JP2007178321A - Evaluation method of macrosegregation due to emission spectral analysis - Google Patents

Evaluation method of macrosegregation due to emission spectral analysis Download PDF

Info

Publication number
JP2007178321A
JP2007178321A JP2005378405A JP2005378405A JP2007178321A JP 2007178321 A JP2007178321 A JP 2007178321A JP 2005378405 A JP2005378405 A JP 2005378405A JP 2005378405 A JP2005378405 A JP 2005378405A JP 2007178321 A JP2007178321 A JP 2007178321A
Authority
JP
Japan
Prior art keywords
analysis
segregation
slab
points
spark discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005378405A
Other languages
Japanese (ja)
Inventor
Masafumi Morishita
雅史 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005378405A priority Critical patent/JP2007178321A/en
Publication of JP2007178321A publication Critical patent/JP2007178321A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method of macrosegregation due to emission spectral analysis capable of rapidly grasping segregation state, while ensuring poor analytical precision by rationalizing the size of an analytic lattice point or the number of analyzing points. <P>SOLUTION: In the evaluation method of macrosegregation, a cast piece sample wherein a cut surface passing through the center part of a cast piece is cut and moved so that an electrode, which generates spark discharge, successively corresponds at least three unidimensional or two-dimensional analyzing lattice points on the cut surface of the cast piece sample. At the respective analytic lattice points, spark discharge, comprising a plurality of pulses accompanying preparatory, is produced through the window part of a mask, to which a window with a diameter 1-5 mm of an inscribed circle is provided and emission spectral analysis using the spark discharge as the light source is performed. Macrosegregation is evaluated quantitatively by quantitatively analyzing the concentrations of a trace amount components in steel at each of the analytic lattice points. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タイヤコードや高炭素クロム軸受鋼などのように、炭素を0.5質量%以上含有する高炭素鋼において発生しやすいマクロ偏析を定量的に且つ迅速に評価するための方法に関するものであり、特に発光分光分析法によって上記マクロ偏析を評価するための有用な方法に関するものである。   The present invention relates to a method for quantitatively and rapidly evaluating macrosegregation that is likely to occur in a high carbon steel containing 0.5% by mass or more of carbon, such as a tire cord and a high carbon chromium bearing steel. In particular, the present invention relates to a useful method for evaluating the macrosegregation by emission spectroscopy.

上記のような高炭素鋼では、凝固時に固体と液体が共存する温度範囲が広いので、鋳片中心部に、C、S、P等の鋼中の微量元素が濃化した中心偏析が発生し易い。こうした中心偏析は、鋳片のデンドライト樹間部で溶質分配により生じた偏析(ミクロ偏析)に比べて、スケールが大きな偏析(マクロ偏析)であり、偏析の直径は鋳片の段階で数〜数十mmに達することがある。   In the high carbon steel as described above, since the temperature range in which solid and liquid coexist during solidification is wide, central segregation in which trace elements in the steel such as C, S, and P are concentrated occurs at the center of the slab. easy. This center segregation is a segregation with a larger scale (macrosegregation) than segregation (microsegregation) caused by solute distribution in the dendritic tree part of the slab, and the diameter of the segregation is several to several at the stage of the slab. It may reach 10 mm.

偏析粒径が大きい場合や、偏析粒内の微量成分濃度が極端に高い場合など、中心偏析の程度が悪いと、品質上重大な問題を引き起こすことがある。例えば、タイヤコード用鋼では、伸線加工中にカッピー断線が生じることがある。また軸受鋼では、後工程での熱処理条件によっては中心偏析部に巨大炭化物が発生して製品の転動疲労寿命が大幅に低下することがある。   If the degree of central segregation is poor, such as when the segregated particle size is large or the concentration of trace components in the segregated particles is extremely high, serious quality problems may be caused. For example, in steel for tire cords, there is a case where a copper wire breakage occurs during wire drawing. Also, in bearing steel, depending on the heat treatment conditions in the subsequent process, giant carbides may be generated at the center segregation part, and the rolling fatigue life of the product may be significantly reduced.

鋳片に中心偏析が生じた場合であっても、この中心偏析は鋳片の鋳造方向に連続して発生するとは限らず、ポツポツと断続的に発生することが多い。鋳片を細長く圧延した後の製品サンプルの検査では、中心偏析が発生している鋳片から製造された製品でも、サンプルの採取位置によっては偏析が検出されないことがあり、よほど多数のサンプルを採取して代表性を確保しないことには、中心偏析が発生している材料を見逃して、中心偏析に厳格な用途向けに出荷してしまう危険性がある。   Even when center segregation occurs in the slab, this center segregation does not always occur continuously in the casting direction of the slab, and often occurs intermittently. In the inspection of product samples after rolling the slabs into thin strips, segregation may not be detected depending on the sample collection position even for products manufactured from slabs that have center segregation. If the representativeness is not ensured, there is a risk that the material in which the center segregation occurs is overlooked, and the material is shipped for a use that is strict in the center segregation.

しかしながら、圧延前の鋳片段階においては、鋳造方向に比較的短い(数百mm程度)の鋳片サンプルを調査するだけで、中心偏析の程度を評価することが可能である。   However, in the slab stage before rolling, it is possible to evaluate the degree of center segregation only by investigating a slab sample that is relatively short (about several hundred mm) in the casting direction.

このため、中心偏析に厳格な高炭素鋼を製造するに際して、中心偏析の程度の悪い鋼材を確実に検出して出荷しないようにするために、鋳片毎に鋳片サンプルを採取し、(1)マクロプリント法、(2)ドリル分析法、(3)EPMA法(電子線プローブX線マイクロアナライザー)等の方法によって、鋳片の中心偏析を評価し、選別作業を実施しているのが実情である。   For this reason, when manufacturing high carbon steel with strict center segregation, a slab sample is collected for each slab in order to reliably detect a steel material with a poor degree of center segregation and prevent shipment. The actual situation is that the center segregation of slabs is evaluated and selected by methods such as macroprinting, (2) drill analysis, and (3) EPMA (electron probe X-ray microanalyzer). It is.

しかしながら、これらの方法では、以下に示すように、いずれも中心偏析を迅速且つ定量的に評価することが難しく、本来後工程である程度修復できるはずであった偏析を修復できなかったり、また設備や操業の異常を発見するまでに時間を要し、その間に異常のあるまま鋳造を続けることによって、多量の不良損失を発生してしまうことがあるという問題があった。   However, in these methods, as shown below, it is difficult to evaluate the center segregation quickly and quantitatively, and the segregation that should have been able to be repaired to some extent in the subsequent process cannot be repaired. There was a problem that a long time was required until the abnormality of the operation was discovered, and a large amount of defect loss might be generated by continuing the casting with the abnormality in the meantime.

