numerical control (NC) surface grinder, as shown in FIG. 2, the metal sample 2 fixed to the support base 3 by the adjustment base 5 is adjusted to a predetermined inclination and the surface of the surface plate 4 is adjusted. After fixing to the surface of the metal sample repeatedly while moving the grinding wheel 1 in the X-axis and Y-axis direction horizontal to the surface plate surface and the Z-axis direction perpendicular to the surface plate surface 4 as described above, It is possible to obtain a metal sample 2 whose surface is inclined so that the thickness of the metal sample is continuously reduced.

なお、調整台5を用いて厚みが薄い金属試料2を傾けた状態で研磨加工する場合は、金属試料2の剛性が低いため試料2が容易にたわみ、平面研磨の精度が低下する恐れが生じる。このため、金属試料2の裏面と支え台3表面をスプレー糊や両面テープ又は磁力等を用いて固着させ、金属試料2の強度を補強することが好ましい。
また、板厚の異なる複数の金属試料2を傾斜研磨する場合には、金属試料2の板厚に応じて金属試料2の強度を補強するために複数の厚みの支え台3を作成することが好ましい。
In addition, when polishing with a thin metal sample 2 tilted using the adjustment table 5, the rigidity of the metal sample 2 is low, so that the sample 2 can be easily bent and the accuracy of planar polishing may be reduced. . For this reason, it is preferable to reinforce the strength of the metal sample 2 by fixing the back surface of the metal sample 2 and the surface of the support base 3 using spray glue, double-sided tape or magnetic force.
In addition, when a plurality of metal samples 2 having different thicknesses are inclined and polished, a support base 3 having a plurality of thicknesses can be created in order to reinforce the strength of the metal sample 2 according to the plate thickness of the metal sample 2. preferable.

また、支え台3に固着された金属試料2を所定の傾きに調整するための調整台5としては、測定対象である金属試料の一部を切断して、調整台5として図2に示すように定盤4上に固定することにより、簡易に、測定対象である金属試料2の薄さ分だけ傾斜させることができる。なお、厚みが異なる支え台3を複数用意し、支え台3の厚みを調整することにより、金属試料2の傾きを調整することができる。   Further, as the adjustment table 5 for adjusting the metal sample 2 fixed to the support table 3 to a predetermined inclination, a part of the metal sample to be measured is cut and the adjustment table 5 is shown in FIG. By fixing it on the surface plate 4, it is possible to easily incline the thinness of the metal sample 2 to be measured. The inclination of the metal sample 2 can be adjusted by preparing a plurality of support bases 3 having different thicknesses and adjusting the thickness of the support base 3.

上記傾斜研磨において金属試料2の表面傾斜方向における板厚の薄い方の端部(図2の金属試料2右端部)の厚みは、スパーク放電発光分析法により成分濃度を測定評価する際の目的とする金属試料2の板厚の範囲によって調節するのが好ましい。
ただし、上記傾斜研磨された金属試料2の板厚の薄い方の端部の厚みが過度に薄くなると、金属試料が脆弱化し、傾斜研磨後に金属試料2を支え台3から剥離する際に、変形や破損等が生じ金属試料2表面の平滑性が低下する結果、スパーク放電発光分析する際に金属試料2表面の分析点を不活性アルゴンガスでシーリングするのが不十分となり、発光不良が発生し易くなる。また、金属試料2の板厚の薄い方の端部の厚みが過度に薄くなると、スパーク放電発光分析する際にスパーク放電により金属試料2の裏面まで貫通し、酸化物や不純物成分等の影響が大きい試料裏面表層部の成分までミキシングされた分析情報となり、異常分析値を与える可能性も生じる。
The thickness of the thinner end of the surface of the metal sample 2 in the inclined polishing direction (the right end of the metal sample 2 in FIG. 2) is the purpose of measuring and evaluating the component concentration by spark discharge emission spectrometry. It is preferable to adjust the thickness of the metal sample 2 to be adjusted.
However, if the thickness of the thin end of the inclined metal sample 2 becomes too thin, the metal sample becomes brittle and deforms when the metal sample 2 is peeled off from the support 3 after the inclined polishing. As a result, the smoothness of the surface of the metal sample 2 is reduced, and as a result, the analysis point on the surface of the metal sample 2 is insufficiently sealed with an inert argon gas when performing spark discharge emission analysis, resulting in poor emission. It becomes easy. In addition, if the thickness of the thin end of the metal sample 2 becomes excessively thin, the spark discharge emission analysis penetrates to the back surface of the metal sample 2 and is affected by oxides and impurity components. The analysis information is mixed up to a large component on the back surface of the sample, and there is a possibility of giving an abnormal analysis value.

本発明者らの検討結果によれば、上記傾斜研磨において金属試料2の表面傾斜方向における板厚の薄い方の端部(図2の金属試料2右端部)の厚みを、上記傾斜研磨前の金属試料2の平均厚みの1/2以下とすることで、金属試料の板厚の薄い方の端部の強度低下に起因する金属試料表面の平滑性低下を防止でき、かつ、スパーク放電発光分析する際に金属試料2の裏面まで貫通することに起因する試料裏面表層部の成分のミキシングによる分析異常も防止できることを確認した。また、金属試料の板厚中心(1/2t)を基準として、その表面側とその裏面側の濃度分布がほぼ対象である金属試料の場合の、厚み方向の成分濃度は、スパーク放電発光分析により上記傾斜研磨前の金属試料の平均厚みの1/2までの最大深さの成分濃度を測定評価することにより、金属試料の板厚全体の濃度分布を安定して精度良くかつ迅速に評価することができる。   According to the examination results of the present inventors, the thickness of the thinner end portion (the right end portion of the metal sample 2 in FIG. 2) in the surface inclination direction of the metal sample 2 in the inclined polishing is the same as that before the inclined polishing. By reducing the average thickness of metal sample 2 to 1/2 or less, it is possible to prevent a decrease in the smoothness of the surface of the metal sample due to a decrease in strength at the end of the thinner metal sample, and spark discharge emission analysis In doing so, it was confirmed that abnormal analysis due to mixing of components on the surface of the back surface of the sample due to penetration to the back surface of the metal sample 2 could be prevented. The component concentration in the thickness direction in the case of a metal sample whose concentration on the front and back sides is almost the target, based on the thickness center (1 / 2t) of the metal sample, is determined by spark discharge emission analysis. By measuring and evaluating the concentration of components at the maximum depth up to 1/2 of the average thickness of the metal sample before the above-mentioned inclined polishing, the concentration distribution of the entire thickness of the metal sample can be evaluated stably and accurately. Can do.

