JP2012018099A - Emission spectrophotometer, sample holding stage, and emission spectral analysis method - Google Patents

Emission spectrophotometer, sample holding stage, and emission spectral analysis method Download PDF

Info

Publication number
JP2012018099A
JP2012018099A JP2010156174A JP2010156174A JP2012018099A JP 2012018099 A JP2012018099 A JP 2012018099A JP 2010156174 A JP2010156174 A JP 2010156174A JP 2010156174 A JP2010156174 A JP 2010156174A JP 2012018099 A JP2012018099 A JP 2012018099A
Authority
JP
Japan
Prior art keywords
opening
sample
ring member
discharge
sample support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010156174A
Other languages
Japanese (ja)
Inventor
Manabu Yamanouchi
学 山之内
Takahiro Ando
崇洋 安藤
Hiroshi Manda
浩史 萬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
JFE Techno Research Corp
Original Assignee
Aisin AW Co Ltd
JFE Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, JFE Techno Research Corp filed Critical Aisin AW Co Ltd
Priority to JP2010156174A priority Critical patent/JP2012018099A/en
Publication of JP2012018099A publication Critical patent/JP2012018099A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an emission spectrophotometer capable of accurately analyzing a metal sample with a small size of a diameter 15 mm or less by a spark discharge spectral analysis method, and quickly analyzing the sample without substantially destroying the same.SOLUTION: The emission spectrophotometer 1 of the present invention comprises a sample supporting base 10 with an opening 13, and an electrode 4 provided below an exposed portion 3d, which is exposed from the opening 13, of a metal sample 3 placed on the surface 10a side of the sample supporting base 10. Many spark discharges are generated in an inert gas atmosphere between the metal sample 3 and the electrode 4, and emission light for every spark discharge is dispersed to quantify elements in the metal sample. A ring member 11 made of an electrical insulation material for preventing a discharge into a portion 14 adjacent to the opening on the back side of the sample supporting base at spark-discharging is provided, and the opening diameter of the surface opening located on the surface of the sample supporting base is 15 mm or less.

Description

本発明は、スパーク放電を利用した発光分光分析装置、該装置に用いられる試料保持ステージおよび発光分光分析方法に関する。本発明は特に、従来は分析することができなかった小さな試料をも分析することが可能な発光分光分析装置および方法に関する。   The present invention relates to an emission spectroscopic analysis apparatus using spark discharge, a sample holding stage used in the apparatus, and an emission spectroscopic analysis method. The present invention particularly relates to an emission spectroscopic analysis apparatus and method capable of analyzing even a small sample that could not be analyzed conventionally.

金属試料の元素分析方法の1つにスパーク放電発光分光分析法がある。これは、金属試料とこれに対向した電極との間で、多数回のスパーク放電を不活性ガス雰囲気中で発生させ、スパーク放電ごとの発光を分光して、金属試料中の元素を定量する方法である。   One of the elemental analysis methods for metal samples is spark discharge emission spectroscopy. This is a method in which a number of spark discharges are generated in an inert gas atmosphere between a metal sample and an electrode facing the metal sample, and the light emission of each spark discharge is analyzed to quantify the elements in the metal sample. It is.

金属試料を支持する試料支持台(発光スタンド)の一般的な構成を図11に示す。開口部13を持つ試料支持台10の表面10a側に、平面部3aを有する金属試料3を載置する。ここで、開口13は、試料保持台10の開口端縁13aに囲まれる空間である。試料支持台10の裏面10b側には、開口13から露出する金属試料の平面部3aの露出部分の下方位置に、該露出部分と対向して電極4を配置する。金属試料3は直流電源装置12の陰極側に接続され、電極4は陽極側に接続されている。開口13の開口径R2は15mmより大きくなる。直流電源装置12を作動させると、金属試料3の露出部分と電極4との間にスパーク放電が発生する。このような従来のスパーク放電発光分光分析装置は、例えば特許文献1に記載されている。   FIG. 11 shows a general configuration of a sample support table (light emitting stand) that supports a metal sample. The metal sample 3 having the flat surface portion 3a is placed on the surface 10a side of the sample support 10 having the opening 13. Here, the opening 13 is a space surrounded by the opening edge 13 a of the sample holder 10. On the back surface 10 b side of the sample support 10, the electrode 4 is disposed at a position below the exposed portion of the flat portion 3 a of the metal sample exposed from the opening 13 so as to face the exposed portion. The metal sample 3 is connected to the cathode side of the DC power supply device 12, and the electrode 4 is connected to the anode side. The opening diameter R2 of the opening 13 is larger than 15 mm. When the DC power supply device 12 is operated, a spark discharge is generated between the exposed portion of the metal sample 3 and the electrode 4. Such a conventional spark discharge optical emission spectrometer is described in Patent Document 1, for example.

また、特許文献2には、試料支持台の表面の開口に隣接する部分付近に、電気絶縁性の弾性部材を設けることで、金属試料の平面部の研磨が不十分でも、試料支持台の開口部を十分に密閉することができ、放電室の気密性が損なわれないようにする技術が記載されている。   Further, in Patent Document 2, by providing an electrically insulating elastic member in the vicinity of the portion adjacent to the opening on the surface of the sample support table, the opening of the sample support table can be obtained even if the flat surface of the metal sample is not sufficiently polished. A technique is described in which the portion can be sufficiently sealed so that the airtightness of the discharge chamber is not impaired.

特開2006−177922号公報JP 2006-177922 A 特開2000−292355号公報JP 2000-292355 A

しかしながら、特許文献1および2に記載のような従来の発光分光分析装置では、開口の開口径R2(図11参照)を15mmより大きくせざるを得ないという制約があった。それは、開口径R2を15mm以下とすると、試料支持台10は通常、金属材料で構成されているため、通常のスパーク放電条件では試料支持台10の裏面の開口13に隣接する部分14に放電されてしまう可能性があり、このように試料支持台10自体に放電されてしまうと、分析精度が悪くなると共に、発光分光分析装置自体を破壊するおそれも生じるためである。   However, the conventional emission spectroscopic analyzers described in Patent Documents 1 and 2 have a restriction that the opening diameter R2 of the opening (see FIG. 11) must be larger than 15 mm. That is, when the opening diameter R2 is 15 mm or less, the sample support 10 is usually made of a metal material. Therefore, under normal spark discharge conditions, the sample support 10 is discharged to the portion 14 adjacent to the opening 13 on the back surface of the sample support 10. This is because if the sample support 10 itself is discharged in this manner, the analysis accuracy deteriorates and the emission spectroscopic analyzer itself may be destroyed.

また、15mm以下のサイズの金属試料については、試料支持台の開口を金属試料で完全に塞ぐことができず、放電室から不活性ガス(アルゴンガス)が漏れ、スパーク放電が異常放電となるので、有効な分析を行うことができない。そのため、従来の発光分光分析装置では分析面となる平面部3aが直径15mmより大きい金属試料しか分析することができないという問題があった。   In addition, for a metal sample having a size of 15 mm or less, the opening of the sample support base cannot be completely covered with the metal sample, and inert gas (argon gas) leaks from the discharge chamber, resulting in abnormal discharge of the spark discharge. , Can not perform an effective analysis. Therefore, the conventional emission spectroscopic analyzer has a problem that only a metal sample having a flat surface portion 3a serving as an analysis surface can be analyzed with a diameter larger than 15 mm.