[マクロプリント法]
この方法では、鋳片の切断面を研磨して、偏析部が優先的に腐食されるピクリン酸等の腐食液により腐食させ、腐食部にインク等を染み込ませた後、一旦表面のインクを拭き取り、腐食部に残ったインクをセロハン紙に写し取る等の方法により、偏析の発生状況を可視化する方法である。このマクロプリント法では、鋳片サンプル全体の偏析を把握できる点では有効な方法であるが、得られるプリントの濃度が腐食や研磨の状況に左右され、偏析の定量化が困難であるという問題がある。また、鋳片の切断や研磨に時間がかかることに加えて、鋳片の腐食にも時間がかかるので、迅速性に欠けるという問題もある。
[Macro print method]
In this method, the cut surface of the slab is polished, and the segregated part is corroded with a corrosive liquid such as picric acid, which is preferentially corroded. In this method, the state of occurrence of segregation is visualized by a method such as copying the ink remaining in the corroded portion onto cellophane paper. This macro print method is effective in that it can grasp the segregation of the entire slab sample, but the concentration of the resulting print depends on the state of corrosion and polishing, and it is difficult to quantify the segregation. is there. Further, in addition to the time taken for cutting and polishing the slab, it also takes time for the slab to be corroded.

[ドリル分析法]
この方法は、鋳片の縦断面からマクロプリントを採取して中心偏析領域を特定し、この中心偏析領域上の多数の分析点から、直径5mm程度のドリルによって切粉サンプルを採取し、各分析点の切粉サンプル中の微量元素濃度を、燃焼−赤外線吸収法や、ICP(誘導結合プラズマ)発光分析法により分析することにより、偏析度を定量的に評価する方法である。この方法は、偏析度を定量的に評価できるという利点を有するが、切粉採取位置を決定するために、事前に酸による腐食やマイクロプリントによって中心偏析の位置を特定した後、切粉を採取してから分析を行なうので、評価結果が出るまでにマクロプリント法よりも更に長時間を要することになる。
[Drill analysis method]
In this method, a macro print is taken from a longitudinal section of a slab, a center segregation region is specified, a chip sample is taken from a large number of analysis points on the center segregation region by a drill having a diameter of about 5 mm, and each analysis is performed. This is a method for quantitatively evaluating the degree of segregation by analyzing the trace element concentration in a chip sample of a spot by a combustion-infrared absorption method or an ICP (inductively coupled plasma) emission analysis method. This method has the advantage that the degree of segregation can be quantitatively evaluated. However, in order to determine the chip collection position, the position of the center segregation is specified in advance by acid corrosion or microprinting, and then the chip is collected. Since the analysis is performed after that, it takes a longer time than the macro print method until an evaluation result is obtained.

またこのドリル分析法では、サンプルの深さ方向にも長さを持つ円柱状領域の平均濃度を測定するので、後述するEPMA法や、切断面のマッピング法に比べると、分析結果が薄まって、小さな偏析粒に対する分析感度が低いものとなる。こうした不都合を回避するために、ドリル径を小さくして、または切削深さを浅くして感度を高めようとすると、1つの分析点から採取できる切粉量が不足して分析精度が低下するという問題が生じる。また1つの分析点の領域を小さくすると、分析点数を増やす必要があるが、分析点数を増やすとサンプル全体の評価に要する分析所要時間が長くなるという問題もあり、限界がある。   Moreover, in this drill analysis method, since the average concentration of the cylindrical region having a length also in the depth direction of the sample is measured, compared with the EPMA method to be described later and the mapping method of the cut surface, the analysis result is thinned. The analytical sensitivity for small segregated grains is low. In order to avoid such inconvenience, if the drill diameter is reduced or the cutting depth is reduced to increase the sensitivity, the amount of chips that can be collected from one analysis point is insufficient and the analysis accuracy is reduced. Problems arise. If the area of one analysis point is reduced, it is necessary to increase the number of analysis points. However, if the number of analysis points is increased, there is a problem that the time required for analysis for the evaluation of the entire sample becomes long, and there is a limit.

[EPMA法]
この方法は、電子線プローブX線マイクロアナライザーによるマッピング分析を利用するものである。この方法では、鋳片サンプル全面を検査すれば、偏析のマクロ観を把握できると共に、結果も数値化できる利点がある。しかしながら、EPMA法で用いるビーム径は中心偏析のようなマクロ偏析の偏析粒径に比べて、極めて小さいので、マクロ偏析を評価するには、極めて多数の分析点について分析を行なわざるを得ず、例えば鋳片サンプル断面が50mm×250mmというように広い面積を分析するには、20時間以上の長い分析時間を要することになってしまう。また分析時間を短縮するために、検査面積を小さくすると、検査結果に対する代表性が低下し、大きな偏析粒を見逃してしまうという問題がある。
[EPMA method]
This method uses mapping analysis by an electron beam probe X-ray microanalyzer. In this method, if the entire surface of the slab sample is inspected, there is an advantage that the macro view of segregation can be grasped and the result can be quantified. However, since the beam diameter used in the EPMA method is extremely small compared to the segregation particle size of macro segregation such as center segregation, in order to evaluate macro segregation, analysis must be performed on an extremely large number of analysis points. For example, in order to analyze a wide area such as a slab sample cross section of 50 mm × 250 mm, a long analysis time of 20 hours or more is required. Further, if the inspection area is reduced in order to shorten the analysis time, there is a problem that the representativeness with respect to the inspection result is reduced and large segregated grains are missed.

上記したような各種従来技術に対して、最近では、OPA法(Original position statistic distribution analysis)という分析方法が開発され、鋳片のマクロ偏析の評価に適用した事例が報告されている(例えば非特許文献1)。この方法の詳細については、あまり明らかにされている訳ではないが、ポリクロメータと、サンプル移動ステージを備えた分析装置であり、分析時間が短いことが特徴である発光分光分析法を応用して、偏析や介在物の分布を評価することを目的としたマッピング分析技術である。   Recently, an analysis method called OPA (Original position statistic distribution analysis) has been developed for various conventional technologies as described above, and examples applied to the evaluation of macro segregation of slabs have been reported (for example, non-patents). Reference 1). Although the details of this method have not been clarified so much, it is an analytical apparatus equipped with a polychromator and a sample moving stage, and is applied by emission spectroscopy which is characterized by a short analysis time. This is a mapping analysis technique aimed at evaluating the segregation and the distribution of inclusions.