以上の知見から、金属試料の板厚中心(1/2t)を基準として、その表面側とその裏面側の濃度分布がほぼ対象である金属試料の場合、本発明では、スパーク放電発光分析により金属試料の板厚全体の濃度分布を安定して精度良くかつ迅速に評価するために、上記傾斜研磨によって得られる金属試料の表面傾斜方向における薄い方の端部(図2の金属試料2右端部)の厚みが、上記傾斜研磨前の金属試料2の平均厚みの1/2以下となるようにするのが好ましい。
なお、本発明者らは、上記方法により、金属試料の強度及び平坦性を良好に維持しつつ、板厚0.5mmまでの板厚の薄い金属試料、更に板厚が薄い板厚0.2mmまでの薄板の金属試料を傾斜研磨加工することができ、この結果、スパーク放電発光分析により金属試料の板厚全体の濃度分布を安定して精度良くかつ迅速に評価できることを確認している。
Based on the above knowledge, in the present invention, in the case of a metal sample in which the concentration distribution on the front surface side and the back surface side thereof is almost the object with respect to the thickness center (1/2 t) of the metal sample, in the present invention, the metal is obtained by spark discharge emission analysis. In order to stably and accurately evaluate the concentration distribution of the entire plate thickness of the sample, the thin end in the surface tilt direction of the metal sample obtained by the above tilt polishing (the right end of the metal sample 2 in FIG. 2) It is preferable that the thickness of the metal sample is equal to or less than half of the average thickness of the metal sample 2 before the above-described inclined polishing.
In addition, the present inventors, by the above method, while maintaining the strength and flatness of the metal sample well, a thin metal sample with a plate thickness of up to 0.5 mm, and further with a plate thickness of up to 0.2 mm. A thin metal sample can be slanted and polished, and as a result, it has been confirmed by spark discharge emission analysis that the concentration distribution of the entire thickness of the metal sample can be stably and accurately evaluated.

なお、上記傾斜研磨によって得られる金属試料の表面傾斜方向における板厚が薄い方の端部の厚みが、上記傾斜研磨前の金属試料の平均厚みの1/2以下になるように傾斜研磨する方法として、図2に示される調整台5の厚みを金属試料の平均厚みの1/2以上にすることにより、金属試料の傾きを調整し、望みの傾斜研磨を簡易な方法で実施することが可能となる。
また、鋼板表層部分に合金めっき層、ぶりき層等が施された金属試料の表面処理層と鉄鋼との界面までを分析したい場合には、表面処理層厚み範囲内の所望の研磨深さに相当する板厚のダミー板を設置することにより、望みの傾斜研磨を簡易な方法で実施することが可能となる。
In addition, the method of performing the slant polishing so that the thickness of the end portion where the plate thickness in the surface tilt direction of the metal sample obtained by the above slant polishing is thinner is equal to or less than half the average thickness of the metal sample before the above slant polishing. By adjusting the thickness of the adjustment table 5 shown in FIG. 2 to be 1/2 or more of the average thickness of the metal sample, it is possible to adjust the inclination of the metal sample and implement the desired inclined polishing by a simple method. It becomes.
In addition, if you want to analyze the interface between the surface treatment layer and the steel of a metal sample with an alloy plating layer, tinting layer, etc. on the surface layer of the steel plate, the desired polishing depth within the surface treatment layer thickness range can be obtained. By installing a dummy plate having a corresponding thickness, desired inclined polishing can be performed by a simple method.

本発明は、一般に知られているスパーク放電発光分析法(例えば、アグネ「最新の鉄鋼状態分析」、1979年、107頁)を用いて金属試料表面の成分分析を行うことを前提とする。スパーク放電発光分析方法は、不活性雰囲気下で金属試料表面に対向する電極からパルス電圧を印加し、金属試料表面より噴出したベーパージェットがArイオンと衝突することによりスパーク放電プラズマを生成させ、そのスパーク放電発光の波長と強度及び放電の回数等から金属試料中の成分含有量や、介在物等及び可溶性物質を形態別に含有量を求めるものである。
図4を用いてスパーク放電発光分析法による金属試料の板厚方向の成分濃度分の測定、評価方法の実施形態の一例を説明する。
The present invention is based on the premise that component analysis on the surface of a metal sample is performed using a generally known spark discharge optical emission spectrometry (for example, Agne “Latest Steel State Analysis”, 1979, page 107). In the spark discharge emission analysis method, a pulse voltage is applied from an electrode facing the metal sample surface in an inert atmosphere, and a vapor jet ejected from the metal sample surface collides with Ar ions to generate spark discharge plasma. From the wavelength and intensity of spark discharge light emission, the number of discharges, and the like, the content of components in metal samples, the content of inclusions, and soluble substances are determined for each form.
An example of an embodiment of a method for measuring and evaluating the component concentration in the thickness direction of a metal sample by spark discharge emission spectrometry will be described with reference to FIG.

図4は本発明の実施形態の一例としてスパーク放電発光分析装置を模式的に示す。
図4に示すように、上記傾斜研磨加工が施された金属試料、つまり、表面の傾斜方向に厚みが連続的に薄くなっている金属試料2を発光分光分析装置の試料台にセットする。望ましくはアルゴンガスのシーリング性能を高めて発光不良を防止するため金属試料2の上に板厚が充分に厚い平滑面を持つブロック試料で押さえると安定した放電を得ることができる。不活性ガス雰囲気下で、金属分析試料2と電極7との間に、放電装置8を用いて電圧を印加して当該分析点において1〜数千パルスまでスパーク放電を起こし、当該分析点から得られた各発光スペクトルは、集光レンズ9、スリット10を通して分光部30内に導かれ、回折格子11により分光される。分光スペクトル12を検出器13で特定成分に対応した波長毎に同時受光し、特定成分に対応した1パルス毎の発光スペクトル線強度を測光装置14及び演算処理装置15で一定時間積算した後、デジタル信号値に変換して測定する一定時間積分測光法を行う。
FIG. 4 schematically shows a spark discharge emission spectrometer as an example of an embodiment of the present invention.
As shown in FIG. 4, the metal sample that has been subjected to the above-described slant polishing process, that is, the metal sample 2 whose thickness is continuously reduced in the inclined direction of the surface is set on the sample stage of the emission spectroscopic analyzer. Desirably, a stable discharge can be obtained when the metal sample 2 is pressed with a block sample having a smooth surface sufficiently thick in order to enhance the sealing performance of argon gas and prevent light emission failure. Under an inert gas atmosphere, a voltage is applied between the metal analysis sample 2 and the electrode 7 using the discharge device 8 to cause a spark discharge from 1 to several thousand pulses at the analysis point. Each emission spectrum thus obtained is guided into the spectroscopic unit 30 through the condenser lens 9 and the slit 10 and is split by the diffraction grating 11. The spectral spectrum 12 is simultaneously received by the detector 13 for each wavelength corresponding to the specific component, and the emission spectral line intensity for each pulse corresponding to the specific component is integrated for a certain period of time by the photometric device 14 and the arithmetic processing unit 15, and then digitally Performs constant-time integral photometry, which is converted into signal values and measured.

1パルス毎の発光スペクトル強度の内、特定成分と同時に受光した母材成分、例えば、鉄鋼であれば鉄のスペクトル線強度が異常に弱い場合は、放電不良か、発光位置のずれ、又は、試料表面のクラック部等への放電不良であるので、これを除去するために、放電毎に母材成分強度をトリガーとして用いる内標準法を適用することで、発光不良データを適切にカットし、各成分の分析精度を向上させることができる。   Of the emission spectrum intensity for each pulse, the base material component received at the same time as the specific component, for example, steel, if the intensity of the spectral line of iron is abnormally weak, the discharge is defective, the emission position is shifted, or the sample Since it is a discharge failure to the crack part etc. on the surface, in order to remove this, by applying the internal standard method using the base material component strength as a trigger for each discharge, the emission failure data is appropriately cut, The analysis accuracy of components can be improved.

スパーク放電条件としては、ノーマルスパーク、アークライクスパーク、コンバインドスパーク等様々な条件があるが、目的とする元素を感度良く分析するのを判断基準として放電形態を選択するのは、通常のスパーク放電発光分析法における判断基準と同一である。   There are various spark discharge conditions such as normal spark, arc spark spark, combined spark, etc., but it is normal spark discharge luminescence to select the discharge form based on the criteria of analyzing the target element with high sensitivity. It is the same as the judgment standard in the analysis method.

