JPS63145949A - Emission spectral analyzer - Google Patents

Emission spectral analyzer

Info

Publication number
JPS63145949A
JPS63145949A JP29287386A JP29287386A JPS63145949A JP S63145949 A JPS63145949 A JP S63145949A JP 29287386 A JP29287386 A JP 29287386A JP 29287386 A JP29287386 A JP 29287386A JP S63145949 A JPS63145949 A JP S63145949A
Authority
JP
Japan
Prior art keywords
sample
anode
glow discharge
discharge
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29287386A
Other languages
Japanese (ja)
Inventor
Yoshiro Matsumoto
松本 義朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29287386A priority Critical patent/JPS63145949A/en
Publication of JPS63145949A publication Critical patent/JPS63145949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To achieve a depthwise composition analysis from the surface of a sample, by sputtering the sample surface with a glow discharge. CONSTITUTION:A sample 3 is mounted at the open end of a hollow anode 2 and an Ar gas is introduced into the anode 2 at an Ar gas supply port 9 while it is discharged through a gas discharge port 10 to create a low pressure Ar atmosphere. Then, a discharge is caused with a glow discharge circuit 5 in an abnormal glow discharge area between the anode 2 and the sample 3 to scrape off the surface of a sample 3 by Ar on sputtering. After the abnormal glow discharge is performed to a specified depth, an Ar gas is introduced into the anode 2 to develop an atmospheric pressure state in the anode 2. A spectroscope 1 receives emission attributed to elements at an analyzing point as generated by a spark discharge between an anode electrode rod 7 and the sample 3 thereby enabling depthwise composition analysis quickly at a high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼の表面から深さ方向の組成分析を行なう発
光分光分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical emission spectrometer that performs compositional analysis in the depth direction from the surface of steel.

〔従来の技術〕[Conventional technology]

例えば鋼に浸炭を施した浸炭材など、鋼の表面から深さ
方向に炭素0度(C0度)が変化する試料のCO度分析
に関する公知技術としては、(1)試料表面から深さ方
向に順次機械的に切粉試料を採取し、該試料を化学分析
法により分析する技術、(2)試料表面から、研摩紙あ
るいは旋盤等を用いて試料を研摩あるいは切削しながら
深さ方向の各段階でスパーク放電発光分光分析法により
分析する技術、(3)グロー放電発光分光分析法により
試料の深さ方向の分析をする技術、等が知られている。
For example, known techniques for CO concentration analysis of samples such as carburized steel, in which carbon 0 degrees (C0 degrees) changes in the depth direction from the surface of the steel, include (1) A technique in which samples of chips are sequentially collected mechanically and analyzed using a chemical analysis method, (2) a technique in which the sample is polished or cut using abrasive paper or a lathe, etc. from the surface of the sample at each step in the depth direction; (3) A technique for analyzing a sample in the depth direction using glow discharge emission spectroscopy, etc. are known.