通常の発光分光分析法では、十分な分析精度を得るために、発光分析の光源として、予備放電を実施した後、数100回以上の多数の放電を利用しているのに対して、OPA法では分析の迅速性を確保するために、予備放電無しの単パルス放電を利用している。こうした手法で偏析を精度良く評価できるのであれば、OPA法はマクロ偏析を迅速且つ定量的に評価できる有用な方法として期待できる。
The third international conference on continuous casting of steel in developing countries,IRON & STEEL SUPPLEMENT 2004 Vol.39,p.310
In ordinary emission spectroscopic analysis, in order to obtain sufficient analysis accuracy, a large number of discharges of several hundred times or more are used after a preliminary discharge as a light source for emission analysis, whereas the OPA method is used. So, in order to ensure the speed of analysis, single pulse discharge without preliminary discharge is used. If segregation can be accurately evaluated by such a method, the OPA method can be expected as a useful method capable of evaluating macrosegregation quickly and quantitatively.
The third international conference on continuous casting of steel in developing countries, IRON & STEEL SUPPLEMENT 2004 Vol.39, p.310

しかしながら、上述のようなOPA法では、同じ鋳片サンプルを用いても、測定する元素の種類によって偏析の分布状況が異なる結果となるという報告がなされている。これに対して、上記ドリル分析法では、C濃化が高い分析点ではSの偏析度も高くなるというように、偏析の分布状況は測定する元素の種類にあまり依存しない結果が得られている。即ち、OPA法による偏析評価結果は、ドリル分析法による偏析評価結果と異なるものとなっている。   However, in the OPA method as described above, it has been reported that even if the same slab sample is used, the distribution of segregation varies depending on the type of element to be measured. On the other hand, in the above-described drill analysis method, the segregation distribution state is less dependent on the type of element to be measured, such that the segregation degree of S is high at analysis points with high C concentration. . That is, the segregation evaluation result by the OPA method is different from the segregation evaluation result by the drill analysis method.

こうした状況が生じるのは、OPA法においては、分析の迅速性を極端に重視したために、発光分析の光源として、予備放電なしの単パルスの放電を利用しており、分析精度を十分に確保できていないことに基づくものと考えられる。換言すれば、発光分光分析の原理を用いて、サンプル中の複数点における成分分析を実施することによって中心偏析を迅速に評価できる可能性はあるものの、OPA法では、分析精度の点で問題がある。即ち、上記したOPA法では、分析の迅速性を重視するあまり、分析精度が若干低下してしまうという問題があった。   This situation arises because the OPA method emphasizes the rapidity of analysis, and as a light source for emission analysis, single pulse discharge without preliminary discharge is used, and sufficient analysis accuracy can be secured. It is thought that it is based on not. In other words, although there is a possibility that central segregation can be quickly evaluated by performing component analysis at a plurality of points in a sample using the principle of emission spectroscopy, the OPA method has a problem in terms of analysis accuracy. is there. That is, the above-described OPA method has a problem that the analysis accuracy is slightly lowered because importance is attached to the quickness of the analysis.

ところで、タイヤコード用鋼における伸線加工中の断線は、主に鋳片段階で直径:5〜15mm程度の偏析粒に起因して発生している。しかしながら、近年では、伸線加工中のパテンティング工程を省略し、1回の熱処理当りの加工度を大きくするダイレクトドローイングが指向されてきた結果、従来では問題にされなかった小さな偏析も断線に有害であると判断されるケースが増加してきている。例えば、断線が発生した部位の鋼材直径と偏析粒径に基づいて、断面サイズが380mm×600mmの鋳片段階に逆算した偏析粒直径が3mm程度の小さな偏析粒に起因する断線が発生する場合が生じており、このような小さな偏析粒を確実に検出することが必要になっている。   By the way, the disconnection during the wire drawing process in the steel for tire cords occurs mainly due to segregated grains having a diameter of about 5 to 15 mm at the slab stage. In recent years, however, the patenting process during wire drawing has been omitted, and direct drawing has been directed to increase the degree of processing per heat treatment. The number of cases judged to be increasing is increasing. For example, based on the steel material diameter and the segregated particle size of the portion where the disconnection occurred, a disconnection may occur due to a small segregated particle having a segregated particle diameter of about 3 mm, which was calculated backward in the slab stage having a cross-sectional size of 380 mm × 600 mm. It is necessary to reliably detect such small segregated grains.

一般的に、分析格子点のサイズを小さくして分析点数を多くすればするほど、偏析が確実に把握できるのであるが、その一方で、各分析格子点の分析精度を確保しつつ分析格子点を多くすると、全体の分析所要時間が長くなって迅速性を確保できないという問題が生じることになる。   In general, the smaller the size of analysis grid points and the greater the number of analysis points, the more segregation can be grasped. On the other hand, while maintaining the analysis accuracy of each analysis grid point, If the number is increased, the time required for the entire analysis becomes longer, and there is a problem that the speed cannot be ensured.

こうした観点から、これまで提案されている技術を検討すると、分析精度を確保しつつ、迅速に偏析を評価する技術としてみた場合に、そのいずれの要求特性を満足する技術としては不十分であり、こうした技術の確立が望まれているのが実情である。   From this point of view, considering the technologies that have been proposed so far, it is insufficient as a technology that satisfies any of the required characteristics when viewed as a technology that quickly evaluates segregation while ensuring analysis accuracy. In fact, the establishment of such technology is desired.

本発明は、上記の様な従来における技術的課題を解決するためになされたものであって、その目的は、分析格子点の大きさや、分析点数の適正化を図ることによって、良好な分析精度を確保しつつ迅速に偏析状況を把握することのできる発光分光分析によるマクロ偏析評価方法を提供することにある。   The present invention has been made to solve the above-described technical problems in the related art, and its purpose is to achieve good analysis accuracy by optimizing the size of analysis grid points and the number of analysis points. It is an object to provide a macro-segregation evaluation method by emission spectroscopic analysis which can quickly grasp the segregation state while ensuring the above.

上記目的を達成することのできた本発明のマクロ偏析評価方法とは、切断面が鋳片中心部を通る鋳片サンプルを切り出し、スパーク放電を発生する電極が、この鋳片サンプル切断面上の一次元的若しくは二次元的な3点以上の分析格子点に順次対応するように鋳片サンプルを移動させ、各分析格子点において、内接円の直径が1〜5mmの窓の空いたマスクの窓部分を通して、予備放電を伴う多数回のパルスからなるスパーク放電を生じさせ、このスパーク放電を光源とする発光分光分析を行ない、各分析格子点における鋼中微量成分濃度を定量分析することによって、マクロ偏析を定量的に評価する点に要旨を有するものである。   The macro-segregation evaluation method of the present invention that has achieved the above object is to cut a slab sample whose cut surface passes through the center of the slab, and an electrode that generates spark discharge is the primary on the slab sample cut surface. The slab sample is moved so as to sequentially correspond to three or more analysis grid points in the original or two-dimensional, and the window of the mask with the inscribed circle diameter of 1 to 5 mm at each analysis grid point Through this part, a spark discharge consisting of a number of pulses accompanied by a preliminary discharge was generated, an emission spectroscopic analysis was performed using this spark discharge as a light source, and the concentration of trace components in steel at each analysis lattice point was quantitatively analyzed. The point is that the segregation is evaluated quantitatively.