通常のスパーク放電分光分析において、発光スペルトルを測定する前に、試料表面に付着した不純物を除去するために、予備放電が行なわれる。本発明では、試料表面が清浄であれば、予備放電は行う必要はない。通常のスパーク放電発光分析においては、予備放電回数を多くすれば放電が安定するが、上記傾斜研磨を施した金属試料の表面の成分分析の場合には、金属試料の最小板厚が1mmにも満たない場合は、無駄に予備放電回数を増加させても板厚を貫通させるだけで分析情報を得られなくなる可能性があるから、最高でも500パルスとし、できる限り少なく抑えることが望ましい。したがって、予備放電回数は、1分析点当たり、最低でゼロパルス、最高でも500パルスほどが望ましい。より好ましくは、50パルス以下に止めるのが良い。   In a normal spark discharge spectroscopic analysis, a preliminary discharge is performed to remove impurities adhering to the sample surface before measuring the emission spectrum. In the present invention, if the sample surface is clean, it is not necessary to perform preliminary discharge. In normal spark discharge optical emission analysis, the discharge becomes stable if the number of preliminary discharges is increased. However, in the case of component analysis of the surface of a metal sample subjected to the above-mentioned inclined polishing, the minimum thickness of the metal sample is as small as 1 mm. If this is not the case, even if the number of preliminary discharges is increased unnecessarily, analysis information may not be obtained simply by penetrating the plate thickness. Therefore, it is desirable that the number of preliminary discharges is at least zero pulse and at most about 500 pulses per analysis point. More preferably, it should be stopped at 50 pulses or less.

本発明では、上記傾斜研磨加工が施された金属試料表面の特定分析点のスパーク放電発光分析を行った後、金属試料の試料台のセット位置を変更し、当該金属試料の厚みが薄くなる表面傾斜方向にそって隣接する分析点同士が重畳しないように分析点を移動させた後、上記と同様なスパーク放電発光分析を行うことを順次繰り返すことにより、金属試料の各厚みに対応する特定成分の濃度を求めることができる。
金属試料表面の分析点を移動する際に、隣接する分析点同士が重畳しないようにすることによって、スパーク放電発光による隣接する分析点同士の特定成分が選択放電を受けて溶融、凝固を繰り返すことにより、母材に微細分散化していくミキシング現象は防止でき、これによる金属試料の各厚みに対応する特定成分濃度の測定精度の低下を防止し、金属試料の厚み方向で測定分解能が高い成分濃度の測定が可能となる。
In the present invention, after performing spark discharge emission analysis at a specific analysis point on the surface of the metal sample that has been subjected to the above-described slant polishing processing, the set position of the sample stage of the metal sample is changed, and the surface of the metal sample becomes thin After moving the analysis points so that adjacent analysis points do not overlap with each other along the tilt direction, the specific component corresponding to each thickness of the metal sample is sequentially repeated by performing the same spark discharge emission analysis as described above. Can be determined.
When moving the analysis points on the surface of the metal sample, the specific components between the adjacent analysis points due to spark discharge emission undergo selective discharge and are repeatedly melted and solidified by preventing the adjacent analysis points from overlapping each other. This prevents the mixing phenomenon that is finely dispersed in the base material, prevents the measurement accuracy of the specific component concentration corresponding to each thickness of the metal sample from being reduced, and the component concentration with high measurement resolution in the thickness direction of the metal sample. Can be measured.

また、各分析点当りのスパーク放電回数についても、スパーク放電回数の増加に伴い、金属試料の板厚方向の成分のミキシングが発生し、板厚方向の分解能が低下し易くなるため、スパーク放電発光分析による金属試料の板厚方向の分解能を向上させるために、できる限り少なくした方が望ましい。スパーク放電回数(以下、放電パルス数と言うこともある)としては、1分析点当たり、最低で10パルスから最高でも2000パルス相当が望ましい。10パルス以下においては放電初期に発生し易い介在物選択放電現象等により強度変動が激しく、安定性の良い分析結果を得ることが難しい。また2000パルス以上の放電を実施すると、通常のスパーク放電においては試料表面から20〜50μmの深さ範囲がスパッタリングされるため、金属試料の板厚方向の成分濃度の測定分解能が悪化していくこととなる。より好ましくは、スパーク放電回数を500〜1200パルスほどに抑えることにより、深さ方向分解能と分析値の安定性を両立することが可能となる最適点を与えることができる。   In addition, the number of spark discharges per analysis point also increases with the increase in the number of spark discharges, so mixing of components in the plate thickness direction of the metal sample occurs, and the resolution in the plate thickness direction tends to decrease. In order to improve the resolution of the metal sample in the plate thickness direction by analysis, it is desirable to reduce it as much as possible. The number of spark discharges (hereinafter sometimes referred to as the number of discharge pulses) is preferably equivalent to a minimum of 10 pulses and a maximum of 2000 pulses per analysis point. When the pulse is 10 pulses or less, the intensity fluctuation is severe due to inclusion selective discharge phenomenon that is likely to occur in the early stage of discharge, and it is difficult to obtain an analysis result with good stability. In addition, when a discharge of 2000 pulses or more is performed, the depth range of 20 to 50 μm from the sample surface is sputtered in a normal spark discharge, so that the measurement resolution of the component concentration in the thickness direction of the metal sample deteriorates. It becomes. More preferably, by suppressing the number of spark discharges to about 500 to 1200 pulses, it is possible to provide an optimum point at which both the resolution in the depth direction and the stability of the analysis value can be achieved.

また、各分析点当たりのスパーク放電周波数についても、スパーク放電周波数の増加に伴い単位時間当たりに放電で発生する熱量を試料上部に設置するブロック試料で抜熱するのが間に合わなくなり、金属試料の板厚方向の成分のミキシングが発生し、板厚方向の分解能が低下したり、溶融による板厚貫通が発生し易くなるため、スパーク放電発光分析による金属試料の板厚方向の分解能向上と溶融による板厚貫通防止のために、できる限りスパーク放電周波数は少なくした方が望ましい。スパーク放電周波数としては、通常のスパーク放電発光分析装置では、主な放電周波数として100、200、333、500Hzの中から選択する型式が多いが500Hz以下であることが望ましい。スパーク放電周波数500Hz超においては放電時に発生する熱量を分析する試料の上に設置するブロック試料で抜熱するのが間に合わず、金属試料の板厚方向の成分のミキシングが発生し易い。またスパーク放電の型式として、通常のノーマルスパーク条件から、更に電圧、電流等を大きくするハイパワースパーク放電型式等を用いて、C、N、S、O、P等軽元素をより高感度に分析する場合には、好ましくは、スパーク放電周波数を100Hz以下に抑えることにより、深さ方向分解能と分析値の安定性を両立することが可能となる最適点を与えることができる。   As for the spark discharge frequency per analysis point, the amount of heat generated by the discharge per unit time with the increase of the spark discharge frequency cannot be removed in time by the block sample installed on the top of the sample. Mixing of components in the thickness direction occurs and the resolution in the plate thickness direction is reduced, and penetration of the plate thickness due to melting is likely to occur. In order to prevent thick penetration, it is desirable to reduce the spark discharge frequency as much as possible. As for the spark discharge frequency, in a normal spark discharge emission spectrometer, there are many types selected from 100, 200, 333, and 500 Hz as the main discharge frequency, but it is desirable that the spark discharge frequency be 500 Hz or less. When the spark discharge frequency exceeds 500 Hz, it is not in time to remove heat with the block sample placed on the sample to be analyzed for the amount of heat generated at the time of discharge, and mixing of components in the thickness direction of the metal sample is likely to occur. In addition, as a spark discharge type, light normal elements such as C, N, S, O, and P are analyzed with higher sensitivity by using a high power spark discharge type that increases the voltage, current, etc. from the normal normal spark conditions. In this case, preferably, by suppressing the spark discharge frequency to 100 Hz or less, it is possible to provide an optimum point at which both resolution in the depth direction and stability of the analysis value can be achieved.