このため、直径15mm以下の小さい金属試料を分析する場合、これまではスパーク放電発光分光分析法以外の手法を採らざるを得なかった。例えば、金属試料中の炭素原子の定量を行う従来の分析法としては、例えば燃焼−赤外線吸収法が一般的である(JIS G1211)。しかし、当該分析法は、金属試料の表面を切削し、切り粉を測定する分析法であって、金属試料の一部を用いるため、非破壊分析法ではない。また、金属試料中の窒素原子の定量を行う従来の分析法としては、例えば融解熱伝導度法が一般的である。しかしこれも、金属試料を溶液化して分析試料を調整しなければならない分析法であって、金属試料の一部を用いるため、非破壊分析法ではない。その他にも、スパーク放電発光分光分析法を適用できない場合に、ICP発光分析法(JIS G1258)などの湿式化学分析法で金属試料中の元素を定量することも可能であるが、これも金属試料を酸によって溶液化しなければならず、試料採取から分析完了まで数時間を要し、また熟練した技術も必要である。また、これらの測定方法は、試料表面が研削または切削処理され除去されるため、浸炭焼入れ処理等を行った金属材料の表面処理層の分析へは適用できなかった。   For this reason, when analyzing a small metal sample having a diameter of 15 mm or less, a method other than the spark discharge emission spectroscopic analysis method had to be employed. For example, as a conventional analysis method for quantifying carbon atoms in a metal sample, for example, a combustion-infrared absorption method is common (JIS G1211). However, this analysis method is an analysis method in which the surface of a metal sample is cut and chips are measured, and is not a non-destructive analysis method because a part of the metal sample is used. Further, as a conventional analysis method for quantifying nitrogen atoms in a metal sample, for example, a melting thermal conductivity method is common. However, this is also an analysis method in which a metal sample is made into a solution to prepare an analysis sample, and is not a non-destructive analysis method because a part of the metal sample is used. In addition, when spark discharge emission spectrometry cannot be applied, elements in metal samples can be quantified by wet chemical analysis methods such as ICP emission analysis (JIS G1258). Must be made into a solution with an acid, and it takes several hours from sampling to completion of analysis, and skill is also required. In addition, these measurement methods cannot be applied to the analysis of the surface treatment layer of a metal material subjected to carburizing and quenching treatment or the like because the sample surface is removed by grinding or cutting treatment.

一方、スパーク放電発光分光分析法は、スパーク放電によって分析の表面を気化させ、その時放たれた光を分光器で分光し、その波長から組成を、その強度から含有量を分析するものであり、厳密には測定後のスパーク放電痕が残るものの、金属試料の一部を分析に用いるものではなく、実質的には非破壊分析法といえる。しかしながら、従来のスパーク放電発光分光分析法は、分析精度の観点から、15mmよりも大きなサイズの金属試料を分析対象物としており、15mm以下のサイズの金属試料の分析には、分析精度が劣るため用いることができない。   On the other hand, the spark discharge optical emission spectrometry is a method in which the surface of analysis is vaporized by spark discharge, the light emitted at that time is dispersed with a spectroscope, the composition is analyzed from the wavelength, and the content is analyzed from the intensity. Strictly speaking, although a spark discharge trace remains after measurement, a part of the metal sample is not used for analysis, and can be said to be a substantially nondestructive analysis method. However, the conventional spark discharge emission spectroscopic analysis method uses a metal sample having a size larger than 15 mm as an analysis object from the viewpoint of analysis accuracy, and the analysis accuracy is inferior for analysis of a metal sample having a size of 15 mm or less. Cannot be used.

そこで本発明は、上記課題に鑑み、直径15mm以下の小さなサイズの金属試料についてもスパーク放電発光分光分析法で精度のよい分析ができ、しかも、試料について実質的に非破壊の分析を迅速に行うことができる発光分光分析装置、該装置に用いられる試料保持ステージおよび発光分光分析方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention can accurately analyze a small-sized metal sample having a diameter of 15 mm or less by a spark discharge optical emission spectrometry, and can perform a substantially nondestructive analysis of the sample quickly. It is an object to provide an emission spectroscopic analysis apparatus, a sample holding stage used in the apparatus, and an emission spectroscopic analysis method.

本発明者らは、鋭意検討の結果、試料支持台の裏面の開口に隣接する部分にスパーク放電がされないような構成であれば、放電条件を厳密に制御することなく、試料に照射される放電領域を簡便に小径化することができるという着想を得、本発明を完成するに至った。   As a result of intensive studies, the inventors of the present invention have a configuration in which a spark discharge is not generated in a portion adjacent to the opening on the back surface of the sample support base, and the discharge applied to the sample without strictly controlling the discharge conditions. The idea that the area can be easily reduced in diameter has been obtained, and the present invention has been completed.

すなわち、上記課題に鑑み、本発明の要旨構成は以下の通りである。
(1)開口を有し、平面部をもつ金属試料の前記平面部が表面側に位置するように前記金属試料を載置するための試料支持台と、
該試料支持台の裏面側に、前記開口から露出する前記金属試料の平面部の露出部分の下方位置に、該露出部分と所定の間隔をおいて対向して配置される電極とを有し、
前記金属試料と前記電極との間で、多数回のスパーク放電を不活性ガス雰囲気中で発生させ、スパーク放電ごとの発光を分光して前記金属試料中の元素を定量するための発光分光分析装置であって、
スパーク放電の際に、前記試料支持台の裏面の前記開口に隣接する部分に放電するのを防止する電気絶縁材料からなるリング部材をさらに有し、
該リング部材は、開口の中心線が前記試料支持台の開口の中心線と一致するように配置され、
前記試料支持台の表面上に位置する表面開口の開口径が15mm以下であることを特徴とする発光分光分析装置。
That is, in view of the above problems, the gist of the present invention is as follows.
(1) a sample support for placing the metal sample so that the flat part of the metal sample having an opening and a flat part is located on the surface side;
On the back surface side of the sample support base, an electrode is disposed at a position below the exposed portion of the flat portion of the metal sample exposed from the opening and facing the exposed portion at a predetermined interval;
An emission spectroscopic analyzer for quantifying the elements in the metal sample by generating a number of spark discharges in an inert gas atmosphere between the metal sample and the electrode and spectroscopically analyzing the light emission of each spark discharge. Because
A ring member made of an electrically insulating material for preventing discharge to a portion adjacent to the opening on the back surface of the sample support base during spark discharge;
The ring member is arranged such that the center line of the opening coincides with the center line of the opening of the sample support base,
An emission spectroscopic analyzer, wherein an opening diameter of a surface opening located on the surface of the sample support is 15 mm or less.

(2)前記リング部材は、前記試料支持台の裏面側から見て、前記リング部材の少なくとも内径側部分が露出するように配設される上記(1)に記載の発光分光分析装置。   (2) The emission spectroscopic analysis apparatus according to (1), wherein the ring member is disposed so that at least an inner diameter side portion of the ring member is exposed when viewed from a back surface side of the sample support base.

(3)前記試料支持台の開口が、前記リング部材を固定載置するために設けた段差凹部に設けられた開口であり、
該開口の開口径が、前記リング部材の開口径よりも大きい上記(1)に記載の発光分光分析装置。
(3) The opening of the sample support base is an opening provided in a stepped recess provided for fixedly mounting the ring member,
The emission spectroscopic analyzer according to (1), wherein an opening diameter of the opening is larger than an opening diameter of the ring member.

(4)金属試料と電極との間で、多数回のスパーク放電を不活性ガスの雰囲気中で発生させ、スパーク放電ごとの発光を分光して前記金属試料中の元素を定量する発光分光分析装置に用いられる、試料保持ステージであって、
電気絶縁材料からなる開口径15mm以下のリング部材と、
該リング部材を固定載置するための段差凹部を有する試料支持台と、を有し、
該段差凹部には、前記リング部材の開口径よりも大きな開口径を有する開口が設けられていることを特徴とする試料保持ステージ。
(4) An emission spectroscopic analyzer for generating a number of spark discharges between the metal sample and the electrode in an inert gas atmosphere, and quantifying the elements in the metal sample by spectroscopically analyzing the light emission of each spark discharge. A sample holding stage used for
A ring member having an opening diameter of 15 mm or less made of an electrically insulating material;
A sample support having a stepped recess for fixing and mounting the ring member,
The sample holding stage, wherein the stepped recess is provided with an opening having an opening diameter larger than the opening diameter of the ring member.