上記本発明方法において、上記発光分光分析に先立って、各分光格子点におけるマスクの窓部分が前記よりも大きい状態で予備的な発光分光分析を実施し、この分析結果での偏析度が予め定めた閾値を超えた領域に限り、上記本発明による発光分光分析を実施するようにすれば、分析所要時間をより短くして迅速な分析を行なう上で有効である。   In the method of the present invention, prior to the emission spectroscopic analysis, preliminary emission spectroscopic analysis is performed in a state where the window portion of the mask at each spectral lattice point is larger than the above, and the segregation degree in the analysis result is determined in advance. If the emission spectroscopic analysis according to the present invention is carried out only in the region exceeding the threshold value, it is effective in shortening the time required for analysis and performing quick analysis.

本発明方法では、発光分光分析における分析格子点の大きさ、分析点数を適正化することによって、良好な分析精度を確保しつつ迅速に偏析状況を把握することのできる評価方法が確立でき、こうした方法は鋼材の偏析度を評価する方法として極めて有用である。   In the method of the present invention, by optimizing the size of the analysis lattice points and the number of analysis points in the emission spectroscopic analysis, an evaluation method capable of quickly grasping the segregation status while ensuring good analysis accuracy can be established. This method is extremely useful as a method for evaluating the segregation degree of steel materials.

本発明者は、上記した発光分光分析法における原理を利用し、その分析格子点の大きさや分析点数の適正化を測るという観点から更に検討を加えた。その結果、上記のような手順に従って偏析を評価すれば、上記目的が見事に達成されることを見出し、本発明を完成した。   The present inventor has further studied from the viewpoint of measuring the size of the analysis lattice points and the optimization of the number of analysis points by using the principle in the emission spectroscopic analysis method described above. As a result, when the segregation was evaluated according to the procedure as described above, it was found that the above object was achieved brilliantly, and the present invention was completed.

以下、本発明の構成および作用効果を、図面に基づいて更に詳細に説明する。図1は、本発明方法を実施するための装置の構成例を示した説明図であり、図中1は偏析度が評価される鋳片サンプル、2はマスク用耐火物、3はスパーク放電発生用電極、4は分光計(ポリクロメータ)、5はアンプとA/D(アナログ/デジタル)コンバータ、6はコンピュータ、7は産業用ロボットを夫々示す。   Hereinafter, the configuration and operational effects of the present invention will be described in more detail based on the drawings. FIG. 1 is an explanatory view showing a configuration example of an apparatus for carrying out the method of the present invention, in which 1 is a slab sample whose segregation degree is evaluated, 2 is a refractory for a mask, and 3 is a spark discharge. Electrodes for use, 4 for a spectrometer (polychromator), 5 for an amplifier and an A / D (analog / digital) converter, 6 for a computer, and 7 for an industrial robot.

こうした装置において、鋳片サンプル1は切断面が中心部(偏析が存在することが予想される部分)を通るように切り出され、産業用ロボット7によって一次元的または二次元的に移動(以下、「移動ステージ」と呼ぶ)できるように構成されている。この鋳片サンプル1は、その切断面の分析格子点(偏析が分析される領域)がスパーク放電発生用電極3に対抗するようにされ、分析格子点の分析が行なえるように構成されている。マスク用耐火物2には、大きさが調整できる窓(図示せず)が設けられており、この窓を通して予備放電を伴う複数回のパルスからなるスパーク放電を生じさせるようになっている。そして、鋳片サンプルの分析格子において、スパーク放電を光源とする発光分光分析が分光計4によって実施され、その結果がアンプとA/Dコンバータを介してコンピュータ6に入力される。この入力されたデータと、産業用ロボット7による移動情報に基づいて、各分析格子点における発光分光分析データが処理されることになる。   In such an apparatus, the slab sample 1 is cut so that the cut surface passes through the central portion (the portion where segregation is expected to exist), and is moved one-dimensionally or two-dimensionally (hereinafter referred to as the following) by the industrial robot 7. It is configured so that it can be called “moving stage”. This slab sample 1 is configured such that the analysis lattice point (region where segregation is analyzed) of the cut surface opposes the spark discharge generating electrode 3 and the analysis lattice point can be analyzed. . The mask refractory 2 is provided with a window (not shown) whose size can be adjusted, through which spark discharge composed of a plurality of pulses accompanied by preliminary discharge is generated. Then, in the analysis grid of the slab sample, emission spectroscopic analysis using spark discharge as a light source is performed by the spectrometer 4, and the result is input to the computer 6 via the amplifier and the A / D converter. Based on the input data and movement information by the industrial robot 7, emission spectroscopic analysis data at each analysis grid point is processed.

上記の装置を用いて、本発明を実施するに当っては、鋳片サンプル上の分析格子点の大きさを適切に制御する必要があるが、その分析格子点の大きさについては、スパークによって形成させるスポットについて、それが内接する矩形状格子点領域における短辺の長さで示した。例えば、分析格子点の領域の形状が正方形の場合には、内接円の直径は正方形の1辺の長さと一致することになる。   In carrying out the present invention using the above-mentioned apparatus, it is necessary to appropriately control the size of the analysis grid point on the slab sample. The size of the analysis grid point is determined by spark. About the spot to form, it showed by the length of the short side in the rectangular lattice point area | region which it inscribes. For example, when the shape of the area of the analysis grid point is a square, the diameter of the inscribed circle coincides with the length of one side of the square.

本発明者は、上記のような装置を用いて分析格子点の大きさが分析感度に及ぼす影響について検討した。そしてまず、分析格子点内接円直径を変化させ、偏析粒径がφ5mmまたはφ3mmの偏析について、分析感度を調査した。その結果を図2に示す。分析感度は、円形の偏析粒と正方形状の分析格子点の中心が一致した場合に、格子点サイズが十分小さく(例えば1mm以下)偏析粒の偏析度を正しく評価できているときの分析感度を1として、どれだけの相対出力が得られるかを示す相対的な分析感度で示した。   The inventor examined the influence of the size of the analysis grid point on the analysis sensitivity using the apparatus as described above. First, the analysis sensitivity was investigated for segregation with a segregation particle diameter of φ5 mm or φ3 mm by changing the inscribed circle diameter of the analysis lattice point. The result is shown in FIG. The analysis sensitivity is the analysis sensitivity when the segregation degree of the segregated grains can be correctly evaluated when the size of the grid points is sufficiently small (for example, 1 mm or less) when the center of the circular segregated grains and the square analysis lattice points coincide. As 1, the relative analytical sensitivity indicating how much relative output can be obtained is shown.