本発明のスパーク放電発光分析を用いた金属試料の板厚断面の成分濃度分析法及びこれに適した傾斜研磨加工を施した金属試料により、従来の化学分析法や、従来の表面及び断面分析法と比較して、
[1] 広い測定領域(薄さ200μm〜500μm)における濃度分布を得ることができる、
[2] Al、Ti等の金属元素はもとより、C、N、S等の軽元素も高感度に検出できる、
[3] 多元素を同一箇所で同時に測定できる、
[4] 試料調製、測定、評価にかかる時間が数時間以内と非常に迅速である、
[5] 測定装置は汎用的に金属精錬業に置かれているスパーク放電発光分析装置を利用できる、
[6] 従来の化学分析、表面分析法と比較して時間、精度、コスト全てに優っている、
等の利点があり、工業上の利用価値が非常に高い方法が提供できる。
By using the spark discharge emission analysis of the present invention, the component concentration analysis method of the plate thickness cross section of the metal sample and the metal sample subjected to the inclined polishing suitable for this, the conventional chemical analysis method and the conventional surface and cross section analysis method Compared to
[1] A concentration distribution in a wide measurement area (thickness 200 μm to 500 μm) can be obtained.
[2] Not only metal elements such as Al and Ti but also light elements such as C, N and S can be detected with high sensitivity.
[3] Multiple elements can be measured simultaneously at the same location.
[4] The time required for sample preparation, measurement and evaluation is very quick, within a few hours.
[5] As a measuring device, a spark discharge emission spectrometer installed in the metal refining industry can be used.
[6] Compared to conventional chemical analysis and surface analysis methods, it is superior in time, accuracy and cost.
Thus, it is possible to provide a method having a very high industrial utility value.

次に、本発明におけるアーク放電発光分析に適した金属試料の傾斜研磨加工(板厚断面研磨)を行う場合の好ましい研磨条件について図3を用いて説明する。
上述した通り、スパーク放電発光分析を用いて予め傾斜研磨加工が施された金属試料の板厚方向の成分元素濃度を測定する場合には、傾斜研磨加工が施された金属試料表面において隣接する分析点同士が重畳すると、スパーク放電発光による隣接する分析点同士の特定成分が選択放電を受けて溶融、凝固を繰り返すことにより、母材に微細分散化していくミキシング現象が発生し、金属試料の厚みに対応する特定成分濃度の測定分解能は低下する。そこで、金属試料の板厚方向の成分濃度の測定分解能を向上させるためには、傾斜研磨加工が施された金属試料表面において隣接する分析点同士が重畳しないようにすることが前提となる。
Next, preferable polishing conditions when performing slant polishing processing (plate thickness cross section polishing) of a metal sample suitable for arc discharge emission analysis in the present invention will be described with reference to FIG.
As described above, when measuring the concentration of component elements in the plate thickness direction of a metal sample that has been previously subjected to inclined polishing using spark discharge emission analysis, the adjacent analysis on the surface of the metal sample that has been subjected to inclined polishing. When the dots overlap, a specific phenomenon between adjacent analysis points due to spark discharge emission undergoes selective discharge and repeats melting and solidification, resulting in a mixing phenomenon that is finely dispersed in the base material, resulting in the thickness of the metal sample The measurement resolution of the specific component concentration corresponding to is reduced. Therefore, in order to improve the measurement resolution of the component concentration in the plate thickness direction of the metal sample, it is premised that the adjacent analysis points on the surface of the metal sample subjected to the inclined polishing process do not overlap each other.

スパーク放電の分析直径φ(mm)又は分析点数n(個)、及び、金属試料の最大研磨深さt(mm)が予め決められると、スパーク放電発光分析において目標とする測定分解能r(mm)を確保するための研磨条件、つまり、研磨長さL(傾斜面に沿う線分ACの長さ)(mm)又は傾斜角度θ(rad)の研磨条件を以下の<1>式を用いて決定できる。
図3において、金属試料(研磨加工前)の厚みd(mm)、金属試料の最大研磨深さ(研磨加工後)t(mm)の範囲を(d/2)≦t<d、目標とする金属試料の板厚方向の測定分解能rとする。なお、分析点数nは、研磨深さt及び板厚方向の測定分解能rの関係から、n=t/rで定義され、上記最大研磨深さtと上記測定分解能rが予め決められると決まる値である。
If the analysis diameter φ (mm) or the number of analysis points n (pieces) of the spark discharge and the maximum polishing depth t (mm) of the metal sample are determined in advance, the target measurement resolution r (mm) in the spark discharge emission analysis The polishing conditions for ensuring the thickness, that is, the polishing conditions for the polishing length L (the length of the line segment AC along the inclined surface) (mm) or the inclination angle θ (rad) are determined using the following <1> equation it can.
In FIG. 3, the range of the thickness d (mm) of the metal sample (before polishing) and the maximum polishing depth (after polishing) t (mm) of the metal sample is (d / 2) ≦ t <d, the target The measurement resolution r in the plate thickness direction of the metal sample is assumed. The number of analysis points n is defined as n = t / r from the relationship between the polishing depth t and the measurement resolution r in the plate thickness direction, and is determined when the maximum polishing depth t and the measurement resolution r are determined in advance. It is.

この条件で、傾斜研磨加工後の金属試料表面の傾斜方向における隣接する分析点同士の放電直径φが重複しないような研磨長さL(傾斜面に沿う線分ACの長さ)(mm)は、下記<1>式の関係を満足する必要がある。
AC≧n×φ=(t×φ/r) ……… <1>
研磨加工後の最小研磨深さ位置A(研磨開始位置)の位置、及び、最大研磨深さ位置C点とし、C点に対応する研磨加工前の位置D点とすると、上記<1>式の研磨長さL(mm)は、図3における線分ACで示され、研磨加工後の傾斜角度θ(rad)は、線分ADとACがなす角度で示される。
また、研磨長さL(mm)は、傾斜角度θ(rad)及び最小研磨深さ位置A(研磨開始位置)の位置を変えることにより調整される。
sinθ=t/L≦(t/nφ) ……… <2>
θ≦asin{t/(nφ)} ……… .<3>
求めるADの長さは
L×cosθ≧nφ×cos{asin(t/nφ)} ……… <4>
なお、分析点数nは整数であるため、roundup(x,0)の関数を用いて整数に切り上げることで下記<5>式から分析点数nを求める。
n=roundup{n,0}=roundup{(t/r),0} ……… <5>
上記<5>式を上記<4>式に代入すると研磨長さLが決まる。
L×cosθ≧roundup{(tφ/r),0}×cos{asin(r/φ)} ……… <6>
本発明では、金属試料の板厚が0.2〜5mm程度と薄く、傾斜研磨加工の傾斜角は小さいため(θ→0)、cosθ→1となり、下記<7>式で近似できる。
L≧n×φ=(t×φ/r) ……… <7>
Under this condition, the polishing length L (the length of the line segment AC along the inclined surface) (mm) is such that the discharge diameter φ between adjacent analysis points in the inclination direction of the metal sample surface after the inclined polishing process does not overlap. Therefore, it is necessary to satisfy the relationship of the following formula <1>.
AC ≧ n × φ = (t × φ / r) ……… <1>
Assuming that the position of the minimum polishing depth position A (polishing start position) after polishing and the maximum polishing depth position C is point D before polishing corresponding to point C, the above formula <1> The polishing length L (mm) is indicated by a line segment AC in FIG. 3, and the inclination angle θ (rad) after polishing is indicated by an angle formed by the line segments AD and AC.
The polishing length L (mm) is adjusted by changing the position of the inclination angle θ (rad) and the minimum polishing depth position A (polishing start position).
sinθ = t / L ≦ (t / nφ) ……… <2>
θ ≦ asin {t / (nφ)} ………. <3>
The required AD length is
L × cosθ ≧ nφ × cos {asin (t / nφ)} ……… <4>
Since the analysis score n is an integer, the analysis score n is obtained from the following formula <5> by rounding up to an integer using the function of roundup (x, 0).
n = roundup {n, 0} = roundup {(t / r), 0} ……… <5>
When the above formula <5> is substituted into the above formula <4>, the polishing length L is determined.
L × cosθ ≧ roundup {(tφ / r), 0} × cos {asin (r / φ)} ……… <6>
In the present invention, the thickness of the metal sample is as thin as about 0.2 to 5 mm, and the inclination angle of the inclined polishing process is small (θ → 0), so cos θ → 1, which can be approximated by the following formula <7>.
L ≧ n × φ = (t × φ / r) ……… <7>

