JPH0943151A - Particle size distribution measuring method for metal inclusion - Google Patents

Particle size distribution measuring method for metal inclusion

Info

Publication number
JPH0943151A
JPH0943151A JP7191985A JP19198595A JPH0943151A JP H0943151 A JPH0943151 A JP H0943151A JP 7191985 A JP7191985 A JP 7191985A JP 19198595 A JP19198595 A JP 19198595A JP H0943151 A JPH0943151 A JP H0943151A
Authority
JP
Japan
Prior art keywords
particle size
inclusions
inclusion
size distribution
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7191985A
Other languages
Japanese (ja)
Other versions
JP2978089B2 (en
Inventor
Takashi Matsumura
孝 松村
Takashi Sugihara
孝志 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7191985A priority Critical patent/JP2978089B2/en
Publication of JPH0943151A publication Critical patent/JPH0943151A/en
Application granted granted Critical
Publication of JP2978089B2 publication Critical patent/JP2978089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly and accurately measure the particle size distribution of nonmetallic inclusion dispersively existing in metal by calculating the weight of the evaporated inclusion from the concentration and evaporated amount of an element obtained from the intrinsic spectral intensity of the inclusion forming element, and dividing it by the density of the inclusion to convert it to the particle size as the volume of the spherical inclusion. SOLUTION: The spectral beam at each spark discharge between a sample 2 and an opposite electrode 3 is detected by a detector 6, and the spectral beam intensity of Al of nonmetallic inclusion is, for example, measured. The calibration curve of the Al is applied to the photometrically measured spectral beam intensity of the Al to obtain the Al concentration by an arithmetic processor 5, and the evaporated amount of the corresponding discharge is multiplied by it to calculate the weight of the evaporated Al in the inclusion. Then, it is divided by the molecular configuration ratio of the Al in alumina, converted to the weight of the alumina inclusion, further divided by the density as the volume of one spherical inclusion, and then converted to particle size. After all the spark discharges are finished, the converted data are accumulated to obtain the particle size of the Al inclusion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非金属介在物の粒
度分布測定方法に関し、特に、発光分光分析法を利用し
て鋼中に存在する非金属介在物(以下、単に介在物とい
う)の粒度分布を迅速かつ正確に測定する鋼材の品質管
理用試験や検査に好適な測定技術に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the particle size distribution of non-metallic inclusions, and more particularly to the measurement of non-metallic inclusions present in steel (hereinafter simply referred to as inclusions) by utilizing emission spectroscopy. The present invention relates to a measurement technique suitable for quality control tests and inspections of steel products that measures particle size distribution quickly and accurately.

【0002】[0002]

【従来の技術】鋳片等の鋼材は、内部に種々の組成の介
在物が存在しており、その介在物の組成及び粒径が鋼材
の品質特性に大きく影響するため、当該組成及び粒度分
布を同定して評価することは重要である。特に、ワイヤ
材、軸受材、深絞り材等の鋼製品では、例えば粒径1μ
m以上の比較的大きい介在物が鋼中に多量に存在する
と、それを起点に割れが生じ易く、該鋼製品の疲労特性
が著しく低下する。そのため、これら鋼製品には高い清
浄度が要求され、製鋼段階の各工程において鋼中介在物
の組成と粒度分布を正確かつ迅速に把握し、評価する必
要がある。
2. Description of the Related Art Steel materials such as cast slabs have inclusions of various compositions inside, and the composition and particle size of the inclusions greatly affect the quality characteristics of the steel material. Is important to identify and evaluate. In particular, for steel products such as wire materials, bearing materials, and deep drawn materials, the grain size is 1 μm, for example.
If a large amount of relatively large inclusions having a size of m or more is present in the steel, cracks easily occur starting from the inclusions, and the fatigue properties of the steel product are significantly reduced. Therefore, high cleanliness is required for these steel products, and it is necessary to accurately and promptly grasp and evaluate the composition and particle size distribution of inclusions in the steel in each step of the steelmaking stage.