偏析粒が無い部位であっても、ミクロ偏析に起因して濃度のばらつきは存在するので、偏析粒を確実に検出するためには、この相対的な分析感度を0.3以上確保する必要がある。通常有害とされるφ5mmの偏析粒に対しては、分析格子点の内接円直径を5mm以下に制御すれば、80%以上の感度を確保することができ、確実に偏析粒を検出できることが分かる。またダイレクトローリングで伸線されるタイヤコード用鋼等で有害とされる直径3mmの微小偏析粒に対しても、分析格子点の内接円直径を5mm以下とすれば、相対的な分析感度で0.3以上を確保でき、微小偏析粒を確実に検出できることになる。但し、今後のタイヤコード用鋼の更なる高強度化や、より一層のダイレクトローリング化に対応するためには、より小さな偏析粒を検出する必要があるので、こうした事態に対応するためには、分析格子点内接円直径を3mm以下に制御することが好ましい。   Even if there are no segregated grains, there is a variation in concentration due to microsegregation. Therefore, in order to detect segregated grains with certainty, it is necessary to secure this relative analytical sensitivity of 0.3 or more. is there. For segregated grains of φ5 mm, which are normally considered harmful, if the inscribed circle diameter of the analysis lattice point is controlled to 5 mm or less, a sensitivity of 80% or more can be secured and segregated grains can be reliably detected. I understand. In addition, even for minute segregated grains with a diameter of 3 mm, which are considered harmful in steel for steel cords drawn by direct rolling, if the inscribed circle diameter of the analysis lattice point is 5 mm or less, the relative analytical sensitivity can be increased. 0.3 or more can be secured, and minute segregated grains can be reliably detected. However, since it is necessary to detect smaller segregated grains in order to cope with further strengthening of steel for tire cords in the future and further direct rolling, in order to cope with such a situation, It is preferable to control the inscribed circle diameter of the analysis grid point to 3 mm or less.

一方、本発明者は、鋳片サンプルの50mm×250mmの領域をくまなく分析するために必要な分析点数と分析格子点内接円直径の関係についても調査した。その結果を図3に示す。1つの分析格子点当りの精度を維持すると、分析所要時間は分析点数にほぼ比例することになるが、分析格子点の内接円直径を1mm未満にすると、必要な分析格子点は急激に増加し、各分析格子点の分析精度を維持しつつ迅速分析を実現することが困難になる。   On the other hand, the inventor also investigated the relationship between the number of analysis points necessary for analyzing the entire 50 mm × 250 mm region of the slab sample and the inscribed circle diameter of the analysis grid point. The result is shown in FIG. If the accuracy per analysis grid point is maintained, the time required for analysis will be approximately proportional to the number of analysis points. However, if the inscribed circle diameter of the analysis grid point is less than 1 mm, the required analysis grid points increase rapidly. In addition, it is difficult to realize rapid analysis while maintaining the analysis accuracy of each analysis grid point.

これらの結果から明らかなように、できるだけ少ない分析点数で効率良く確実に偏析粒を検出するためには、分析格子点のサイズを有害となる最小の偏析粒のサイズにほぼ一致させることが有効であり、分析精度と迅速性を両立させるためには、分析格子点の内接円直径を、1〜5mmとする必要がある。   As is clear from these results, in order to detect segregated grains efficiently and reliably with as few analysis points as possible, it is effective to make the size of the analysis lattice points substantially coincide with the size of the smallest segregated grains that are harmful. In order to achieve both analysis accuracy and rapidity, it is necessary to set the inscribed circle diameter of the analysis grid point to 1 to 5 mm.

また、上記のような発光分光分析を行うに先立って、各分析格子点におけるマスクの窓部分の大きさが前記よりも大きい状態(後に分析するいときの内接円直径よりも大きい状態)で予備的な発光分光分析を実施し、この分析結果での偏析度が予め定めた閾値を超えた領域に限り(例えば、偏析度が1.1以上となった領域)、更に上記のような発光分光分析を実施することも有用であり、これによって分析所要時間をより短くして迅速な分析を行なうことができる(後記実施例3参照)。   In addition, prior to performing the emission spectroscopic analysis as described above, the size of the window portion of the mask at each analysis lattice point is larger than the above (a state larger than the diameter of the inscribed circle when analyzing later). Preliminary emission spectroscopic analysis is performed, and only in a region where the degree of segregation in the analysis result exceeds a predetermined threshold (for example, a region where the degree of segregation is 1.1 or more), the light emission as described above It is also useful to perform a spectroscopic analysis, which can shorten the time required for analysis and perform a quick analysis (see Example 3 below).

本発明方法と従来技術について、その条件を変えたときの特性(分析の定量性、各分析格子点の分析値代表性、分析の迅速性、直径:3〜5mmの偏析粒の検出の可否)を比較して下記表1に示した。尚、特性の評価基準は下記の通りである。また下記表1には本発明で規定する要件を外れる場合も、同時に示した。   Characteristics of the method of the present invention and the prior art when the conditions are changed (quantitative analysis, analysis value representative of each analysis grid point, rapid analysis, whether or not segregated particles having a diameter of 3 to 5 mm can be detected) Are shown in Table 1 below. The evaluation criteria for characteristics are as follows. Table 1 below also shows the cases where the requirements defined in the present invention are not satisfied.

[分析の定量性]
○:偏析度を表す数値が得られる。
×:単なる模様が得られるだけであり、定量的な数値データが得られない。
[Quantitative analysis]
○: A numerical value indicating the degree of segregation is obtained.
X: Only a pattern is obtained and quantitative numerical data cannot be obtained.

[各分析格子点の分析値代表性]
○:各分析格子点の分析結果が分析格子点全体の平均的な値を示し、各分析格子点の偏析度を代表する。
×:各分析格子点の分析結果は、分析格子内で、たまたまスパークが飛んだ点の分析結果であり、鋼中の介在物にお当たれば、異常値を示すなどして、各分析格子の偏析度を代表しない(OPA法の場合には、1パルスのみ)。
[Analysis value representativeness of each analysis grid point]
○: The analysis result of each analysis grid point shows an average value of the whole analysis grid point, and represents the segregation degree of each analysis grid point.
×: The analysis result of each analysis grid point is the analysis result of the point where a spark happens to occur in the analysis grid, and if it hits an inclusion in the steel, an abnormal value is shown. It does not represent the degree of segregation (only one pulse in the case of OPA method).