以上から、スパーク放電発光分析において目標とする測定分解能r(mm)を確保するための研磨条件として、上記<7>式を満足するように、金属試料の傾斜研磨加工における研磨長さL(傾斜面に沿う線分ACの長さ)(mm)又は傾斜角度θ(rad)の条件を調整することが好ましい。   From the above, as the polishing conditions for ensuring the target measurement resolution r (mm) in the spark discharge optical emission analysis, the polishing length L (inclination) in the inclined polishing process of the metal sample is satisfied so as to satisfy the above formula <7>. It is preferable to adjust the condition of the length (mm) of the line segment AC along the surface (mm) or the inclination angle θ (rad).

上記<7>式を満足するように、金属試料の傾斜研磨加工における研磨長さL(傾斜面に沿う線分ACの長さ)(mm)又は傾斜角度θ(rad)の条件とは、例えば、板厚d=0.23mm、分析直径φ=5mm、研磨深さt=0.138mm(60%)、深さ方向の分解能r=10μm(t、rから分析点数n=14点となる)の場合は、上記<7>式の条件は、L≧70mmとなり、研磨長さLを70mm以上となるように金属試料を傾斜研磨加工することにより、スパーク放電発光分析において目標とする測定分解能r(mm)を確保することができる。   In order to satisfy the above formula <7>, the condition of the polishing length L (length of the line segment AC along the inclined surface) (mm) or the inclination angle θ (rad) in the inclined polishing processing of the metal sample is, for example, In case of plate thickness d = 0.23mm, analysis diameter φ = 5mm, polishing depth t = 0.138mm (60%), depth direction resolution r = 10μm (from t, r the number of analysis points n = 14 points) The condition of the above formula <7> is L ≧ 70 mm, and the target measurement resolution r (mm in the spark discharge optical emission analysis is obtained by subjecting the metal sample to the slant polishing process so that the polishing length L is 70 mm or more. ) Can be secured.

また、同様に、板厚d=0.50mm、分析直径φ=5mm、研磨深さt=0.30mm、深さ方向の分解能10μm(t、rから分析点数n=30点となる)の場合は、上記<7>式の条件は、L≧150mmとなり、研磨長さLを150mm以上となるように金属試料を傾斜研磨加工することにより、スパーク放電発光分析において目標とする測定分解能r(mm)を確保することができる。   Similarly, in the case of plate thickness d = 0.50 mm, analysis diameter φ = 5 mm, polishing depth t = 0.30 mm, depth direction resolution 10 μm (from t, r, the number of analysis points n = 30), The condition of the above formula <7> is L ≧ 150 mm, and the target measurement resolution r (mm) in the spark discharge optical emission analysis is obtained by slant polishing the metal sample so that the polishing length L is 150 mm or more. Can be secured.

上記の条件で傾斜研磨を施した試料をスパーク放電発光分析法に供する前には、試料支え台から傾斜研磨試料を丁寧に剥離させる必要がある。例えば、アルコール類や有機溶剤等を試料の縁にたらしてから、鋭利なカッター刃を試料と支え台の間隙に押し込んでいき、更にアルコール類や有機溶剤等の粘着物を溶解させる液体を試料と支え台の間隙にたらすことを繰り返せば、容易に試料を剥離させることが可能である。
得られた試料には、粘着物等が残存している可能性があるため、再度、アルコール類や有機溶剤等を用いて、試料全体をクリーニングして乾燥させることにより、軽元素(C、N、S)の汚染を防止することができる。
Before a sample subjected to inclined polishing under the above conditions is subjected to a spark discharge optical emission spectrometry, it is necessary to carefully peel the inclined polished sample from the sample support. For example, after placing alcohol or organic solvent on the edge of the sample, push a sharp cutter blade into the gap between the sample and the support, and then remove the liquid that dissolves adhesives such as alcohol and organic solvent. The sample can be easily peeled off by repeatedly putting it in the gap between the support bases.
Since there is a possibility that an adhesive or the like remains in the obtained sample, the light element (C, N) is obtained by cleaning and drying the entire sample again using an alcohol or an organic solvent. , S) contamination can be prevented.

なお試料板厚が充分に厚く、スパーク放電により板厚を貫通させる心配が無い場合には、試料支え台と密着したまま、分析に供することが可能であるが、スパーク放電により板厚を貫通することが考えられる場合には、貫通した際に、試料と支え台との間に存在する粘着物質が、軽元素への汚染要因となり、清浄な値を示さないことが危惧されるため、通常は、剥離することが望まれる。   If the thickness of the sample is sufficiently thick and there is no fear of penetrating the plate thickness by spark discharge, it can be used for analysis while being in close contact with the sample support, but the plate thickness is penetrated by spark discharge. If there is a possibility, the adhesive substance that exists between the sample and the support base when it penetrates may cause contamination to light elements and does not show a clean value. It is desired to peel off.