【0003】一般に多用される鋼中介在物の存在状態の
評価方法としては、JIS G 0555 に規定され
た顕微鏡試験方法がある。この方法は、鏡面研磨仕上げ
した供試材を顕微鏡で目視観察するものであるが、試料
の作製及び測定に1日ないし2日も要し、迅速性に欠け
ると共に、目視による官能検査であるため介在物組成の
識別が困難であるという欠点がある。近年、コンピュー
タを利用した画像解析方法が開発され、該顕微鏡試験方
法に適用して測定の迅速化が進められているが、試料の
作製は従来と同様に時間を要し、また研磨疵やゴミの付
着により測定誤差も生じ易い欠点は、今だ解消されてい
ない。
As a commonly used evaluation method for the existence state of inclusions in steel, there is a microscopic test method defined in JIS G 0555. This method involves visually observing the sample material that has been mirror-polished with a microscope, but it takes one or two days to prepare and measure the sample, which is not quick and is a visual sensory test. There is a drawback that it is difficult to identify the composition of inclusions. In recent years, an image analysis method using a computer has been developed and is being applied to the microscope test method to accelerate the measurement. However, it takes time to prepare a sample as in the conventional method, and polishing flaws and dusts are required. The drawback that measurement errors are likely to occur due to the adherence of is still unsolved.

【0004】また、別の評価方法として、臭素−メタノ
ール法や温硝酸法等のように、化学分析手法で介在物を
鋼中から分離して評価することも行われている。しかし
ながら、これらの方法は、旧来の所謂化学分析手法を利
用するため迅速性にかけ、製造される多種多様な鋼材を
大量に分析し、評価するには適さないという問題があっ
た。さらに、電子プローブマイクロアナライザー(EP
MA)を用いて鋼中介在物を評価する方法もあるが、こ
の方法も、電子プローブによる操作や各種演算処理等の
複雑な手順を必要とするため測定の迅速性に欠け、大量
の試験材を処理するには不向きであった。
As another evaluation method, inclusions are separated from steel by a chemical analysis method and evaluated, such as a bromine-methanol method and a warm nitric acid method. However, these methods have a problem that they are not suitable for analyzing and evaluating a large amount of various manufactured steel materials in a large amount because they use the conventional so-called chemical analysis method and are therefore quick. In addition, electronic probe microanalyzer (EP
There is also a method of evaluating inclusions in steel using MA), but this method also requires complicated procedures such as operation with an electronic probe and various arithmetic processes, and therefore lacks swiftness of measurement and a large amount of test material. Was unsuitable for processing.

【0005】そこで、大量の鋼材中の介在物を迅速に評
価するため、従来より、発光分光分析法を利用した鋼中
介在物の測定法がいくつか提案されている(例えば、
「鉄と鋼」vol.73(1987)S969、S97
0、及び「CAMP−ISIJ」vol.7(199
4)1292,1293等)。また、特開平4−238
250号公報は、放電により得られた発光パルスのう
ち、放電初期の0〜数百パルス程度を時系列的に計測
し、得られた発光パルス中で定める強度範囲に該当する
発光パルスを測定対象として、金属中介在物の存在個
数、直径、含有量、平均直径を所定の式に基づき求める
方法を開示している。
Therefore, in order to rapidly evaluate the inclusions in a large amount of steel materials, several methods for measuring inclusions in steel using emission spectroscopy have been conventionally proposed (for example,
"Iron and steel" vol. 73 (1987) S969, S97
0, and “CAMP-ISIJ” vol. 7 (199
4) 1292, 1293, etc.). Also, Japanese Patent Application Laid-Open No. 4-238
The publication No. 250 measures, in a time series, about 0 to several hundreds of pulses at the initial stage of discharge, among emission pulses obtained by discharge, and measures an emission pulse corresponding to an intensity range defined in the obtained emission pulses. As a method, a method for determining the number of inclusions in the metal, the diameter, the content, and the average diameter based on a predetermined formula is disclosed.