[分析の迅速性]
○:1枚の鋳片サンプル(50mm×250mm)の分析所要時間が20時間以内
×:1枚の鋳片サンプル(50mm×250mm)の分析所要時間が20時間を超える
[Rapid analysis]
○: Analysis time for one slab sample (50 mm x 250 mm) is within 20 hours x: Analysis time for one slab sample (50 mm x 250 mm) exceeds 20 hours

軸受鋼の材なかで特に偏析に厳格な材料は、鋳造後、約20時間をかけて均熱拡散処理をしている。均熱拡散処理が終了するまでにその鋳片の偏析度が異常であることが判明すれば、均熱拡散処理時間を延長して救済できる可能性がある。しかしながら、均熱拡散処理終了後に異常が判明した鋼材では、各落ちさせるか、廃却せざるを得なくなる。また前回の均熱拡散処理が終了し、均熱炉を開くと、次の軸受鋼の鋳造が開始されることになる。この鋳造開始までに、前回の鋳造が異常であったことが判明すれば、設備の異常を修正することによって、次の鋳造で再び異常を発生させることが防止できる。こうしたことから、分析所要時間の基準は20時間となる。   Among the materials of bearing steel, a material that is particularly strict in segregation is subjected to a soaking diffusion treatment over about 20 hours after casting. If it is found that the segregation degree of the slab is abnormal before the soaking diffusion treatment is completed, there is a possibility that the soaking diffusion treatment time can be extended and relieved. However, steel materials that have been found to be abnormal after the soaking and diffusion treatment must be dropped or discarded. When the previous soaking diffusion process is completed and the soaking furnace is opened, casting of the next bearing steel is started. If it becomes clear that the previous casting was abnormal before the start of casting, it is possible to prevent the abnormality from occurring again in the next casting by correcting the abnormality of the equipment. For this reason, the reference time for analysis is 20 hours.

[直径:3〜5mmの偏析粒の検出の可否]
○:直径:3〜5mmの偏析粒を確実に検出できる分析感度を有する。
×:直径:3〜5mmの偏析粒を見逃す場合がある。
[Possibility of detecting segregated grains having a diameter of 3 to 5 mm]
○: It has an analytical sensitivity capable of reliably detecting segregated grains having a diameter of 3 to 5 mm.
×: Segregated grains having a diameter of 3 to 5 mm may be missed.

Figure 2007178321
Figure 2007178321

以下、本発明の効果を実施例によって更に具体的に示すが、下記実施例は本発明を限定するものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the effects of the present invention will be described more specifically by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.

[実施例1]
炭素含有量が0.8質量%の炭素鋼造塊材の横断面サンプルを採取し、鋳片中心を通る直線に沿って、多数点のC濃度を定量化できるように鋳片サンプルを移動ステージに設置し、スパーク放電を光源とする発光分析を実施した。このとき分析点数を1〜7個に変えて分析を行なった。また用いた造塊材は、中心偏析対策を行なっていないものであり、中心偏析の程度が悪いものである。
[Example 1]
A sample of a cross section of a carbon steel ingot with a carbon content of 0.8% by mass is collected, and the slab sample is moved along a straight line passing through the center of the slab so that the C concentration at multiple points can be quantified. And an emission analysis using a spark discharge as a light source. At this time, the number of analysis points was changed to 1 to 7, and the analysis was performed. In addition, the used agglomerated material is not subjected to center segregation countermeasures, and the degree of center segregation is poor.

分析点数が1個または2個のときの偏析度分析結果を図4、5(鋳片中心からの距離と偏析度[Cmax/C0]の関係)に夫々示す。また分析点数が3または7のときの析度分析結果を図6、7(鋳片中心からの距離と偏析度[Cmax/C0]の関係)に夫々示す。尚、上記偏析度は、炭素濃度の中で、最大の濃度Cmaxと、その鋳片を鋳造する際にタンディッシュ内で採取した溶鋼サンプルの炭素濃度C0との比を表したものである。これらの結果から次のように考察できる。   The segregation degree analysis results when the number of analysis points is 1 or 2 are shown in FIGS. 4 and 5 (relationship between the distance from the center of the slab and the segregation degree [Cmax / C0]), respectively. Further, the results of the analysis of the degree of analysis when the number of analysis points is 3 or 7 are shown in FIGS. 6 and 7 (relationship between the distance from the center of the slab and the degree of segregation [Cmax / C0]), respectively. The degree of segregation represents the ratio between the maximum concentration Cmax in the carbon concentration and the carbon concentration C0 of the molten steel sample collected in the tundish when casting the slab. These results can be considered as follows.

分析点数が1や2の場合でも(図4、5)、偏析度が高いことは判定できるのであるが、これらの場合には偏析度の分布を把握することはできず、偏析度の最大値を把握できないので、最大偏析度に関する測定結果の代表性が十分とは言えない。   Even when the number of analysis points is 1 or 2 (FIGS. 4 and 5), it can be determined that the degree of segregation is high, but in these cases, the distribution of the degree of segregation cannot be grasped, and the maximum value of the degree of segregation. Therefore, the representativeness of the measurement result regarding the maximum segregation degree is not sufficient.

これに対して、分析点数が3点の場合(図6)や7点の場合(図7)では、偏析度の分布から偏析疎の最大値(ピーク値)を把握することができ、中心偏析に関して代表性のある評価が可能となっていることが分かる。これらのことから、連続鋳造によって中心偏析が改善された鋳片の中心偏析を評価するためには、より多数の点について分析を実施することが望ましいのであるが、本発明では少なくとも3点以上であればその精度を確保することができる。   In contrast, when the number of analysis points is 3 (FIG. 6) or 7 (FIG. 7), the maximum value (peak value) of segregation sparseness can be grasped from the segregation degree distribution, and the center segregation. It can be seen that a representative evaluation is possible. From these facts, in order to evaluate the center segregation of a slab whose center segregation has been improved by continuous casting, it is desirable to conduct analysis on a larger number of points. If so, the accuracy can be ensured.

[実施例2]
炭素含有量が0.82質量%で、ダイレクトドローイングされるタイヤコード用鋼について、鋳片から中心軸を含む縦断面サンプルを採取し、マクロプリント法によって中心偏析の位置を特定した後、腐食面を再研磨して、特定した中心偏析線に沿って分析するように、鋳片サンプルを移動ステージに設置し、スパーク放電を光源とする発光分析法によるライン分析を実施した。このときスパーク用電源には、1秒間に約400回放電する高速発光励起電源を用い、分光分析にはポリクロメータを用いた。電極は鋳片サンプル縦断面から約4mm離れた状態となるようにして、固定されたスパーク放電電極に対し、鋳片サンプルを1方向に順次移動させて分析を行なった。
[Example 2]
For tire cord steel that has a carbon content of 0.82% by mass and is drawn directly, a longitudinal section sample including the central axis is collected from the slab, and the position of central segregation is determined by the macro print method. The slab sample was placed on a moving stage so that the sample was repolished and analyzed along the specified center segregation line, and line analysis was performed by an emission analysis method using a spark discharge as a light source. At this time, a high-speed light emission excitation power source that discharges about 400 times per second was used as a spark power source, and a polychromator was used for spectroscopic analysis. The analysis was performed by sequentially moving the slab sample in one direction with respect to the fixed spark discharge electrode so that the electrode was about 4 mm away from the longitudinal section of the slab sample.