(5)開口を有する試料支持台の表面側に、平面部をもつ金属試料を前記平面部が前記試料支持台の表面側に位置するように載置し、
前記試料支持台の裏面側に、前記開口から露出する前記金属試料の平面部の露出部分の下方位置に、該露出部分と所定の間隔をおいて対向する電極を配置し、
前記金属試料と前記電極との間で、多数回のスパーク放電を不活性ガス雰囲気中で発生させ、スパーク放電ごとの発光を分光して前記金属試料中の元素を定量する発光分光分析方法であって、
スパーク放電の際に、前記試料支持台の裏面の前記開口に隣接する部分に放電するのを防止する電気絶縁材料からなるリング部材を、開口の中心線が前記試料支持台の開口の中心線と一致するように配置し、
前記試料支持台の表面上に位置する表面開口の開口径が15mm以下であることを特徴とする発光分光分析方法。
(5) Place a metal sample having a flat portion on the surface side of the sample support base having an opening so that the flat portion is located on the surface side of the sample support base;
On the back surface side of the sample support base, an electrode facing the exposed portion at a predetermined interval is disposed at a position below the exposed portion of the flat portion of the metal sample exposed from the opening,
An emission spectroscopic analysis method that quantifies elements in the metal sample by generating a number of spark discharges in an inert gas atmosphere between the metal sample and the electrode and spectroscopically analyzing the light emission of each spark discharge. And
During spark discharge, a ring member made of an electrically insulating material for preventing discharge to a portion adjacent to the opening on the back surface of the sample support base is used, and the center line of the opening is the center line of the opening of the sample support base. Arrange to match,
An emission spectroscopic analysis method, wherein an opening diameter of a surface opening located on the surface of the sample support is 15 mm or less.

(6)前記金属試料が、表面に浸炭処理または窒化処理を施した鋼であり、
前記金属試料中の定量分析元素が、炭素または窒素である上記(5)に記載の発光分光分析方法。
(6) The metal sample is steel having a carburized or nitrided surface.
The emission spectroscopic analysis method according to (5), wherein the quantitative analysis element in the metal sample is carbon or nitrogen.

(7)前記金属試料の表面から20μm以内の深さ方向に元素分析可能なようにスパーク放電の放電時間を設定する上記(6)に記載の発光分光分析方法。   (7) The emission spectroscopic analysis method according to (6), wherein a discharge time of the spark discharge is set so that elemental analysis can be performed in a depth direction within 20 μm from the surface of the metal sample.

本発明によれば、スパーク放電の際に、試料支持台の裏面の前記開口に隣接する部分に放電するのを防止する電気絶縁材料からなるリング部材を、該リング部材の開口の中心線が前記試料支持台の開口の中心線と一致するように配置したので、従来の発光分光分析装置では測定不可能だった直径15mm以下の小さなサイズの金属試料についてもスパーク放電発光分光分析法で精度のよい分析ができ、しかも、試料について実質的に非破壊の分析を迅速に行うことができるようになった。   According to the present invention, during spark discharge, a ring member made of an electrically insulating material that prevents discharge to a portion adjacent to the opening on the back surface of the sample support base is provided such that the center line of the opening of the ring member is Since it is arranged so as to coincide with the center line of the opening of the sample support base, even a small metal sample having a diameter of 15 mm or less, which is impossible to measure with a conventional emission spectroscopic analyzer, is highly accurate by spark discharge optical emission spectrometry. Analysis can be performed, and a substantially non-destructive analysis can be quickly performed on the sample.

本発明に従う発光分光分析装置の全体構成の一例を示す概略図である。It is the schematic which shows an example of the whole structure of the emission-spectral-analysis apparatus according to this invention. 本発明に従う発光分光分析装置に用いる試料保持ステージを示す図であり、(a)は該ステージを表面斜め上方から眺めたときの斜視図、(b)は開口部の直径を含む断面図で金属試料3を設置する前の状態を示し、(c)は(b)と同様の断面図であり金属試料3を設置した状態を示し、(d)は(b)の試料保持ステージから試料支持台10のみを抜き出した断面図である。It is a figure which shows the sample holding stage used for the emission-spectral-analysis apparatus according to this invention, (a) is a perspective view when this stage is seen from the surface diagonally upper direction, (b) is sectional drawing containing the diameter of an opening part, and is metal The state before installing the sample 3 is shown, (c) is a cross-sectional view similar to (b), showing the state where the metal sample 3 is installed, and (d) is the sample support stage from the sample holding stage of (b). It is sectional drawing which extracted 10 only. 図2に示した試料保持ステージを裏面側から観察した図である。It is the figure which observed the sample holding stage shown in FIG. 2 from the back surface side. 本発明に従う別の試料保持ステージの、開口部の直径を含む断面図である。It is sectional drawing containing the diameter of the opening part of another sample holding stage according to this invention. 本発明に従うさらに別の試料保持ステージの、開口部の直径を含む断面図である。It is sectional drawing including the diameter of the opening part of another sample holding stage according to this invention. スパーク放電条件について、放電ピーク電流と放電痕径との関係を示した図である。It is the figure which showed the relationship between a discharge peak current and a discharge scar diameter about spark discharge conditions. スパーク放電条件について、放電周波数と放電痕径との関係を示した図である。It is the figure which showed the relationship between a discharge frequency and a discharge scar diameter about spark discharge conditions. スパーク放電条件について、放電時間と分析深さとの関係を示した図である。It is the figure which showed the relationship between discharge time and analysis depth about spark discharge conditions. 実施例2における分析深さと炭素量との関係を示した図である。It is the figure which showed the relationship between the analysis depth and carbon amount in Example 2. FIG. 実施例2における放電時間と炭素量との関係を示した図である。It is the figure which showed the relationship between the discharge time in Example 2, and carbon content. 従来の発光分光分析装置の試料保持ステージの、開口部の直径を含む断面図である。It is sectional drawing containing the diameter of the opening part of the sample holding stage of the conventional emission-spectral-analysis apparatus.

以下、図面を参照しつつ本発明をより詳細に説明する。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。   Hereinafter, the present invention will be described in more detail with reference to the drawings. In principle, the same components are denoted by the same reference numerals, and description thereof is omitted.

図1に示すように、スパーク放電を利用した本発明の発光分光分析装置1は、発光部、分光部、測光装置8、データ処理装置9で構成される。発光部は、放電装置2、金属試料3および電極4からなり、Arガスなどの不活性ガス雰囲気中で放電装置2からの信号に応じて金属試料3と電極4との間で多数回のスパーク放電を発生させる部分である。分光部は、スリット5、回折格子6および検出器7からなり、発光部で発生したスパーク放電ごとの発光を分光する部分である。分光部の検出器7によって検出されたスペクトル線を測光装置8で処理する。測光装置8から入力されるスペクトル線強度に基づいて、データ処理装置9で金属試料3中の元素の含有量を求める。金属試料3が測定対象物であり、電極でもある。   As shown in FIG. 1, the emission spectroscopic analysis apparatus 1 of the present invention using spark discharge includes a light emitting unit, a spectroscopic unit, a photometric device 8, and a data processing device 9. The light emitting unit is composed of the discharge device 2, the metal sample 3, and the electrode 4, and is sparked many times between the metal sample 3 and the electrode 4 in response to a signal from the discharge device 2 in an inert gas atmosphere such as Ar gas. This is the part that generates electric discharge. The spectroscopic unit includes the slit 5, the diffraction grating 6, and the detector 7, and is a part that splits light emitted for each spark discharge generated in the light emitting unit. The spectral line detected by the detector 7 of the spectroscopic unit is processed by the photometric device 8. Based on the spectral line intensity input from the photometric device 8, the content of the element in the metal sample 3 is obtained by the data processing device 9. The metal sample 3 is an object to be measured and is also an electrode.

(実施形態1)
図2を用いて、本発明の発光分光分析装置1の主な特徴的構成を含む発光部の試料保持ステージについて、詳細に説明する。この試料保持ステージは、電気絶縁材料からなる開口径R1が15mm以下のリング部材11と、このリング部材11を固定載置するための段差凹部13b(図2(d)参照)とを有する。段差凹部13bには、リング部材11の開口径R1よりも大きな開口径R2(図2(b)参照)を有する開口13が設けられている。
(Embodiment 1)
The sample holding stage of the light emitting unit including the main characteristic configuration of the emission spectroscopic analysis apparatus 1 of the present invention will be described in detail with reference to FIG. The sample holding stage includes a ring member 11 having an opening diameter R1 of 15 mm or less made of an electrically insulating material, and a step recess 13b (see FIG. 2D) for fixing and mounting the ring member 11. The step recess 13b is provided with an opening 13 having an opening diameter R2 (see FIG. 2B) larger than the opening diameter R1 of the ring member 11.