スパーク放電発光分析を行う際には、試料を試料置き台に静置してから、試料の上に板厚が充分に厚い平滑面を持つブロック試料を押さえ台として使用することが好ましい。これは、試料のまま放電を実施した場合、板厚が薄いが故に、貫通した場合には分析室内に空気巻き込みが発生して発光不良を起こすからである。また10mmから30mmほどの厚みのブロック試料、望ましくはCu等の熱伝導性の良い材質のブロック試料や冷却機構を持つブロック試料を用いることにより、傾斜研磨試料に加わるスパーク放電時の熱をブロック試料が抜熱してくれ、板厚方向への溶融進行を最低限に抑えて、板厚方向の分解能を向上してくれる効果や、傾斜研磨試料全体を平滑に、分析試料置き台に密着させることにより放電を行う分析室内のアルゴンが漏れて異常放電を起こすのを防止する役割ももつ。   When performing spark discharge optical emission analysis, it is preferable to use a block sample having a smooth surface with a sufficiently thick plate as the holding table after the sample is left on the sample table. This is because when the sample is discharged as it is, since the plate thickness is thin, if it is penetrated, air entrainment occurs in the analysis chamber, causing a light emission failure. Also, by using a block sample with a thickness of about 10 to 30 mm, preferably a block sample made of a material with good thermal conductivity such as Cu, or a block sample with a cooling mechanism, the heat at the time of spark discharge applied to the inclined polishing sample is blocked. Removes heat, minimizes the progress of melting in the plate thickness direction, improves the resolution in the plate thickness direction, and makes the entire slant polished sample smooth and in close contact with the analytical sample holder. It also has the role of preventing abnormal discharge due to leakage of argon in the analysis chamber where the discharge is performed.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. It is not done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
Si:3%、Mn:0.08%、S:0.03%鋼の表面にアルミナコーティングを焼付防止のため施し、1100℃で48時間焼鈍を実施した試料厚み0.5mmの試料を傾斜研磨した。
この時の板厚、研磨厚み、分解能の時の研磨条件を以下に示す。
板厚d=0.50mm、傾斜角度φ=5mm、研磨深さt=0.50mmの時、深さ方向の分解能40μm(t、rから分析点数n=13点となる)とし、研磨長さLは上記<7>式の条件を満足する条件、つまり、L≧65mm(<7>式)を満足する研磨長さL=65mmの条件で金属試料を研磨加工した。なお、この研磨条件では、研磨長さLと板厚dの比率(L/d)は130倍となる。
得られた傾斜研磨試料を、スパーク放電発光分析法を用いて、n=13点、放電直径5mmφで、傾斜研磨面を並列させて、各点でのS発光強度を得た。この場合、事前にS濃度が既知の標準試料を用いて、S濃度の検量線を作成しておき、得られたSの発光強度を検量線からS濃度に換算した。分析した点は、同じ研磨深さ位置で2回実施した。得られた結果を図5に示す。横軸に板厚、縦軸にS濃度をプロットした。その結果、焼鈍処理することにより硫黄が表層から純化されていく過程が明らかになった。
(Example 1)
An alumina coating was applied to the surface of Si: 3%, Mn: 0.08%, S: 0.03% steel to prevent seizure, and a sample with a thickness of 0.5 mm that had been annealed at 1100 ° C. for 48 hours was slant polished.
Polishing conditions at the time of plate thickness, polishing thickness, and resolution at this time are shown below.
When plate thickness d = 0.50mm, inclination angle φ = 5mm, and polishing depth t = 0.50mm, resolution in the depth direction is 40μm (from t, r, the number of analysis points is n = 13), and the polishing length L is The metal sample was polished under conditions satisfying the above condition <7>, that is, a polishing length L = 65 mm satisfying L ≧ 65 mm (<7>). Under this polishing condition, the ratio (L / d) between the polishing length L and the plate thickness d is 130 times.
The obtained slant polished sample was subjected to spark discharge emission spectrometry, n = 13 points, a discharge diameter of 5 mmφ, and slanted polished surfaces were juxtaposed to obtain S emission intensity at each point. In this case, a calibration curve of S concentration was prepared in advance using a standard sample with known S concentration, and the obtained S emission intensity was converted from the calibration curve into S concentration. The analyzed points were performed twice at the same polishing depth position. The obtained results are shown in FIG. The plate thickness is plotted on the horizontal axis and the S concentration is plotted on the vertical axis. As a result, the process of purifying sulfur from the surface layer by annealing was clarified.

試料に含まれる硫黄分は表層よりH2S等のガス体として消失することは、これまで数多くの実験より判明していたが、試料内部におけるS濃度分布については、理論計算の方が先行して、実際の分析値を正確に把握した実験結果は非常に少なかったが、本発明を用いることにより、迅速かつ精度良く、硫黄濃度分布を得ることが可能となった。 It has been found from many experiments so far that the sulfur content in the sample disappears as a gas body such as H 2 S from the surface layer, but the theoretical calculation is more advanced for the S concentration distribution inside the sample. Thus, although there were very few experimental results for accurately grasping the actual analysis value, it became possible to obtain the sulfur concentration distribution quickly and accurately by using the present invention.

(実施例2)
Si:3%、Mn:0.08%、S:0.03%鋼の表面にアルミナコーティングを焼付防止のため施し、1100℃で48時間焼鈍を実施した試料厚み0.23mmの試料を傾斜研磨した。
この時の板厚、研磨厚み、分解能の時の研磨条件を以下に示す。
板厚d=0.23mm、分析直径φ=5mm、研磨深さt=0.138mm(60%)、深さ方向の分解能=10μm以下、分析点数n=15点、研磨長さLを80mm以上となるように金属試料を傾斜研磨加工した。
得られた傾斜研磨試料を、スパーク放電発光分析法を用いて、分析点数n=15点、放電直径5mmφで、傾斜研磨面を並列させて、各点でのN発光強度を得た。この場合、Nを高感度に検出するために、スパーク放電条件はハイパワースパークを選択した。放電周波数を、通常の333Hzで実施すると、図6中段×に示すように、試料の上に設置するブロック試料による抜熱が間に合わず、500パルス放電で板厚を貫通してしまうため分析値を得ることができない。ハイパワースパークを止めて、通常のノーマルスパーク放電形態を通常の333Hzで実施すると、図6下段△に示すように板厚貫通は免れるが、目的とする軽元素Nの光発光強度は極端に弱くなり、100ppm以下の分析値を得ることは不可能となる。そこで、ハイパワースパーク放電形態かつ放電周波数を100Hzに選択すると、図6上段◎に示すように板厚貫通を防止すると共に、目的とするN元素からの発光をより強く得ることを両立できることを確認した。
(Example 2)
An alumina coating was applied to the surface of Si: 3%, Mn: 0.08%, S: 0.03% steel to prevent seizure, and a sample having a thickness of 0.23 mm was annealed at 1100 ° C. for 48 hours, and was slant polished.
Polishing conditions at the time of plate thickness, polishing thickness, and resolution at this time are shown below.
Thickness d = 0.23mm, analysis diameter φ = 5mm, polishing depth t = 0.138mm (60%), depth resolution = 10μm or less, number of analysis points n = 15, polishing length L is 80mm or more In this way, the metal sample was slant polished.
The obtained slant polishing sample was subjected to spark discharge emission analysis, and the number of analysis points was n = 15, the discharge diameter was 5 mmφ, and the slant polishing surfaces were juxtaposed to obtain N emission intensity at each point. In this case, in order to detect N with high sensitivity, a high power spark was selected as the spark discharge condition. When the discharge frequency is implemented at a normal 333 Hz, as shown in the middle row of FIG. 6, the heat removal by the block sample placed on the sample is not in time, and the analysis value is obtained because it penetrates the plate thickness with 500 pulse discharge. Can't get. When the high power spark is stopped and the normal normal spark discharge mode is performed at the normal 333 Hz, the penetration of the plate thickness is avoided as shown in the lower △ in FIG. 6, but the light emission intensity of the target light element N is extremely weak. Therefore, it becomes impossible to obtain an analytical value of 100 ppm or less. Therefore, when the high power spark discharge mode and the discharge frequency are selected as 100 Hz, it is confirmed that it is possible to prevent the penetration of the plate thickness as shown in the upper part ◎ of FIG. did.