特に、比較的厚いものを対象にした場合、(3)のグロ
ー放電発光分光分析法による分析技術が用いられている
In particular, when relatively thick objects are targeted, the analysis technique (3) based on glow discharge emission spectroscopy is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の分析技術においては以下のよ
うな問題があった。すなわち、前記(1)の化学分析法
を用いる分析技術においては、試料の表面からの深さ別
に切粉試料を採取し、該切粉試料を溶解した後湿式で分
析するため多大な工数及び時間を要し、前記■のスパー
ク放電発光分光分析法を用いる分析技術においても、試
料の研摩あるいは切削を手動で行なうためやはりかなり
の工数を必要とする。又前記(3)のグロー放電発光分
光分析法を用いる分析技術においては、グロー放電ラン
プ内での真空ポンプからのオイルミストの生成等が原因
と考えられるC分析に特仔の問題、すなわちCの発光強
度の安定性が得られにくく分析値の信頓性が低いという
問題があった。
However, the above conventional analysis techniques have the following problems. In other words, in the analysis technique using the chemical analysis method described in (1) above, chips are collected at different depths from the surface of the sample, and the chips are analyzed using a wet method after being dissolved, which requires a large amount of man-hours and time. Even in the above-mentioned analysis technique using spark discharge optical emission spectroscopy (2), a considerable number of man-hours are still required because the sample is manually polished or cut. In addition, in the analysis technique using glow discharge optical emission spectroscopy described in (3) above, there is a particular problem in C analysis, which is thought to be caused by the generation of oil mist from the vacuum pump in the glow discharge lamp. There was a problem in that it was difficult to obtain stability in luminescence intensity and the reliability of analytical values was low.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来の問題を解決し、鋼の表面から深さ方
向の組成分析、特にCの分析において自動化をはかり、
迅速性及び分析精度を向上させるための手段を提供する
ことを目的とするもので、円筒状の中空陽極と、該中空
陽極内へのアルゴン(Ar)ガス供給口と、前記中空f
g極の開放端に対し陰極として装着された平板状の試料
及び前記陽極の間に直流の電圧を印加して前記試料表面
をスパッタするIa構と、前記円筒状中空1i1B極の
管軸中心に陰極としての前記試料との間でスパーク放電
を行わせるために設けた陽極電極棒とを備えたことを特
徴とする発光分光分析HCに関する。
The present invention solves the above-mentioned conventional problems, and aims to automate the compositional analysis in the depth direction from the surface of steel, especially the analysis of C,
The purpose is to provide a means for improving speed and analysis accuracy, and includes a cylindrical hollow anode, an argon (Ar) gas supply port into the hollow anode, and a hollow f
The Ia structure sputters the surface of the sample by applying a DC voltage between a flat sample mounted as a cathode to the open end of the g electrode and the anode, and The present invention relates to an emission spectroscopic analysis HC characterized by comprising an anode electrode rod provided to cause spark discharge between the sample and the sample as a cathode.

以下に本発明を図に基づいて説明する。The present invention will be explained below based on the drawings.

第1図は本発明の発光分光分析装置の発光装置の一例の
構成を示す説明図である。同図において、分光器(1)
に隣接して円筒状の中空陽極(2)が取着され、該中空
陽極(2)の開放端に陰極としての平板状の試料(3)
がホルダー(4)を介して装着され、前記中空陽極(2
)と共にグロー放電回路(9に接続される。
FIG. 1 is an explanatory diagram showing the configuration of an example of a light emitting device of an optical emission spectrometer according to the present invention. In the same figure, the spectrometer (1)
A cylindrical hollow anode (2) is attached adjacent to the hollow anode (2), and a flat sample (3) as a cathode is attached to the open end of the hollow anode (2).
is attached via the holder (4), and the hollow anode (2
) is connected to the glow discharge circuit (9).

中空陽極(2)と前記ホルダー(4)との間は絶縁部(
6)により完全に絶縁される。前記円筒状中空陽極(2
)の管軸中心には陽極電極棒(2)が設けられ、該陽極
電極棒■と試料(3)とはスパーク放電回路(8)に接
続される。前記円筒吠中空陽w4(2)にはArガス供
給口(9)及びガス排出口0〔が取り付けられている。
An insulating part (
6) completely insulated. The cylindrical hollow anode (2
) is provided with an anode electrode rod (2) at the center of the tube axis, and the anode electrode rod (2) and the sample (3) are connected to a spark discharge circuit (8). An Ar gas supply port (9) and a gas discharge port 0 are attached to the cylindrical hollow w4 (2).

前記l!g極電極捧■と試料(3)表面との間隔は任意
に変更可能である。
Said l! The distance between the g-electrode and the surface of the sample (3) can be changed arbitrarily.