【0006】しかしながら、これらの発光分光分析法
は、スパーク放電により試料を発光させ、分光した後、
含有元素のそれぞれのスペクトル線波長及び強度から介
在物の組成や量を決定するものであり、介在物の粒度ま
では測定できなかったり、また、粒度の測定を試みてい
る場合でも、介在物形成元素のうちAl等の陽性元素の
みを測定しているため、介在物形態の全貌は特定できな
い等の難点があった。
[0006] However, in these emission spectroscopic analysis methods, after the sample is made to emit light by spark discharge and spectrally separated,
The composition and amount of inclusions are determined from the spectral line wavelengths and intensities of the contained elements, and it is not possible to measure the particle size of inclusions, or even when trying to measure the particle size, inclusion formation Since only positive elements such as Al are measured among the elements, there is a problem that the whole appearance of inclusions cannot be specified.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑みてなされたもので、スパーク放電式発光分光分析
方法を用いての金属中に分散して存在する鋼中介在物の
粒度分布を迅速かつ正確に測定する方法を提供すること
を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and uses the spark discharge emission spectrometry method to determine the particle size distribution of inclusions in steel dispersed in a metal. It is intended to provide a method of measuring quickly and accurately.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明は、不活性ガス雰囲気中で金属試料と対電極との間で
多数回のスパーク放電を行い、金属試料中に存在する介
在物を発光分光分析するに際し、1回の放電で得た発光
スペクトル線の中から、介在物形成元素の固有スペクト
ル線を選択し、該固有スペクトル線強度から予め設定し
ている検量線により当該元素の濃度を求めると共に、金
属試料重量を測定して放電1回当たりの蒸発量を定め、
当該元素の濃度と該放電1回当たりの該蒸発量とから該
放電で蒸発した介在物重量を算出し、該重量を介在物の
密度で除すことによって1個の球形介在物の体積として
から粒径に換算処理し、この操作を多数回繰り返して金
属試料中に存在する介在物の粒度分布を定めることを特
徴とする金属中介在物の粒度分布測定方法である。
According to the present invention for achieving the above object, a large number of spark discharges are performed between a metal sample and a counter electrode in an inert gas atmosphere to eliminate inclusions present in the metal sample. In the emission spectroscopic analysis, the characteristic line of the inclusion-forming element is selected from the emission spectrum lines obtained by one discharge, and the concentration of the element is determined by the calibration curve preset from the characteristic line intensity. And the metal sample weight is measured to determine the evaporation amount per discharge,
The weight of the inclusions evaporated in the discharge was calculated from the concentration of the element and the evaporation amount per discharge, and the weight was divided by the density of the inclusions to obtain the volume of one spherical inclusion. It is a method for measuring the particle size distribution of inclusions in a metal, which comprises converting the particle size to a particle size and repeating this operation many times to determine the particle size distribution of the inclusions present in the metal sample.

【0009】また、本発明は、上記介在物形成元素を、
同時に測定した酸素又は窒素の固有スペクトル線強度の
大きさでモニターして検出することを特徴とする金属中
介在物の粒度分布測定方法でもある。その結果、発光分
光分析方法において、鋼中介在物の組成及び粒度分布を
従来より迅速かつ正確に測定することができるようにな
った。
The present invention further comprises the above inclusion-forming element,
It is also a method for measuring the particle size distribution of inclusions in a metal, which is characterized in that it is detected by monitoring the intensity of the characteristic spectral line intensity of oxygen or nitrogen measured at the same time. As a result, it has become possible to measure the composition and particle size distribution of inclusions in steel faster and more accurately than ever before in the emission spectroscopic analysis method.