ここで、試料支持台10の開口13とは、図2の場合ではリング部材を固定載置するための段差凹部13bに設けられた開口を意味し、開口端縁13aに囲まれた空間となる。また、図2(b)に示すように、リング部材11の開口15は、リング部材の内径端面15aに囲まれた空間となる。リング部材11は、開口15の中心線が試料支持台の開口13の中心線と一致するように配置される。また、リング部材の開口15が試料支持台の開口13と連続して、放電空間を形成しうる。   Here, the opening 13 of the sample support 10 means an opening provided in the step recess 13b for fixing and mounting the ring member in the case of FIG. 2, and is a space surrounded by the opening edge 13a. . Further, as shown in FIG. 2B, the opening 15 of the ring member 11 is a space surrounded by the inner diameter end surface 15a of the ring member. The ring member 11 is arranged so that the center line of the opening 15 coincides with the center line of the opening 13 of the sample support base. Moreover, the opening 15 of the ring member can be continuous with the opening 13 of the sample support base to form a discharge space.

このように、金属材料からなる試料支持台10は、開口13を有し、平面部3aを持つ金属試料3を、その平面部3aが表面10a側に位置するように載置することができる。試料支持台の裏面10b側には、開口13から露出する金属試料3の平面部3aの露出部分3d(図2(c)参照。以後「放電領域」という。)の下方位置に、該放電領域と所定の間隔dをおいて対向して、タングステン等の導電材料からなる電極4を配置する。金属試料3は直流電源装置12の陰極側に接続され、電極4は陽極側に接続されている。なお、試料支持台10はアース接続されている。   As described above, the sample support 10 made of a metal material has the opening 13 and can place the metal sample 3 having the flat surface portion 3a so that the flat surface portion 3a is located on the surface 10a side. On the back surface 10b side of the sample support base, the discharge region is located below the exposed portion 3d of the flat portion 3a of the metal sample 3 exposed from the opening 13 (see FIG. 2C, hereinafter referred to as “discharge region”). And an electrode 4 made of a conductive material such as tungsten is disposed so as to face each other with a predetermined distance d. The metal sample 3 is connected to the cathode side of the DC power supply device 12, and the electrode 4 is connected to the anode side. The sample support 10 is grounded.

ここで、段差凹部13bに設けられた、試料支持台の開口13の開口径R2は、リング部材11の開口径R1より大きくなっていることから、試料支持台の裏面10b側における電極4の近傍部分では、電気絶縁材料が露出していることになる。図3は、図2に示した試料保持ステージを裏面側から観察した図であり、リング部材11が裏面10b側から見て、その内径側部分が露出するように配置されていることがわかる。このため、リング部材11の開口径R1を15mm以下と従来よりも小さくしても、スパーク放電の際に、試料支持台の裏面10bのうち開口13に隣接する部分14に放電することを防止することができる。つまり、リング部材11の開口径R1が15mm以下であっても、電気絶縁材料にはスパーク放電されることがないため、実際にスパーク放電がされるのは、金属試料3の露出部分3dに制限される。なお図3における破線で示した円の径R3は、図2(b)にも示したように、リング部材11の外径である。   Here, since the opening diameter R2 of the opening 13 of the sample support base provided in the step recess 13b is larger than the opening diameter R1 of the ring member 11, the vicinity of the electrode 4 on the back surface 10b side of the sample support base. In the portion, the electrically insulating material is exposed. FIG. 3 is a view of the sample holding stage shown in FIG. 2 observed from the back surface side, and it can be seen that the ring member 11 is arranged so that the inner diameter side portion thereof is exposed when viewed from the back surface 10b side. For this reason, even if the opening diameter R1 of the ring member 11 is 15 mm or less, which is smaller than the conventional one, discharge to the portion 14 adjacent to the opening 13 in the back surface 10b of the sample support base is prevented during spark discharge. be able to. In other words, even if the opening diameter R1 of the ring member 11 is 15 mm or less, the electric insulating material is not subjected to spark discharge, and therefore the actual spark discharge is limited to the exposed portion 3d of the metal sample 3. Is done. In addition, the diameter R3 of the circle shown by the broken line in FIG. 3 is the outer diameter of the ring member 11 as shown in FIG.

その結果、試料支持台の表面10a上に位置する表面開口の開口径R(図2(c)参照)は、本実施形態においては、リング部材11の開口の開口径R1となり、これを15mm以下とすることができ、従来の発光分光分析装置では測定不可能だった直径15mm以下の小さなサイズの金属試料についても試料支持台に載置して表面開口を塞ぐことができる。そのため、スパーク放電発光分光分析法で精度のよい分析ができ、しかも、金属試料について実質的に非破壊の分析を迅速に行うことができるようになった。   As a result, the opening diameter R (see FIG. 2C) of the surface opening located on the surface 10a of the sample support base becomes the opening diameter R1 of the opening of the ring member 11 in this embodiment, which is 15 mm or less. It is also possible to place a small-sized metal sample having a diameter of 15 mm or less, which could not be measured with a conventional emission spectroscopic analyzer, on the sample support table to close the surface opening. Therefore, the spark discharge emission spectroscopic analysis can be performed with high accuracy, and the non-destructive analysis of the metal sample can be performed rapidly.

(実施形態2)
図4に示す試料保持ステージでは、図2(d)に示すような段差凹部を持たない試料支持台10の開口13の内部に、リング状部材11が嵌め込まれている。すなわち、試料支持台の開口13の内径端縁13aの全体に、リング部材11の外周面全体が接している構成である。このため、試料支持台の開口径R2とリング部材11の外径R3とはほぼ等しくなる。リング部材11は、開口15の中心線が試料支持台の開口13の中心線と一致するように配置される。また、リング部材の開口15は、試料支持台10の開口と共通する空間を有し、これが放電空間を形成しうる。
(Embodiment 2)
In the sample holding stage shown in FIG. 4, the ring-shaped member 11 is fitted inside the opening 13 of the sample support 10 that does not have a stepped recess as shown in FIG. That is, the entire outer peripheral surface of the ring member 11 is in contact with the entire inner diameter edge 13a of the opening 13 of the sample support. For this reason, the opening diameter R2 of the sample support base and the outer diameter R3 of the ring member 11 are substantially equal. The ring member 11 is arranged so that the center line of the opening 15 coincides with the center line of the opening 13 of the sample support base. Moreover, the opening 15 of the ring member has a space common with the opening of the sample support 10, and this can form a discharge space.

この実施形態においても、試料支持台の裏面10b側における電極4の近傍部分では、電気絶縁材料が露出していることになる。そして、リング部材11が裏面10b側から見て、その全体が露出するように配置されている。このため、リング部材11の開口径R1を15mm以下と従来よりも小さくしても、スパーク放電の際に、試料支持台の裏面10bのうち開口13に隣接する部分14に放電することを防止することができる。つまり、リング部材11の開口径R1が15mm以下であっても、電気絶縁材料にはスパーク放電されることがないため、スパーク放電がされるのは、金属試料の露出部分3dに制限される。   Also in this embodiment, the electrically insulating material is exposed in the vicinity of the electrode 4 on the back surface 10b side of the sample support base. And the ring member 11 is arrange | positioned so that the whole may be exposed seeing from the back surface 10b side. For this reason, even if the opening diameter R1 of the ring member 11 is 15 mm or less, which is smaller than the conventional one, discharge to the portion 14 adjacent to the opening 13 in the back surface 10b of the sample support base is prevented during spark discharge. be able to. That is, even if the opening diameter R1 of the ring member 11 is 15 mm or less, the electric insulating material is not subjected to a spark discharge, so that the spark discharge is limited to the exposed portion 3d of the metal sample.