〔作   用〕[For production]

上記本発明の発光分光分析装置により、例えば試料(3
)表面から深さ方向のCの分析を行なうには、まず中空
陽極■の開放端に試料(3)を装着し、中空陽極(2)
内にArガス供給口(9)からArガスを導入しながら
真空ポンプ(図示せず)でガス排出口頭よりガスを排出
し、中空陽極(2)内を圧力5 Torrの低圧力Ar
雰囲気とする。次いで、前記中空陽極(2)と試料(3
)との間で、グロー放電回路(5)により50mA−1
200Vの条件で放電を起させる。
For example, a sample (3
) To analyze C in the depth direction from the surface, first attach the sample (3) to the open end of the hollow anode (2).
While introducing Ar gas from the Ar gas supply port (9) into the hollow anode (2), the gas is discharged from the gas exhaust port using a vacuum pump (not shown), and a low pressure of 5 Torr is applied to the inside of the hollow anode (2).
Create an atmosphere. Next, the hollow anode (2) and the sample (3)
) with 50mA-1 by glow discharge circuit (5).
Discharge is caused under the condition of 200V.

この放電はいわゆる異常グロー放電領域の放電で、Ar
イオンによるスパッタリングで試料(3)表面が削り取
られる。深さ方向のスパッタリング量すなわち試料(3
)表面からの深さは例えば鉄(F e)の発光強度をモ
ニターとして測定することにより行なう。所定の深さま
で異常グロー放電を行なった後、首記中空陽極(2)内
にArガスを導入して中空陽極(2)内を大気圧状態に
し、陽極電極棒■と試料(3)との間のスパーク放電に
より生じた分析点AのC元素による発光を分光器(1)
で受光し、Cci度を求める。尚、陽極電極棒■と試料
(3)表面との間隔はグロー放電中は50s■程度に離
し、スパーク放電の際は必要な距離まで近づける。
This discharge is a discharge in the so-called abnormal glow discharge region, and is
The surface of the sample (3) is scraped off by sputtering using ions. The amount of sputtering in the depth direction, that is, the sample (3
) The depth from the surface is determined, for example, by measuring the emission intensity of iron (Fe) as a monitor. After performing abnormal glow discharge to a predetermined depth, Ar gas is introduced into the hollow anode (2) to bring the inside of the hollow anode (2) to atmospheric pressure, and the connection between the anode electrode rod ■ and the sample (3) is The spectrometer (1) detects the light emitted by element C at analysis point A caused by the spark discharge between
The Cci degree is determined. The distance between the anode electrode rod (2) and the surface of the sample (3) is approximately 50 seconds (2) during glow discharge, and the distance is brought close to the required distance during spark discharge.

上記の低圧力Ar雰囲気での異常グロー放電による試料
表面のスパッタリングと大気圧Ar雰囲気でのスパーク
放電を繰返すことにより試料(3)表面から深さ方向の
各段階におけるCの分析を行なうことができる。
By repeating the above sputtering of the sample surface due to abnormal glow discharge in a low-pressure Ar atmosphere and the spark discharge in an atmospheric-pressure Ar atmosphere, it is possible to analyze C at each stage in the depth direction from the surface of the sample (3). .

〔実 施 例〕〔Example〕

以下、実施例に基づいて説明する。 The following will explain based on examples.

前記第1図に示した構成を有する本発明の装置を用いて
、ガス浸炭により浸炭した後930℃から直接焼入れを
施した試料について表面から深さ方向におけるC分析を
行なった。第1表に前記試料の浸炭まえの化学組成を、
又第2表にグロー放電及びスパーク放電の条件を示す。
Using the apparatus of the present invention having the configuration shown in FIG. 1, a C analysis was conducted in the depth direction from the surface of a sample that had been carburized by gas carburization and then directly quenched at 930°C. Table 1 shows the chemical composition of the sample before carburizing.
Further, Table 2 shows the conditions for glow discharge and spark discharge.

試料の深さ方向のスパッタリング量の検出は、波長37
t9.9人のFeの発光強度を測定することにより行な
った。
The amount of sputtering in the depth direction of the sample can be detected using a wavelength of 37
This was done by measuring the Fe emission intensity of t9.9 people.