また正方形状の窓が開いた耐火物マスクを用い、各分析格子点について、スパークが鋳片断面の3mm×3mmの正方形状領域にのみに飛翔するようにした。各分析格子点で、個別のスパークに対応する信号をコンピュータに取り込んで積分し、その分析格子点の微量元素濃度を算出した。スパークの飛翔の際には、ときにはスパークが耐火物マスクに飛ぶ場合もあるが、耐火物マスクに当ったスパークについての発光分析結果を用いると、分析誤差を生じることになるので、各スパークに対応する分析結果に基づいて、そのスパークが鋳片サンプルに当ったか耐火マスクに当ったかを自動判定し、鋳片サンプルに当ったスパークについてのみ、分析結果を積分するようにした。測定は、4mmピッチで50の分析格子点について実施し、長さ約200mmの領域の偏析を評価した。   Further, a refractory mask having a square window opened was used so that, for each analysis lattice point, the sparks jumped only to a 3 mm × 3 mm square region of the slab cross section. At each analysis grid point, signals corresponding to individual sparks were taken into a computer and integrated, and the trace element concentration at that analysis grid point was calculated. When flying a spark, sometimes the spark will fly to the refractory mask, but if you use the emission analysis results for the spark that hit the refractory mask, an analysis error will occur, so you can handle each spark. On the basis of the analysis result, it was automatically determined whether the spark hit the slab sample or the fire mask, and the analysis result was integrated only for the spark hit the slab sample. The measurement was carried out for 50 analysis grid points at a pitch of 4 mm, and the segregation of a region having a length of about 200 mm was evaluated.

各分析格子点では、移動、Ar置換、予備放電、積分に約10秒をかけ、サンプルをセットしてから約9分で分析点数50点のライン分析を完了した。得られた50点の炭素濃度の中で、前記[Cmax/C0]によって偏析度を定量的に評価した。このとき、各分析点で約3秒の予備放電の後、3mm×3mmの分析領域内に、約1000パルスのスパークを万遍なく放電させて分析を行なったので、分析結果の精度と代表性を十分確保しつつ、従来のドリル分析法よりも分析時間を大幅に低減することができた。   At each analysis grid point, about 10 seconds were taken for movement, Ar replacement, preliminary discharge, and integration, and the line analysis with 50 analysis points was completed in about 9 minutes after setting the sample. Among the obtained 50 carbon concentrations, the degree of segregation was quantitatively evaluated by the above [Cmax / C0]. At this time, after approximately 3 seconds of preliminary discharge at each analysis point, about 1000 pulses of sparks were discharged uniformly in the analysis area of 3 mm × 3 mm, and the analysis results were accurate and representative. The analysis time was significantly reduced compared with the conventional drill analysis method while ensuring sufficient.

[実施例3]
炭素含有量が1.0質量%の軸受用鋼について、鋳片中心軸を含む縦断面サンプルを採取し、2段階の二次的マッピング分析を実施することにより偏析度を評価した。鋳片サンプルの移動には、産業用ロボットを用いた。1回目のマッピング分析では、各分析格子点でスパークの飛翔範囲を制限する耐火マスクの窓の大きさを10mm×10mmとし、鋳片サンプルの50mm×200mmの領域を5×20=100(箇所)の分析格子点に分割して各分析格子点の偏析度を評価した。1回目のマッピング分析で得られた炭素の偏析度[Cmax/C0]が1.1を超え、且つ100分割した中で炭素の偏析度[Cmax/C0]が高い方から3位以内の分析格子点について、2回目のマッピング分析を実施した。
[Example 3]
About the steel for bearings whose carbon content is 1.0 mass%, the longitudinal cross-section sample containing a slab center axis | shaft was extract | collected, and the segregation degree was evaluated by implementing a two-step secondary mapping analysis. An industrial robot was used to move the slab sample. In the first mapping analysis, the size of the window of the refractory mask that limits the flight range of the spark at each analysis grid point is 10 mm × 10 mm, and the 50 mm × 200 mm region of the slab sample is 5 × 20 = 100 (location). The segregation degree of each analysis grid point was evaluated by dividing into the analysis grid points. Analysis lattice of carbon segregation degree [Cmax / C0] obtained by the first mapping analysis exceeds 1.1 and within 100 divisions, the carbon segregation degree [Cmax / C0] is within the third position from the highest A second mapping analysis was performed on the points.

2回目のマッピング分析では、各測定点でのスパークの飛ぶ範囲を制限する耐火物マスクの窓の大きさを3mm×3mmとし、1回目のマッピング分析における分析格子点の中心位置を中心にして、4mm間隔で、上下5点×左右5点の計25点の分析格子点について分析を実施した。   In the second mapping analysis, the size of the window of the refractory mask that limits the range where the sparks fly at each measurement point is 3 mm × 3 mm, and the center position of the analysis grid point in the first mapping analysis is the center, The analysis was performed on a total of 25 analysis lattice points of 5 points at the top and 5 points at the left and right at 4 mm intervals.

このとき、2段階のマッピング分析とはせず、最初から窓の大きさが3mm×3mmの細かい耐火物マスクを用いて、50mm×200mmの領域全体を4mm間隔で分析する手順によっても偏析度を評価した。このときの結果は、必要分析点数が600点となり、1点の分析に10秒かける場合に必要な分析時間は100分となる。   At this time, the segregation degree is not determined by two-step mapping analysis, but by using a fine refractory mask having a window size of 3 mm × 3 mm from the beginning and analyzing the entire region of 50 mm × 200 mm at intervals of 4 mm. evaluated. As a result, the required number of analysis points is 600, and the analysis time required for 10 seconds for one point analysis is 100 minutes.

一方、上記のように2段階の二次元マッピングでは、第1段階で100点、第2段階で75点以内、合計175点以内に低減されることになるので、1つの格子点の分析時間を10秒とすると、必要分析時間は1段階分析の場合に比べて約30%に抑制でき、より迅速な偏析評価が可能となる。   On the other hand, in the two-stage two-dimensional mapping as described above, the analysis time for one grid point is reduced to 100 points in the first stage, 75 points in the second stage, and 175 points in total. If it is 10 seconds, the required analysis time can be suppressed to about 30% compared to the case of one-step analysis, and more rapid segregation evaluation can be performed.

本発明方法を実施するための装置の構成例を示した説明図である。It is explanatory drawing which showed the structural example of the apparatus for implementing this invention method. 分析格子点サイズと偏析粒検出感度の関係を示すグラフである。It is a graph which shows the relationship between analysis grid point size and segregation grain detection sensitivity. 分析格子点サイズと必要分析点数の関係を示すグラフである。It is a graph which shows the relationship between an analysis grid point size and the number of required analysis points. 分析点数が1のときの偏析度分析結果を示すグラフである。It is a graph which shows the segregation degree analysis result when an analysis score is 1. 分析点数が2のときの偏析度分析結果を示すグラフである。It is a graph which shows the segregation degree analysis result when an analysis score is two. 分析点数が3のときの析度分析結果を示すグラフである。It is a graph which shows an analytical analysis result when an analysis score is three. 分析点数が7のときの析度分析結果を示すグラフである。It is a graph which shows an analytical analysis result when an analysis score is seven.