その結果、試料支持台の表面10a上に位置する表面開口の開口径Rは、本実施形態においても、リング部材11の開口の開口径R1となり、これを15mm以下とすることができ、従来の発光分光分析装置では測定不可能だった直径15mm以下の小さなサイズの金属試料についても試料支持台に載置して表面開口を塞ぐことができる。そのため、スパーク放電発光分光分析法で精度のよい分析ができ、しかも、金属試料について実質的に非破壊の分析を迅速に行うことができるようになった。   As a result, the opening diameter R of the surface opening located on the surface 10a of the sample support base is also the opening diameter R1 of the opening of the ring member 11 in this embodiment, which can be 15 mm or less. A small-sized metal sample having a diameter of 15 mm or less, which could not be measured by the emission spectroscopic analyzer, can be placed on the sample support to close the surface opening. Therefore, the spark discharge emission spectroscopic analysis can be performed with high accuracy, and the non-destructive analysis of the metal sample can be performed rapidly.

(実施形態3)
図5に示す試料保持ステージでは、試料支持台の裏面10bのうち開口13に隣接する部分14を被覆するように、リング部材11を設ける。このため、リング部材11の開口径R1と試料支持台の開口径R2とがほぼ等しくなる。リング部材11は、開口15の中心線が試料支持台の開口13の中心線と一致するように配置される。また、リング部材の開口15は、試料支持台の開口13と連続して、放電空間を形成しうる。
(Embodiment 3)
In the sample holding stage shown in FIG. 5, the ring member 11 is provided so as to cover the portion 14 adjacent to the opening 13 in the back surface 10b of the sample support base. For this reason, the opening diameter R1 of the ring member 11 and the opening diameter R2 of the sample support base are substantially equal. The ring member 11 is arranged so that the center line of the opening 15 coincides with the center line of the opening 13 of the sample support base. Further, the opening 15 of the ring member can be continuous with the opening 13 of the sample support base to form a discharge space.

この実施形態においても、試料支持台の裏面10b側における電極4の近傍部分では、電気絶縁材料が露出していることになる。そして、リング部材11が裏面10b側から見て、その全体が露出するように配置されている。このため、リング部材11の開口径R1を15mm以下と従来よりも小さくしても、スパーク放電の際に、試料支持台の裏面10bのうち開口13に隣接する部分14に放電することを防止することができる。つまり、リング部材11の開口径R1を15mm以下であっても、電気絶縁材料にはスパーク放電されることがないため、スパーク放電がされるのは、金属試料の露出部分3dに制限される。   Also in this embodiment, the electrically insulating material is exposed in the vicinity of the electrode 4 on the back surface 10b side of the sample support base. And the ring member 11 is arrange | positioned so that the whole may be exposed seeing from the back surface 10b side. For this reason, even if the opening diameter R1 of the ring member 11 is 15 mm or less, which is smaller than the conventional one, discharge to the portion 14 adjacent to the opening 13 in the back surface 10b of the sample support base is prevented during spark discharge. be able to. That is, even if the opening diameter R1 of the ring member 11 is 15 mm or less, the electric insulating material does not cause a spark discharge, and therefore the spark discharge is limited to the exposed portion 3d of the metal sample.

その結果、試料支持台の表面10a上に位置する表面開口の開口径Rは、本実施形態においては、実施形態1,2と異なり、試料支持台の開口径R2となり、これを15mm以下とすることができる。そのため、従来の発光分光分析装置では測定不可能だった直径15mm以下の小さなサイズの金属試料についても試料支持台に載置して表面開口を塞ぐことができる。よって、スパーク放電発光分光分析法で精度のよい分析ができ、しかも、金属試料について実質的に非破壊の分析を迅速に行うことができるようになった。   As a result, the opening diameter R of the surface opening located on the surface 10a of the sample support is different from the first and second embodiments in the present embodiment, and becomes the opening diameter R2 of the sample support, which is 15 mm or less. be able to. Therefore, it is possible to place a small-sized metal sample having a diameter of 15 mm or less, which was impossible to measure with a conventional emission spectroscopic analyzer, on the sample support table, thereby closing the surface opening. Therefore, the spark discharge emission spectroscopic analysis can be performed with high accuracy, and the non-destructive analysis of the metal sample can be performed rapidly.

(各実施形態に共通の事項)
実施形態1および2では、試料支持台10の表面とリング部材11が略面一となるように、試料支持台10にリング部材11を嵌め込むことが好ましい。また、実施形態3では、試料支持台10の表面10aが平坦であることが好ましい。これにより、金属試料の平面部3aを試料支持台の表面10aに密接して載置することができ、平面部3aによって試料支持台の開口13またはリング部材の開口15を密閉させることができる。
(Matters common to each embodiment)
In the first and second embodiments, it is preferable to fit the ring member 11 into the sample support 10 so that the surface of the sample support 10 and the ring member 11 are substantially flush with each other. In the third embodiment, the surface 10a of the sample support 10 is preferably flat. Thereby, the flat part 3a of the metal sample can be placed in close contact with the surface 10a of the sample support, and the opening 13 of the sample support or the opening 15 of the ring member can be sealed by the flat part 3a.

また、リング部材11を、その開口15の中心線が試料支持台の開口13の中心線と一致するように配置するのは、金属試料の露出部分3dに対して均一にスパーク放電を行って、分析精度を確保するためである。   Further, the ring member 11 is arranged so that the center line of the opening 15 coincides with the center line of the opening 13 of the sample support base, by performing a spark discharge uniformly on the exposed portion 3d of the metal sample, This is to ensure analysis accuracy.

リング部材11を構成する電気絶縁材料としては、アルミナ、ジルコニア、シリカ等のセラミックスを例示できる。   Examples of the electrically insulating material constituting the ring member 11 include ceramics such as alumina, zirconia, and silica.

リング部材の開口径R1、リング幅W、放電領域と電極との間隔dは、試料の大きさによって最適な値が異なる。以下に例を示す。   The optimum values of the opening diameter R1 of the ring member, the ring width W, and the distance d between the discharge region and the electrode vary depending on the size of the sample. An example is shown below.

リング部材の開口径R1は、15mm以下で小さいほど好ましい。R1が小さいほど、より小径の金属試料を測定できるためである。しかし、好ましくは1mm以上、例えば2mm程度である。R1が1mmを下回ると、分析に十分な放電面積を確保できず、分析精度が落ちるおそれがあるためである。   The opening diameter R1 of the ring member is preferably as small as 15 mm or less. This is because a smaller metal sample can be measured as R1 is smaller. However, it is preferably 1 mm or more, for example, about 2 mm. This is because if R1 is less than 1 mm, a sufficient discharge area for analysis cannot be secured, and the analysis accuracy may be lowered.

また、リング部材11のリング幅Wが狭すぎると、電気絶縁材料の裏面10bへの露出が不十分となって、試料支持台の開口部の開口端13aに放電する可能性がある。   In addition, if the ring width W of the ring member 11 is too narrow, exposure of the electrically insulating material to the back surface 10b becomes insufficient, and there is a possibility of discharging to the opening end 13a of the opening of the sample support base.

放電領域と電極4との間隔dは、例えば3mm程度である。   The distance d between the discharge region and the electrode 4 is, for example, about 3 mm.

そして、これらの実施形態によれば、直径1〜15mmの範囲内の小サイズの金属試料をスパーク放電発光分光分析装置で分析することが可能となり、しかも、分析所要時間を、従来の数時間に比べて数10秒に短縮することができる。そのため特に、多数の同種の金属試料を分析する場合、これまで抽出分析を行っていたところ、全数分析を行ったとしても短時間で行えるようになる点で、非常に有用である。   And according to these embodiments, it becomes possible to analyze a small-sized metal sample within a range of 1 to 15 mm in diameter with a spark discharge optical emission spectrometer, and the time required for analysis is reduced to the conventional several hours. In comparison, it can be shortened to several tens of seconds. Therefore, in particular, when analyzing a large number of the same kind of metal samples, extraction analysis has been performed so far, and it is very useful in that it can be performed in a short time even if total analysis is performed.