又、第3表に分析元素と用いた分析線の波長を示す。尚
、比較のため従来の化学分析法による分析も行なった。
Further, Table 3 shows the analytical elements and the wavelengths of the analytical lines used. For comparison, an analysis using a conventional chemical analysis method was also conducted.

第  1  表 第  2  表 第3表 分析結果のうち、表面層における濃度の変化の大きいC
についての結果を第2図に示す。同図において、横軸は
試料表面からの深さ、縦軸はC濃度で、実線aは本発明
の装置による分析値、破線すは従来の化学分析法による
分析値である。同図から、従来の化学分析法では切粉を
採取するため深さ方向のある一定の厚さが必要で平均的
な分析値しか得られないのに対し、本発明の装置では試
料表面から深さ方向に多数の測定点をとることができ、
高精度の分析結果が得られることがわかる。
Table 1 Table 2 Table 3 Of the analysis results, C with large concentration changes in the surface layer
The results are shown in Figure 2. In the figure, the horizontal axis is the depth from the sample surface, the vertical axis is the C concentration, the solid line a is the analysis value by the apparatus of the present invention, and the broken line is the analysis value by the conventional chemical analysis method. From the figure, it can be seen that the conventional chemical analysis method requires a certain thickness in the depth direction to collect chips, and only average analytical values can be obtained, whereas the device of the present invention A large number of measurement points can be taken in the horizontal direction.
It can be seen that highly accurate analysis results can be obtained.

又、試料表面のスパッタリングも自動的に行なうので、
分析に要する時間及び工数も従来技術を用いる場合に比
較してはるかに少い。
In addition, since sputtering on the sample surface is performed automatically,
The time and man-hours required for analysis are also much less than when using conventional techniques.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、鋼の表面から深さ方向の組成分析
に対し、グロー放電により試料表面のスパッタリングを
行ない、スパーク放電により元素の分析を行なう本発明
の装置を適用することにより、人手を要することなく迅
速にかつ高精度で分析を行なうことができる。特に浸炭
材の表面層の深さ方向におけるcaIfを正確に求める
ことが可能で、品質管理、操業管理の向上をはかる上で
極めて有効である。
As explained above, by applying the apparatus of the present invention, which performs sputtering on the sample surface using glow discharge and performs elemental analysis using spark discharge, for composition analysis in the depth direction from the surface of steel, it is possible to analyze the composition in the depth direction from the surface of steel. Analysis can be performed quickly and with high precision without any problems. In particular, it is possible to accurately determine caIf in the depth direction of the surface layer of carburized material, which is extremely effective in improving quality control and operational management.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発光分光分析装置の発光装置の一例の
構成を示す説明図、第2図は浸炭材の試料表面からの深
さとC濃度との関係を示す線図である。 1・・・分光器      2・・・中空陽極3・・・
試料       4・・・ホルダー5・・・グロー放
電回路  6・・・絶縁部7・・・陽極電極棒    
8・・・スパーク放電回路9・・・Arガス供給口  
 IO・・・ガス排出口第2図 0    0.2   0.’f    O,f拭判辰
動かシの漏々0濡)
FIG. 1 is an explanatory diagram showing the configuration of an example of a light emitting device of an optical emission spectrometer of the present invention, and FIG. 2 is a diagram showing the relationship between the depth from the sample surface of a carburized material and the C concentration. 1... Spectrometer 2... Hollow anode 3...
Sample 4...Holder 5...Glow discharge circuit 6...Insulating part 7...Anode electrode rod
8...Spark discharge circuit 9...Ar gas supply port
IO...Gas exhaust port Figure 2 0 0.2 0. 'f O, f wiping tatsu or shi leaking 0 wet)

Claims (1)