得られた結果を図7に示す。横軸に板厚、縦軸にN濃度をプロットした。その結果、焼鈍処理することにより表層からNが純化されていく過程が明らかになった。
試料に含まれるN分は表層よりガス体として消失することは、これまで数多くの実験より判明していたが、試料内部におけるN濃度分布については、理論計算の方が先行して、実際の分析値を正確に把握した実験結果は非常に少なかったが、本発明を用いることにより、迅速かつ精度良く、窒素濃度分布を得ることが可能となった。
The obtained results are shown in FIG. The plate thickness is plotted on the horizontal axis and the N concentration is plotted on the vertical axis. As a result, it became clear that N was purified from the surface layer by annealing.
It has been found from many experiments so far that the N content in the sample disappears as a gas body from the surface layer. However, the theoretical calculation was preceded by the actual analysis of the N concentration distribution inside the sample. Although there were very few experimental results for accurately grasping the values, it was possible to obtain a nitrogen concentration distribution quickly and accurately by using the present invention.

従来の化学分析法で、本発明と同様な深さ方向分解能を得るには、同一条件に試料調製した試料を10〜20枚と大量に用意して、厚み別に化学分析的に表層より溶解して、得られた溶液から元素を分析するか、残った試料を化学分析することにより分析しなければならない。そのために要する時間は、少なく見積もっても、約一週間から一ヶ月弱は必要となる。それと対比して、本発明法は、試料調製に要する時間は、約1時間で、スパーク放電発光分析に要する時間は、1分析点当たり約1分であり分析データの評価解析も含めても、約2時間弱で、全元素の濃度変化を正確かつ迅速に評価することが可能となった。   In order to obtain depth resolution similar to that of the present invention by the conventional chemical analysis method, prepare 10 to 20 samples prepared under the same conditions and dissolve them from the surface by chemical analysis according to thickness. Thus, the element must be analyzed from the resulting solution or the remaining sample must be analyzed chemically. The time required for this would be about a week to a little less than a month, even if estimated to be small. In contrast, in the method of the present invention, the time required for sample preparation is about 1 hour, and the time required for spark discharge emission analysis is about 1 minute per analysis point, including evaluation analysis of analysis data, In less than about 2 hours, it became possible to evaluate the concentration change of all elements accurately and quickly.

従来技術における段削りによる化学分析的手法による鋼板内断面濃度の求め方を示す。The method of obtaining the cross-sectional concentration in a steel sheet by a chemical analysis method using step cutting in the prior art will be described. 実施例におけるスパーク放電発光の用傾斜研磨試料と平面研削盤による傾斜研磨試料の作成法を示す。A method for producing a slant polishing sample for spark discharge emission in an example and a slant polishing sample by a surface grinder will be described. 金属試料を傾斜研磨するときにおける傾斜角度、発光分析面積、発光分析回数、研磨深さ、試料厚みの関係を説明した例を示す。The example which demonstrated the relationship between the inclination angle at the time of carrying out the inclination grinding | polishing of a metal sample, the emission analysis area, the frequency | count of emission analysis, polishing depth, and sample thickness is shown. スパーク放電発光分析装置の模式図を示す。The schematic diagram of a spark discharge emission spectrometer is shown. 実施例1における薄さ0.5mmの電磁鋼板を焼鈍してS分を表層から純化させた試料の断面におけるS濃度の変化を本発明により分析した例を示す。An example in which a change in S concentration in a cross section of a sample obtained by annealing a 0.5 mm-thick magnetic steel sheet in Example 1 and purifying S content from the surface layer is analyzed according to the present invention will be shown. 実施例2における放電条件と放電周波数によるスパーク放電(QV)痕跡の例を示す。The example of the spark discharge (QV) trace by the discharge conditions and discharge frequency in Example 2 is shown. 実施例2における焼鈍した厚み0.23mmの試料の断面N濃度分布を放電周波数100Hzで分析した例を示す。An example in which the cross-sectional N concentration distribution of the annealed sample having a thickness of 0.23 mm in Example 2 was analyzed at a discharge frequency of 100 Hz is shown.

符号の説明Explanation of symbols

1 研削砥石
2 試料
3 支え台
4 定盤
5 高さ調整台
6 切削代
7 電極
8 放電装置
9 集光レンズ
10 スリット
11 回折格子
12 分光スペクトル
13 検出器
14 測光装置
15 演算処理装置
20 発光部
30 分光部
40 データ処理部
A 研磨加工後の最小研磨深さ位置
B A点の裏面
C 研磨加工後の最大研磨深さ位置
D 研磨加工前のC点に対応する位置
E 板厚の中心線
L 研磨長さ(線分AC)
d 研磨加工前の金属試料の厚み(mm)(線分AB)
n 分析点数
r 板厚方向の測定分解能(mm)
t 最大研磨深さ(線分DC)
θ 研磨加工前の傾斜角度(線分ACと線分ADの角度)
φ スパーク放電の発光分析直径(mm)
1 Grinding wheel
2 Sample
3 Support stand
4 Surface plate
5 Height adjustment stand
6 Cutting allowance
7 electrodes
8 Discharge device
9 Condensing lens
10 slits
11 Diffraction grating
12 Spectral spectrum
13 Detector
14 Metering device
15 Arithmetic processing unit
20 Light emitter
30 Spectrometer
40 Data processing section
A Minimum polishing depth position after polishing
The back of the BA point
C Maximum polishing depth position after polishing
D Position corresponding to point C before polishing
E Center thickness line
L Polishing length (Line AC)
d Thickness of metal sample before polishing (mm) (Line AB)
n Number of analysis points
r Measurement resolution in the plate thickness direction (mm)
t Maximum polishing depth (line segment DC)
θ Inclination angle before polishing (angle of line segment AC and line segment AD)
φ Emission analysis diameter of spark discharge (mm)

Claims (5)

測定対象物である金属試料の表面を予め傾斜研磨加工した後、スパーク放電発光分析法を用いて該金属試料の厚みが薄くなる表面傾斜方向にそって隣接する分析点同士が重畳しないように分析点を移動させつつ、各分析点から得られる発光スペクトルを分光分析し、特定成分に対応する波長の発光強度から金属試料の各厚みに対応する特定成分の濃度を求めることを特徴とするスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。   After the surface of the metal sample, which is the object to be measured, is slanted and polished in advance, analysis is performed using the spark discharge emission analysis method so that adjacent analysis points do not overlap with each other along the surface inclination direction in which the thickness of the metal sample decreases. A spark discharge characterized in that the emission spectrum obtained from each analysis point is spectrally analyzed while moving the point, and the concentration of the specific component corresponding to each thickness of the metal sample is obtained from the emission intensity of the wavelength corresponding to the specific component. A method for evaluating the concentration of components in the thickness direction of a metal sample by emission analysis. 前記金属試料の試料台上の固定位置を水平方向に移動させることにより、該金属試料表面の分析点を移動させることを特徴とする請求項1に記載のスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。   The thickness direction of the metal sample according to claim 1, wherein the analysis point on the surface of the metal sample is moved by moving a fixed position of the metal sample on the sample stage in a horizontal direction. Component concentration evaluation method. 前記分析点当りのスパーク放電回数は10〜2000回とし、該分析点から得られる各発光スペクトルの特定成分に対応する波長の発光強度の平均値から、該分析点に対応する金属試料の厚みにおける特定成分の濃度を求めることを特徴とする請求項1又は2に記載のスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。   The number of spark discharges per analysis point is 10 to 2000, and from the average value of the emission intensity of the wavelength corresponding to the specific component of each emission spectrum obtained from the analysis point, the thickness of the metal sample corresponding to the analysis point 3. The method for evaluating a concentration in a thickness direction component of a metal sample by spark discharge emission analysis according to claim 1, wherein the concentration of the specific component is obtained. 前記分析点当りのスパーク放電周波数は500Hz以下とし、該分析点から得られる各発光スペクトルの特定成分に対応する波長の発光強度の平均値から、該分析点に対応する金属試料の厚みにおける特定成分の濃度を求めることを特徴とする請求項1〜3のいずれかに記載のスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。   The spark discharge frequency per analysis point is 500 Hz or less, and the specific component in the thickness of the metal sample corresponding to the analysis point from the average value of the emission intensity of the wavelength corresponding to the specific component of each emission spectrum obtained from the analysis point 4. The method for evaluating the concentration of components in the thickness direction of a metal sample by spark discharge emission analysis according to any one of claims 1 to 3, wherein the concentration of the metal sample is determined. 前記スパーク放電周波数が100Hz以下であることを特徴とする請求項4に記載のスパーク放電発光分析による金属試料の厚み方向成分濃度評価方法。   5. The method for evaluating the concentration of components in the thickness direction of a metal sample by spark discharge emission analysis according to claim 4, wherein the spark discharge frequency is 100 Hz or less.
JP2006289039A 2006-02-23 2006-10-24 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry Active JP4762852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289039A JP4762852B2 (en) 2006-02-23 2006-10-24 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006047107 2006-02-23
JP2006047107 2006-02-23
JP2006289039A JP4762852B2 (en) 2006-02-23 2006-10-24 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry

Publications (2)

Publication Number Publication Date
JP2007256256A true JP2007256256A (en) 2007-10-04
JP4762852B2 JP4762852B2 (en) 2011-08-31

Family

ID=38630634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289039A Active JP4762852B2 (en) 2006-02-23 2006-10-24 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry

Country Status (1)

Country Link
JP (1) JP4762852B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058995A (en) * 2009-09-11 2011-03-24 Shimadzu Corp Emission analyzer system
JP2011075376A (en) * 2009-09-30 2011-04-14 Shimadzu Corp Light emission analyzer
JP2012018099A (en) * 2010-07-08 2012-01-26 Aisin Aw Co Ltd Emission spectrophotometer, sample holding stage, and emission spectral analysis method
CN112400107A (en) * 2018-07-11 2021-02-23 株式会社岛津制作所 Luminescence analysis apparatus and maintenance method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145949A (en) * 1986-12-09 1988-06-18 Sumitomo Metal Ind Ltd Emission spectral analyzer
JPH0353016A (en) * 1989-07-17 1991-03-07 Kawasaki Steel Corp Method for measuring depth of decarburized layer of steel products
JPH05164710A (en) * 1991-12-11 1993-06-29 Sumitomo Metal Ind Ltd Measuring method for strength ratio between trivalent chromium and hexavalent chromium in film
JPH09257761A (en) * 1996-03-27 1997-10-03 Nippon Steel Corp Ultrasonic inspection of cast piece
JP2004163400A (en) * 2002-09-20 2004-06-10 Nippon Steel Corp Method of evaluating inclusions in metal sample, evaluation apparatus, computer program, and computer-readable storage medium
JP2005127938A (en) * 2003-10-27 2005-05-19 National Printing Bureau Method for obtaining cut face information of sample
JP2005257299A (en) * 2004-03-09 2005-09-22 Nippon Steel Corp Time-resolved evaluation method for inclusions or the like in metal sample

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145949A (en) * 1986-12-09 1988-06-18 Sumitomo Metal Ind Ltd Emission spectral analyzer
JPH0353016A (en) * 1989-07-17 1991-03-07 Kawasaki Steel Corp Method for measuring depth of decarburized layer of steel products
JPH05164710A (en) * 1991-12-11 1993-06-29 Sumitomo Metal Ind Ltd Measuring method for strength ratio between trivalent chromium and hexavalent chromium in film
JPH09257761A (en) * 1996-03-27 1997-10-03 Nippon Steel Corp Ultrasonic inspection of cast piece
JP2004163400A (en) * 2002-09-20 2004-06-10 Nippon Steel Corp Method of evaluating inclusions in metal sample, evaluation apparatus, computer program, and computer-readable storage medium
JP2005127938A (en) * 2003-10-27 2005-05-19 National Printing Bureau Method for obtaining cut face information of sample
JP2005257299A (en) * 2004-03-09 2005-09-22 Nippon Steel Corp Time-resolved evaluation method for inclusions or the like in metal sample

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058995A (en) * 2009-09-11 2011-03-24 Shimadzu Corp Emission analyzer system
JP2011075376A (en) * 2009-09-30 2011-04-14 Shimadzu Corp Light emission analyzer
JP2012018099A (en) * 2010-07-08 2012-01-26 Aisin Aw Co Ltd Emission spectrophotometer, sample holding stage, and emission spectral analysis method
CN112400107A (en) * 2018-07-11 2021-02-23 株式会社岛津制作所 Luminescence analysis apparatus and maintenance method thereof

Also Published As

Publication number Publication date
JP4762852B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
Tunheng et al. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry
Krakauer et al. Systematic procedures for atom‐probe field‐ion microscopy studies of grain boundary segregation
ElFaham et al. Limit of detection and hardness evaluation of some steel alloys utilizing optical emission spectroscopic techniques
JP4762852B2 (en) Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry
CN109239179A (en) The measuring method of trace impurity in a kind of high purity aluminium oxide polycrystal material
Marks et al. Application of a solid sampling device to the analysis of high temperature alloys by ICP-AES
JP2008298770A (en) Method for laser ionization mass spectrometry and sample-supporting substrate for use in laser ionization mass spectrometry
Bao et al. Comparison of synthetic zircon, high-temperature and high-pressure sintered zircon and fast hot-pressing sintered zircon for in situ hafnium isotope analysis by LA-MC-ICP-MS
CN108709881A (en) Method based on carbon element content in spark discharge Atomic Emission Spectral Analysis silicon steel
Jaworski et al. Collection and separation of particles by size from laser ablated material
Diaz et al. Laser ablation at high repetition rate coupled to laser-induced breakdown spectroscopy for analysis of non-matrix matched standards
Neufeld ICP-MS interface cones: Maintaining the critical interface between the mass spectrometer and the plasma discharge to optimize performance and instrument productivity
Peng et al. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders
Müller et al. Fast steel-cleanness characterization by means of laser-assisted plasma spectrometric methods
KR101758530B1 (en) Method for analyzing inclusion in molten steel and method for manufacturing high clean molten steel for steel wire rod
JP2006266988A (en) Sample preparation method for glow-discharge mass spectrometry
JP3058043B2 (en) Probe and method for laser emission spectroscopy of molten metal
Verlinden et al. Modification in the surface composition of sparked electrodes and its relation to relative sensitivity factors in spark source mass spectrometry
Kuptsov et al. Steel analysis by atomic emission spectrometry using a two-jet arc plasmatron with spark ablation
JP3106868B2 (en) Emission spectrometer
Souza et al. Simultaneous determination of chromium and manganese in alumina by slurry sampling graphite furnace atomic absorption spectrometry using NbC and NaF as modifiers
EP4382902A1 (en) Standard sample film, method for producing standard sample film, standard sample, sample set, quantitative analysis method, and transfer film
CN1059405A (en) Boron aluminium state and various element express-analysis in the smelting
JP3744408B2 (en) Chamfer analysis method, chamfer analysis holding jig and holder
Konz et al. P, S and Cl trace detection by laser ablation double-focusing sector field ICP-MS to identify local defects in coated glasses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4762852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350