(分析対象物)
次に、分析対象物である金属試料3について説明する。本発明の発光分光分析装置で測定しうる金属試料3は特に限定されないが、従来はスパーク放電発光分光分析法で分析することができなかった直径1〜15mmの範囲内の任意の大きさの試料であると、本発明の恩恵を十分に受けることができる。例えば、表面に浸炭処理または窒化処理を施した鋼からなる直径3mm程度のギアを挙げることができる。平坦な上面および下面の中心に、回転軸を挿入するための1mm程度の開口があるようなギアの、上面または下面を測定面として分析する場合、測定面は2mm程度となるため、本発明の試料保持ステージに設置することで、スパーク放電発光分光分析法で分析することができる。そして、分析表面が浸炭処理されている場合、炭素の定量を深さ方向に行い、窒化処理されている場合、窒素の定量を深さ方向に行う。
(Analytical object)
Next, the metal sample 3 which is an analysis object will be described. The metal sample 3 that can be measured by the emission spectroscopic analysis apparatus of the present invention is not particularly limited, but a sample having an arbitrary size within a range of 1 to 15 mm in diameter that could not be analyzed by the spark discharge optical emission spectrometry in the past. If so, the benefits of the present invention can be fully received. For example, a gear having a diameter of about 3 mm made of steel whose surface is carburized or nitrided can be used. When analyzing the upper or lower surface of the gear having an opening of about 1 mm for inserting the rotation shaft at the center of the flat upper and lower surfaces, the measurement surface is about 2 mm. By installing it on the sample holding stage, it can be analyzed by spark discharge optical emission spectrometry. When the analysis surface is carburized, carbon is quantified in the depth direction, and when nitriding is performed, nitrogen is quantified in the depth direction.

(スパーク放電条件)
次に、スパーク放電の放電条件について説明する。本発明の発光分光分析装置1は、放電装置2を制御するスパーク放電回路をデジタル化しているため、スパーク放電条件をコンピュータにより任意に変化させることができる。スパーク電流値は、1〜250Aの範囲内で1A単位で変更でき、放電周波数は100〜600Hzの範囲内で1Hz単位に変更できる。スパーク放電波形(ピーク電流、ピーク回数、スパークデュレーション時間)は、例えば、ピーク電流1〜255A、放電のプラトー領域を1〜200分割して、各電流値を0〜30Aで設定することにより変更できる。
(Spark discharge condition)
Next, the discharge conditions for spark discharge will be described. Since the emission spectroscopic analysis apparatus 1 of the present invention digitizes the spark discharge circuit that controls the discharge apparatus 2, the spark discharge conditions can be arbitrarily changed by a computer. The spark current value can be changed in units of 1 A within a range of 1 to 250 A, and the discharge frequency can be changed in units of 1 Hz within a range of 100 to 600 Hz. The spark discharge waveform (peak current, number of peaks, spark duration time) can be changed by, for example, dividing the plateau region of the peak current 1 to 255A and the discharge 1 to 200 and setting each current value at 0 to 30A. .

ここで、放電面積に影響する条件は、1.スパーク放電電流値(A)、2.スパーク放電周波数(Hz)、3.スパーク放電波形(ピーク電流、ピーク回数、スパークデュレーション時間)、4.電極先端と試料の間隔d、である。一方、どの深さまで元素分析を行うかに影響する条件は、スパーク放電の放電時間(s)である。図6は、スパーク放電条件について、放電ピーク電流と放電痕径との関係を示した図である。スパーク放電電流値と放電面積とは相関があり、電流値が小さくなれば放電面積も小さくなることがわかる。図7は、放電周波数と放電痕径との関係を示した図である。スパーク放電周波数と放電面積とは相関があり、周波数が小さくなれば放電面積も小さくなることがわかる。図8は、放電時間と分析深さとの関係を示した図である。スパーク放電時間と放電深さには相関があり、放電時間を長くすれば、放電深さは深くなることがわかる。   Here, the conditions affecting the discharge area are: 1. Spark discharge current value (A) 2. Spark discharge frequency (Hz) 3. Spark discharge waveform (peak current, number of peaks, spark duration time) The distance d between the electrode tip and the sample. On the other hand, the condition affecting the depth of elemental analysis is the discharge time (s) of spark discharge. FIG. 6 is a diagram showing the relationship between the discharge peak current and the discharge scar diameter for the spark discharge conditions. It can be seen that there is a correlation between the spark discharge current value and the discharge area, and the discharge area decreases as the current value decreases. FIG. 7 is a diagram showing the relationship between the discharge frequency and the discharge scar diameter. There is a correlation between the spark discharge frequency and the discharge area, and it can be seen that the discharge area decreases as the frequency decreases. FIG. 8 is a diagram showing the relationship between the discharge time and the analysis depth. It can be seen that there is a correlation between the spark discharge time and the discharge depth, and that the discharge depth increases as the discharge time is increased.

これらの条件を適切に組み合わせることにより、上記の本発明に従う試料保持ステージの各寸法(R1〜R3)を考慮して、最適な放電条件を任意に設定することができる。   By appropriately combining these conditions, the optimum discharge conditions can be arbitrarily set in consideration of the dimensions (R1 to R3) of the sample holding stage according to the present invention.

ここで、本発明においては、リング部材11があるため、実際に金属試料3に放電される領域は、図2(c)に示した露出部分3dに制限されるが、仮にリング部材11を設けないと仮定した場合には、裏面10bにおける放電面積がR1より大きくなるように、放電条件を設定することが以下の点から好ましい。   Here, in the present invention, since there is the ring member 11, the region where the metal sample 3 is actually discharged is limited to the exposed portion 3 d shown in FIG. 2C, but the ring member 11 is temporarily provided. If it is assumed that there is not, it is preferable from the following points to set the discharge conditions so that the discharge area on the back surface 10b is larger than R1.

すなわち、スパーク放電発光分光分析法によって金属試料の表面から深さ方向に元素分析する場合に、より精度の高い分析が可能となる。上記のように放電条件を設定しない場合、スパーク放電は小規模になるものの、リング部材11で緩和されることなく、直接放電領域にスパーク衝撃を与えることになる。すると、深さ方向に放電痕が掘られるスピードが速くなるため、深さ方向に十分な精度の分析ができない。一方、上記のように放電条件を設定すれば、リング部材11でスパーク放電を緩和したのち、放電領域にスパーク衝撃が与えられるため、深さ方向に放電痕が掘られるスピードが遅くなる。このため、深さ方向に十分な精度で元素分析することができる。   That is, when performing elemental analysis from the surface of the metal sample in the depth direction by the spark discharge optical emission spectrometry, analysis with higher accuracy becomes possible. When the discharge conditions are not set as described above, although the spark discharge is small, the spark impact is directly applied to the discharge region without being relaxed by the ring member 11. Then, since the speed at which the discharge trace is dug in the depth direction increases, analysis with sufficient accuracy in the depth direction cannot be performed. On the other hand, if the discharge conditions are set as described above, after the spark discharge is mitigated by the ring member 11, a spark impact is applied to the discharge region, so that the speed at which the discharge trace is dug in the depth direction is reduced. For this reason, elemental analysis can be performed with sufficient accuracy in the depth direction.

また、図2に示した実施形態1において、リング部材11があるため、実際に金属試料3に放電される領域は、図2(c)に示した露出部分3dに制限されるが、仮にリング部材11を設けないと仮定した場合には、裏面10bにおける放電面積が、試料支持台の開口径R2より小さくなるように、放電条件を設定することが好ましい。さもないと、開口13の隣接部分14に放電する可能性があるためである。   In addition, in the first embodiment shown in FIG. 2, since there is the ring member 11, the region where the metal sample 3 is actually discharged is limited to the exposed portion 3d shown in FIG. When it is assumed that the member 11 is not provided, it is preferable to set the discharge conditions so that the discharge area on the back surface 10b is smaller than the opening diameter R2 of the sample support base. Otherwise, there is a possibility of discharging to the adjacent portion 14 of the opening 13.

また、放電時間に関しては、表面に浸炭処理または窒化処理を施した鋼の深さ方向分析を行う場合、表面から20μm以内の深さ方向に元素分析可能なようにスパーク放電の放電時間を設定することが好ましい。   As for the discharge time, when performing the depth direction analysis of the steel whose surface has been carburized or nitrided, the discharge time of the spark discharge is set so that elemental analysis can be performed in the depth direction within 20 μm from the surface. It is preferable.