【特許請求の範囲】[Claims] 円筒状の中空陽極と、該中空陽極内へのアルゴンガス供
給孔と、前記中空陽極の開放端に対し陰極として装着さ
れた平板状の試料及び前記陽極の間に直流の電圧を印加
して前記試料表面をスパッタする機構と、前記円筒状中
空陽極の管軸中心に陰極としての前記試料との間でスパ
ーク放電を行わせるために設けた陽極電極棒とを備えた
ことを特徴とする発光分光分析装置。
A DC voltage is applied between a cylindrical hollow anode, an argon gas supply hole into the hollow anode, a flat sample attached as a cathode to the open end of the hollow anode, and the anode. Luminescence spectroscopy characterized by comprising a mechanism for sputtering the surface of a sample, and an anode electrode rod provided at the center of the tube axis of the cylindrical hollow anode to cause spark discharge between the sample and the cathode. Analysis equipment.
JP29287386A 1986-12-09 1986-12-09 Emission spectral analyzer Pending JPS63145949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29287386A JPS63145949A (en) 1986-12-09 1986-12-09 Emission spectral analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29287386A JPS63145949A (en) 1986-12-09 1986-12-09 Emission spectral analyzer

Publications (1)

Publication Number Publication Date
JPS63145949A true JPS63145949A (en) 1988-06-18

Family

ID=17787483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29287386A Pending JPS63145949A (en) 1986-12-09 1986-12-09 Emission spectral analyzer

Country Status (1)

Country Link
JP (1) JPS63145949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172183A (en) * 1990-03-19 1992-12-15 Kawasaki Steel Corporation Glow discharge atomic emission spectroscopy and apparatus thereof
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis
JP2012018099A (en) * 2010-07-08 2012-01-26 Aisin Aw Co Ltd Emission spectrophotometer, sample holding stage, and emission spectral analysis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172183A (en) * 1990-03-19 1992-12-15 Kawasaki Steel Corporation Glow discharge atomic emission spectroscopy and apparatus thereof
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis
JP4762852B2 (en) * 2006-02-23 2011-08-31 新日本製鐵株式会社 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry
JP2012018099A (en) * 2010-07-08 2012-01-26 Aisin Aw Co Ltd Emission spectrophotometer, sample holding stage, and emission spectral analysis method

Similar Documents

Publication Publication Date Title
Hohl et al. Pulsed rf‐glow‐discharge time‐of‐flight mass spectrometry for fast surface and interface analysis of conductive and non‐conductive materials
JPS63145949A (en) Emission spectral analyzer
Bengtson et al. Depth profiling of thin films using a Grimm-type glow discharge lamp
Ohashi et al. Modified glow discharge spectroscopy for surface analysis of steels
KENNETHáMARCUS Practical aspects in the determination of gaseous elements by radiofrequency glow discharge atomic emission spectrometry
US6795178B1 (en) Method and apparatus for analysis of gas compositions
US5172183A (en) Glow discharge atomic emission spectroscopy and apparatus thereof
Beaumont et al. Determination of the CO contribution to the 15N/14N ratio measured by mass spectrometry
ATE101921T1 (en) DISCHARGE IONIZATION SOURCE FOR ANALYZING THE ATMOSPHERE.
KR100218281B1 (en) Equipment and method for the rf glow discharge-aa/ae
JPH10281995A (en) Method and device for emission spectroscopic analysis
JP2001004548A (en) Glow discharge analyzer
JPS5877640A (en) Method for emission spectrochemical analysis
JPH06102180A (en) Glow discharge spectral analysis device
JP2006058283A (en) Temperature-programmed desorption analyzing method and temperature-programmed desorption analyzer
Oda et al. Simultaneous determination of oxygen and nitrogen in iron and steel by spark-source mass spectrography
JPH10281996A (en) Method and device for emission spectroscopic analysis
KR100205093B1 (en) Ingot analyzing method using emission spectrochemical analysis
JP2001091465A (en) Glow discharge emission spectral analysis method
JPH0593691A (en) Method for spectrochemical analysis of glow discharge of steel
JPH06337245A (en) Emission spectrochemical analysis
JPH04212045A (en) Method and device for glow discharge emission spectroanalysis
SU771478A1 (en) Method of analysis of gas helium mixtures
JP2001272376A (en) Organic chlorine compound analyzing method and its device
JPH0342612Y2 (en)