符号の説明Explanation of symbols

1 鋳片サンプル
2 マスク用耐火物
3 スパーク放電発生用電極
4 分光計(ポリクロメータ)
5 アンプとA/Dコンバータ
6 コンピュータ
7 産業用ロボット

1 slab sample 2 refractory material for mask 3 electrode for generating spark discharge 4 spectrometer (polychromator)
5 Amplifier and A / D converter 6 Computer 7 Industrial robot

Claims (2)

鋳片のマクロ偏析を評価するに当り、
切断面が鋳片中心部を通る鋳片サンプルを切り出し、
スパーク放電を発生する電極が、前記鋳片サンプル切断面上の一次元的若しくは二次元的な3点以上の分析格子点に順次対応するように鋳片サンプルを移動させ、
各分析格子点において、内接円の直径が1〜5mmの窓の空いたマスクの窓部分を通して、予備放電を伴う複数回のパルスからなるスパーク放電を生じさせ、
このスパーク放電を光源とする発光分光分析を行ない、
各分析格子点における鋼中微量成分濃度を定量分析することによって、
マクロ偏析を定量的に評価することを特徴とする発光分光分析によるマクロ偏析評価方法。
In evaluating macro segregation of slabs,
Cut out a slab sample whose cut surface passes through the center of the slab,
The slab sample is moved so that the electrode for generating the spark discharge sequentially corresponds to one or more three-dimensional analysis grid points on the slab sample cut surface,
At each analysis grid point, a spark discharge consisting of a plurality of pulses accompanied by a preliminary discharge is generated through the window portion of the mask with a diameter of the inscribed circle of 1 to 5 mm,
Perform emission spectroscopic analysis using this spark discharge as the light source,
By quantitatively analyzing the trace component concentration in steel at each analysis grid point,
A macro-segregation evaluation method by emission spectroscopic analysis, characterized by quantitative evaluation of macro-segregation.
請求項1の発光分光分析を行うに先立って、各分析格子点におけるマスクの窓部分の大きさが前記よりも大きい状態で予備的な発光分光分析を実施し、この分析結果での偏析度が予め定めた閾値を超えた領域に限り、更に請求項1に記載の発光分光分析を実施することを特徴とするマクロ偏析評価方法。   Prior to performing the emission spectroscopic analysis of claim 1, preliminary emission spectroscopic analysis is performed in a state where the size of the window portion of the mask at each analysis lattice point is larger than the above, and the segregation degree in the analysis result is The macro-segregation evaluation method, wherein the emission spectroscopic analysis according to claim 1 is further performed only in a region exceeding a predetermined threshold value.
JP2005378405A 2005-12-28 2005-12-28 Evaluation method of macrosegregation due to emission spectral analysis Withdrawn JP2007178321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378405A JP2007178321A (en) 2005-12-28 2005-12-28 Evaluation method of macrosegregation due to emission spectral analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378405A JP2007178321A (en) 2005-12-28 2005-12-28 Evaluation method of macrosegregation due to emission spectral analysis

Publications (1)

Publication Number Publication Date
JP2007178321A true JP2007178321A (en) 2007-07-12

Family

ID=38303650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378405A Withdrawn JP2007178321A (en) 2005-12-28 2005-12-28 Evaluation method of macrosegregation due to emission spectral analysis

Country Status (1)

Country Link
JP (1) JP2007178321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018099A (en) * 2010-07-08 2012-01-26 Aisin Aw Co Ltd Emission spectrophotometer, sample holding stage, and emission spectral analysis method
KR101149126B1 (en) 2009-07-27 2012-05-25 현대제철 주식회사 Method for evaluating centerline segregation in continuous casting slab
CN111157460A (en) * 2019-12-27 2020-05-15 钢研纳克检测技术股份有限公司 Large-scale metal component segregation degree analyzer and analysis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149126B1 (en) 2009-07-27 2012-05-25 현대제철 주식회사 Method for evaluating centerline segregation in continuous casting slab
JP2012018099A (en) * 2010-07-08 2012-01-26 Aisin Aw Co Ltd Emission spectrophotometer, sample holding stage, and emission spectral analysis method
CN111157460A (en) * 2019-12-27 2020-05-15 钢研纳克检测技术股份有限公司 Large-scale metal component segregation degree analyzer and analysis method
CN111157460B (en) * 2019-12-27 2023-03-14 钢研纳克检测技术股份有限公司 Large-scale metal component segregation degree analyzer and analysis method

Similar Documents

Publication Publication Date Title
JP5320791B2 (en) Center segregation evaluation method
JP5853661B2 (en) Steel sheet for high-strength sour line pipe, its material and manufacturing method of steel sheet for high-strength sour line pipe
CN103900999B (en) The analysis method of induced with laser spectral measurement steel part carburized layer
JP5042953B2 (en) Method for segregation analysis of slabs
JP2007178321A (en) Evaluation method of macrosegregation due to emission spectral analysis
CN110455780A (en) GH4169 alloy large scale rod bar regional part is segregated detection method
JP2004198145A (en) METHOD FOR ANALYZING CaO-CONTAINING INCLUSION IN METAL
CN109540872A (en) Use the method for direct-reading spectrometer measurement nickel-base alloy ingredient
JP3712254B2 (en) Estimation method of defect diameter in metal materials
JP4537253B2 (en) Determination of nonmetallic inclusion composition by emission spectroscopy
Sheng et al. Full-scale spark mapping of elements and inclusions of a high-speed train axle billet
EP2672258A1 (en) Steel type assessment method for steel material
JP3671600B2 (en) Method for measuring particle size distribution of oxide inclusions in metals
JP5998801B2 (en) Method for quantitative analysis of alumina in steel
KR100862786B1 (en) Apparatus measuring impurities of molten iron and method sameof
JPH0961357A (en) Method for quantitatively determining minute nonmetal inclusion by emission spectro analysis
JPH0943151A (en) Particle size distribution measuring method for metal inclusion
CN111426687B (en) Round steel grain boundary oxidation detection method
WO2023199591A1 (en) Emission spectroscopic analysis method for sb in metal material, method for measuring sb concentration in molten steel during refining, and method for manufacturing steel material
JP2000019118A (en) Method for quantitatively determining element concentration in metallic material
KR100681803B1 (en) Apparatus for the localization of element concentrations in a continuous casting
US20220111395A1 (en) Method for recycling aluminum alloys using contaminant concentration estimates for quality control
JP7388344B2 (en) Steel center segregation evaluation method
JPH0943150A (en) Method for measuring composition and particle size distribution of inclusion of metal
JP2004109068A (en) Movable metal material flaw type discrimination device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303