(実施例1)
従来はスパーク放電発光分光分析法で測定不可能であった小径の金属試料について、他の分析方法をとった場合と誤差なく定量可能であることを以下の実施例で示す。炭素含有量の異なる試料A、試料Bの2種類の試料について、本発明の発光分光分析装置によって炭素の定量分析を行い(実施例)、一方で、同じ試料について燃焼−赤外線吸収法(JIS G1211)によっても定量した(比較例)。実施例のスパーク放電発光分析は、図2の装置を用いて測定した。装置寸法は、R1:φ1.8mm,R2:φ55mm,d:2.1mmとした。各試料について、実施例のスパーク放電発光分析を行った後の放電痕深さ、実施例および比較例での測定にかかった時間を表1に示す。また、試料A,Bのそれぞれについて、3個の試料で実施例および比較例の測定を行い、炭素含有量の平均値を計算した結果を表2に示す。
Example 1
The following example shows that a metal sample having a small diameter, which could not be measured by the spark discharge optical emission spectrometry, can be quantified without error from the case of using other analysis methods. Two types of samples A and B having different carbon contents are subjected to quantitative analysis of carbon by the emission spectroscopic analyzer of the present invention (Example), while the same sample is subjected to combustion-infrared absorption method (JIS G1211). ) Was also quantified (comparative example). The spark discharge emission analysis of the example was measured using the apparatus of FIG. The apparatus dimensions were R1: φ1.8 mm, R2: φ55 mm, and d: 2.1 mm. For each sample, Table 1 shows the discharge mark depth after performing the spark discharge emission analysis of the example, and the time taken for measurement in the example and the comparative example. In addition, Table 2 shows the results of the measurement of Examples and Comparative Examples using three samples for each of Samples A and B and calculating the average value of the carbon content.

Figure 2012018099
Figure 2012018099

Figure 2012018099
Figure 2012018099

本発明の発光分光分析装置によって、従来はスパーク放電発光分光分析法で測定不可能であった小径の金属試料A,Bについて、当該分析法で炭素の定量分析を行うことができ、表2に示したように、燃焼−赤外線吸収法での測定結果と略一致した値を得ることができた。一方で、表1に示したように、測定時間は、燃焼−赤外線吸収法に比べて、大幅に短縮することができた。   With the emission spectroscopic analysis apparatus of the present invention, it is possible to carry out quantitative analysis of carbon by the analysis method for small-diameter metal samples A and B, which could not be measured by the spark discharge emission spectroscopic analysis method. As shown, it was possible to obtain a value substantially in agreement with the measurement result by the combustion-infrared absorption method. On the other hand, as shown in Table 1, the measurement time was significantly shortened as compared with the combustion-infrared absorption method.

(実施例2)
ガス浸炭処理を行った鋼の試料(試料の大きさ、φ5.0mm)を図2に示す本発明のスパーク放電発光分光分析装置にセットして、放電時間以外は実施例1と同じ条件で炭素量の深さ方向分布を測定した。放電時間と分析深さ、炭素量の関係を表3に示す。分析深さと炭素量との関係を図9に、放電時間と炭素量との関係を図10に示す。これらの結果から、表面ほど炭素量が多く、内部に向かうにしたがって炭素量が減少することが分かる。
(Example 2)
A steel sample subjected to gas carburizing treatment (sample size, φ5.0 mm) was set in the spark discharge optical emission spectrometer of the present invention shown in FIG. 2, and carbon was used under the same conditions as in Example 1 except for the discharge time. The depth distribution of the quantity was measured. Table 3 shows the relationship between the discharge time, analysis depth, and carbon content. FIG. 9 shows the relationship between the analysis depth and the carbon content, and FIG. 10 shows the relationship between the discharge time and the carbon content. From these results, it can be seen that the amount of carbon increases toward the surface, and the amount of carbon decreases toward the inside.

Figure 2012018099
Figure 2012018099

浸炭処理を施した小径の金属試料について、ICP発光分析法などでは、炭素量の深さ方向分布を測定することはできなかったところ、本発明の発光分光分析装置によれば、これを測定することが可能となった。   For a small-diameter metal sample that has been subjected to carburizing treatment, the ICP emission analysis method or the like could not measure the depth distribution of the carbon content. According to the emission spectroscopic analyzer of the present invention, this is measured. It became possible.

本発明によれば、スパーク放電の際に、試料支持台の裏面の前記開口に隣接する部分に放電するのを防止する電気絶縁材料からなるリング部材を、該リング部材の開口が前記試料支持台の開口と共通または連続するように配置したので、従来の発光分光分析装置では測定不可能だった直径15mm以下の小さなサイズの金属試料についてもスパーク放電発光分光分析法で精度のよい分析ができ、しかも、試料について実質的に非破壊の分析を迅速に行うことができるようになった。   According to the present invention, during spark discharge, a ring member made of an electrically insulating material for preventing discharge to a portion adjacent to the opening on the back surface of the sample support base is provided, and the opening of the ring member is the sample support base. Because it is arranged so as to be common or continuous with the aperture of the metal, a spark sample emission spectroscopic analysis method can accurately analyze a metal sample having a diameter of 15 mm or less, which could not be measured by a conventional emission spectroscopic analyzer. In addition, a substantially non-destructive analysis can be quickly performed on the sample.

1 発光分光分析装置
3 金属試料
3a 金属試料の平面部
3d 金属試料の平面部の露出部分
4 電極
10 試料支持台
10a 試料支持台の表面
10b 試料支持台の裏面
11 リング部材
13 試料支持台の開口
13a 試料支持台の開口端縁
13b 段差凹部
14 試料支持台の裏面の開口に隣接する部分
15 リング部材の開口
15a リング部材の開口端縁
R1 リング部材の開口径
R2 試料支持台の開口径
R3 リング部材の外径
DESCRIPTION OF SYMBOLS 1 Emission-spectral-analysis apparatus 3 Metal sample 3a The plane part of a metal sample 3d The exposed part of the plane part of a metal sample 4 Electrode 10 Sample support stand 10a The surface of a sample support stand 10b The back surface of a sample support stand 11 Ring member 13 Opening of a sample support stand 13a Opening edge of the sample support 13b Stepped recess 14 Part adjacent to the opening on the back of the sample support 15 Opening of the ring member 15a Opening edge of the ring member R1 Opening diameter of the ring member R2 Opening diameter of the sample support base R3 Ring Outer diameter of member

Claims (7)