【0010】以下、発明に至る経緯をまじえて、本発明
の内容を説明する。鋼材等、金属中に分散する介在物の
粒度分布を精度よく測定する方法としては、前記した金
属中の介在物を温硝酸で抽出分離してから、化学分析及
び粒度分析を行う方法が一般的に用いられている。そこ
で、発明者は、上記温硝酸分離法と比較しつつ、スパー
ク放電式発光分光分析(以下、単に発光分光分析とい
う)により介在物の粒度分布を測定することが可能か否
かを調査した。
The contents of the present invention will be described below, including the background to the invention. As a method for accurately measuring the particle size distribution of inclusions dispersed in a metal such as steel, a method of performing chemical analysis and particle size analysis after extracting and separating the inclusions in the metal with warm nitric acid is common. Is used for. Therefore, the inventor investigated whether it is possible to measure the particle size distribution of inclusions by spark discharge emission spectrometry (hereinafter, simply referred to as emission spectrometry) while comparing with the warm nitric acid separation method.

【0011】まず、金属材料として鋼材を選び、その鋼
材から得た試料を多数回放電させて発光分光分析し、ス
パーク放電毎に得られたAlの発光スペクトル線の強度
データを時系列的に整理した。それは、図1に示すよう
に、地金部及び介在物で強度の異なる発光スペクトル線
の列になった。この場合、異常に大きなスペクトル線強
度は、介在物からの放電によるものと考えられている
(「鉄と鋼」vol.66(1980)p1401−1
405、「鉄と鋼」vol.73(1987)p141
9−1424)。
First, a steel material is selected as a metal material, and a sample obtained from the steel material is discharged many times for emission spectroscopic analysis, and the intensity data of the emission spectrum line of Al obtained for each spark discharge is arranged in time series. did. As shown in FIG. 1, it became a line of emission spectrum lines having different intensities in the metal and inclusions. In this case, the abnormally large spectral line intensity is considered to be due to the discharge from the inclusions (“Iron and Steel”, vol. 66 (1980) p1401-1).
405, "Iron and Steel" vol. 73 (1987) p141
9-1424).

【0012】次に、酸素含有レベルの異なる3つの試料
から、温硝酸分離法でアルミナ(Al23 )系介在物
を分離し、レーザ回折法により該介在物の粒度分布を測
定した。その結果の1例を図2に示すが、試料の酸素含
有レベルに関係なく、各試料1g中に存在する介在物の
個数は非常に多かった。そこで、図2に示した粒度分布
の測定結果を用いて、スパーク放電1回あたりに蒸発す
る介在物の粒度分布を計算した。それは、図2に示した
粒度分布測定結果にスパーク放電1回あたりの試料減量
をかけあわせることによって得られた(表1)。 な
お、スパーク放電1回あたりの試料の蒸発量は、1万回
程度スパーク放電した後の試料減量から平均値として求
めても良いし、放電1回後とに実測しても良い。また、
その際の放電条件は、表2の通りである。
Next, alumina (Al 2 O 3 ) inclusions were separated from the three samples having different oxygen content levels by the hot nitric acid separation method, and the particle size distribution of the inclusions was measured by the laser diffraction method. An example of the results is shown in FIG. 2. The number of inclusions present in each sample 1g was very large, regardless of the oxygen content level of the sample. Therefore, the particle size distribution of inclusions that evaporate per spark discharge was calculated using the measurement results of the particle size distribution shown in FIG. It was obtained by multiplying the particle size distribution measurement result shown in FIG. 2 by the sample weight reduction per spark discharge (Table 1). The evaporation amount of the sample per spark discharge may be obtained as an average value from the sample weight reduction after the spark discharge of about 10,000 times, or may be measured after one discharge. Also,
The discharge conditions at that time are as shown in Table 2.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】表1の結果によれば、スパーク放電1回あ
たりの試料の蒸発量は数100mg程度と非常に少量で
あり、酸素レベルにかかわらず粒径1μm以上の介在物
は0.5個/放電以下となる。その結果、1回の放電で
粒径1μm以上の介在物が複数個蒸発する確率は、非常
に小さいと考えられる。また、粒径1μm以下の介在物
については放電1回に平均数個から10個程度と計算さ
れ、放電1回あたりの蒸発量から考えた場合に異常発光
の原因になるものではない。 よって、本発明では、1
回の異常発光は粒径1μm以上の介在物1個に対応して
いる、と考えるのが妥当である。
According to the results shown in Table 1, the evaporation amount of the sample per spark discharge is as small as several hundred mg, and 0.5 inclusions having a particle size of 1 μm or more are obtained regardless of the oxygen level. It becomes less than discharge. As a result, it is considered that the probability of evaporation of a plurality of inclusions having a particle size of 1 μm or more in one discharge is very small. In addition, the number of inclusions having a particle size of 1 μm or less is calculated to be an average of about 10 to 10 particles per discharge, which does not cause abnormal light emission when considering the evaporation amount per discharge. Therefore, in the present invention, 1
It is appropriate to consider that the abnormal light emission of one time corresponds to one inclusion having a particle diameter of 1 μm or more.