開口を有し、平面部をもつ金属試料の前記平面部が表面側に位置するように前記金属試料を載置するための試料支持台と、
該試料支持台の裏面側に、前記開口から露出する前記金属試料の平面部の露出部分の下方位置に、該露出部分と所定の間隔をおいて対向して配置される電極とを有し、
前記金属試料と前記電極との間で、多数回のスパーク放電を不活性ガス雰囲気中で発生させ、スパーク放電ごとの発光を分光して前記金属試料中の元素を定量するための発光分光分析装置であって、
スパーク放電の際に、前記試料支持台の裏面の前記開口に隣接する部分に放電するのを防止する電気絶縁材料からなるリング部材をさらに有し、
該リング部材は、開口の中心線が前記試料支持台の開口の中心線と一致するように配置され、
前記試料支持台の表面上に位置する表面開口の開口径が15mm以下であることを特徴とする発光分光分析装置。
A sample support for placing the metal sample so that the flat part of the metal sample having an opening and a flat part is located on the surface side;
On the back surface side of the sample support base, an electrode is disposed at a position below the exposed portion of the flat portion of the metal sample exposed from the opening and facing the exposed portion at a predetermined interval;
An emission spectroscopic analyzer for quantifying the elements in the metal sample by generating a number of spark discharges in an inert gas atmosphere between the metal sample and the electrode and spectroscopically analyzing the light emission of each spark discharge. Because
A ring member made of an electrically insulating material for preventing discharge to a portion adjacent to the opening on the back surface of the sample support base during spark discharge;
The ring member is arranged such that the center line of the opening coincides with the center line of the opening of the sample support base,
An emission spectroscopic analyzer, wherein an opening diameter of a surface opening located on the surface of the sample support is 15 mm or less.
前記リング部材は、前記試料支持台の裏面側から見て、前記リング部材の少なくとも内径側部分が露出するように配設される請求項1に記載の発光分光分析装置。   2. The emission spectroscopic analysis apparatus according to claim 1, wherein the ring member is disposed so that at least an inner diameter side portion of the ring member is exposed when viewed from a back surface side of the sample support. 前記試料支持台の開口が、前記リング部材を固定載置するために設けた段差凹部に設けられた開口であり、
該開口の開口径が、前記リング部材の開口径よりも大きい請求項1に記載の発光分光分析装置。
The opening of the sample support is an opening provided in a step recess provided for fixedly mounting the ring member,
The emission spectroscopic analysis apparatus according to claim 1, wherein an opening diameter of the opening is larger than an opening diameter of the ring member.
金属試料と電極との間で、多数回のスパーク放電を不活性ガスの雰囲気中で発生させ、スパーク放電ごとの発光を分光して前記金属試料中の元素を定量する発光分光分析装置に用いられる、試料保持ステージであって、
電気絶縁材料からなる開口径15mm以下のリング部材と、
該リング部材を固定載置するための段差凹部を有する試料支持台と、を有し、
該段差凹部には、前記リング部材の開口径よりも大きな開口径を有する開口が設けられていることを特徴とする試料保持ステージ。
Used in an emission spectroscopic analyzer that quantifies the elements in a metal sample by generating a number of spark discharges between the metal sample and an electrode in an inert gas atmosphere and spectrally analyzing the light emission of each spark discharge. A sample holding stage,
A ring member having an opening diameter of 15 mm or less made of an electrically insulating material;
A sample support having a stepped recess for fixing and mounting the ring member,
The sample holding stage, wherein the stepped recess is provided with an opening having an opening diameter larger than the opening diameter of the ring member.
開口を有する試料支持台の表面側に、平面部をもつ金属試料を前記平面部が前記試料支持台の表面側に位置するように載置し、
前記試料支持台の裏面側に、前記開口から露出する前記金属試料の平面部の露出部分の下方位置に、該露出部分と所定の間隔をおいて対向する電極を配置し、
前記金属試料と前記電極との間で、多数回のスパーク放電を不活性ガス雰囲気中で発生させ、スパーク放電ごとの発光を分光して前記金属試料中の元素を定量する発光分光分析方法であって、
スパーク放電の際に、前記試料支持台の裏面の前記開口に隣接する部分に放電するのを防止する電気絶縁材料からなるリング部材を、開口の中心線が前記試料支持台の開口の中心線と一致するように配置し、
前記試料支持台の表面上に位置する表面開口の開口径が15mm以下であることを特徴とする発光分光分析方法。
On the surface side of the sample support base having an opening, a metal sample having a flat part is placed so that the flat part is located on the surface side of the sample support base,
On the back surface side of the sample support base, an electrode facing the exposed portion at a predetermined interval is disposed at a position below the exposed portion of the flat portion of the metal sample exposed from the opening,
An emission spectroscopic analysis method that quantifies elements in the metal sample by generating a number of spark discharges in an inert gas atmosphere between the metal sample and the electrode and spectroscopically analyzing the light emission of each spark discharge. And
During spark discharge, a ring member made of an electrically insulating material for preventing discharge to a portion adjacent to the opening on the back surface of the sample support base is used, and the center line of the opening is the center line of the opening of the sample support base. Arrange to match,
An emission spectroscopic analysis method, wherein an opening diameter of a surface opening located on the surface of the sample support is 15 mm or less.
前記金属試料が、表面に浸炭処理または窒化処理を施した鋼であり、
前記金属試料中の定量分析元素が、炭素または窒素である請求項5に記載の発光分光分析方法。
The metal sample is steel having a carburized or nitrided surface.
The emission spectroscopic analysis method according to claim 5, wherein the quantitative analysis element in the metal sample is carbon or nitrogen.
前記金属試料の表面から20μm以内の深さ方向に元素分析可能なようにスパーク放電の放電時間を設定する請求項6に記載の発光分光分析方法。   The emission spectroscopic analysis method according to claim 6, wherein a discharge time of the spark discharge is set so that elemental analysis can be performed in a depth direction within 20 μm from the surface of the metal sample.
JP2010156174A 2010-07-08 2010-07-08 Emission spectrophotometer, sample holding stage, and emission spectral analysis method Pending JP2012018099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156174A JP2012018099A (en) 2010-07-08 2010-07-08 Emission spectrophotometer, sample holding stage, and emission spectral analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156174A JP2012018099A (en) 2010-07-08 2010-07-08 Emission spectrophotometer, sample holding stage, and emission spectral analysis method

Publications (1)

Publication Number Publication Date
JP2012018099A true JP2012018099A (en) 2012-01-26

Family

ID=45603451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156174A Pending JP2012018099A (en) 2010-07-08 2010-07-08 Emission spectrophotometer, sample holding stage, and emission spectral analysis method

Country Status (1)

Country Link
JP (1) JP2012018099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998299A (en) * 2012-12-16 2013-03-27 重庆望江工业有限公司 Small sample auxiliary device of spark direct-reading spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145949A (en) * 1986-12-09 1988-06-18 Sumitomo Metal Ind Ltd Emission spectral analyzer
JPH10267847A (en) * 1997-03-27 1998-10-09 Kawasaki Steel Corp Method and apparatus for emission spectroscopic analysis
JPH10332587A (en) * 1997-06-02 1998-12-18 Shimadzu Corp Emission spectrophotometer
JP2007178321A (en) * 2005-12-28 2007-07-12 Kobe Steel Ltd Evaluation method of macrosegregation due to emission spectral analysis
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145949A (en) * 1986-12-09 1988-06-18 Sumitomo Metal Ind Ltd Emission spectral analyzer
JPH10267847A (en) * 1997-03-27 1998-10-09 Kawasaki Steel Corp Method and apparatus for emission spectroscopic analysis
JPH10332587A (en) * 1997-06-02 1998-12-18 Shimadzu Corp Emission spectrophotometer
JP2007178321A (en) * 2005-12-28 2007-07-12 Kobe Steel Ltd Evaluation method of macrosegregation due to emission spectral analysis
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998299A (en) * 2012-12-16 2013-03-27 重庆望江工业有限公司 Small sample auxiliary device of spark direct-reading spectrometer

Similar Documents

Publication Publication Date Title
US7430273B2 (en) Instrument having X-ray fluorescence and spark emission spectroscopy analysis capabilities
US7821634B2 (en) Laser-triggered plasma apparatus for atomic emission spectroscopy
JP2010151632A (en) Spectrometer, spectrometry, and spectrometric program
JP2008070225A (en) Element concentration analysis method of electroless nickel plating
JP2012018099A (en) Emission spectrophotometer, sample holding stage, and emission spectral analysis method
Mitra et al. The detection of chemical vapors in air using optical emission spectroscopy of pulsed microdischarges from two-and three-electrode microstructures
JPH1082737A (en) Method for evaluating surface oxidation of soldering material
JP3130834U (en) Optical emission spectrometer
JPH10281995A (en) Method and device for emission spectroscopic analysis
JP5435389B2 (en) Sample container for glow discharge optical emission spectrometry and glow discharge optical emission spectrometer equipped with the same
EP3081921B1 (en) Spectrometer calibration method
JP2015014553A (en) Adjustment sample for glow discharge emission spectral analysis and glow discharge emission spectral analysis method using the same
JP2006126065A (en) Emission spectrometry device
Kreiner Analyzing Metals with Handheld Laser-Induced Breakdown Spectroscopy (LIBS)
JP3603121B2 (en) Glow discharge tube support and glow discharge emission spectrometer using the same
JP2008241336A (en) Trace component analysis method in material by arc emission spectroscopy
JP2012073071A (en) Glow discharge emission spectroscopic analysis device and analysis method
JP2001091465A (en) Glow discharge emission spectral analysis method
JP2001004548A (en) Glow discharge analyzer
JP3034861B2 (en) Glow discharge emission spectrometer
JP2006098260A (en) Glow discharge emission spectrophotometer
JP2006177922A (en) Emission spectral analysis method and analyzing device
Wainner et al. Rapid Field Screening of Soils for Heavy Metals with Spark-Induced Breakdown Spectroscopy (SIBS)
JP2001074660A (en) Glow discharge emission spectrum analyzer
JP3049226B2 (en) Glow discharge emission spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603