【0016】以上の結果より、粒径1μm以上の介在物
に限定すれば、その粒径をスパーク式発光分光分析で測
定可能と考えられ、発明者は、以下のようにして、上記
粒度分布測定方法を考案したのである。まず、異常発光
が生じた介在物形成元素の発光スペクトル線を選択し、
その強度から予め作成された検量線より各元素の濃度を
求める。この濃度と放電による蒸発量測定値を掛け合わ
せて介在物の蒸発量を求める。そして、その蒸発量を1
個の球状介在物によるものと仮定して、介在物の粒径に
変換する。これら操作をスパーク放電毎(通常、数10
0回から2000回、試料や分析対象元素によって異な
る)に行い、積算することにより、介在物の粒度分布が
得られる。その際、介在物を構成する金属元素の異常発
光が、酸化物あるいは窒化物系の介在物からのものかを
判断する指標として、非金属元素である酸素あるいは窒
素の発光スペクトル線強度をモニタし、その発光スペク
トル強度が設定した値により大きい場合に、該異常発光
は粒径1μm以上の介在物によりのものであると判断す
る。
From the above results, it is considered that the particle size can be measured by spark emission spectroscopic analysis if the inclusions having a particle size of 1 μm or more are limited. He devised a method. First, select the emission spectrum line of the inclusion forming element in which abnormal light emission has occurred,
The concentration of each element is obtained from the calibration curve prepared in advance from the intensity. The evaporation amount of inclusions is obtained by multiplying this concentration by the measured value of evaporation amount due to discharge. Then, the evaporation amount is 1
It is converted to the particle size of the inclusions, assuming that they are due to the spherical inclusions. These operations are performed every spark discharge (usually several tens).
The particle size distribution of inclusions can be obtained by performing 0 to 2000 times, depending on the sample and the element to be analyzed) and integrating. At that time, the emission spectrum line intensity of the non-metal element oxygen or nitrogen was monitored as an index for judging whether the abnormal light emission of the metal element forming the inclusion is due to the oxide- or nitride-based inclusion. When the emission spectrum intensity is larger than the set value, it is determined that the abnormal emission is due to inclusions having a particle size of 1 μm or more.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して、本発明の
実施形態を説明する。図3は、本発明に係るスパーク放
電式発光分光分析法による鋼中介在物の粒度分布を測定
した装置を模式的に示したものである。それは、放電装
置1、分析試料2及び対電極3とからなる発光部20
と、発光スペクトル線を各元素の固有スペクトル線に分
光する回折格子7、各元素毎にスペクトル線を検出する
検出器6等からなる分光器30と、スパーク放電毎に発
光したスペクトル線のアナログ値をディジタル値に変換
して、測光処理を行う測光装置4やスペクトル線強度か
らの組成同定、粒度分布に変換する演算処理装置5とで
構成されている。また、該演算処理5には、上記各装置
の操作指示や測定結果の出力に用いる端末機(CRT、
プリンタ、キーボード等)も付設されている。ここで
は、アルミナ系介在物の粒度分布を測定した例で、実施
形態を説明することにした。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 schematically shows the apparatus for measuring the particle size distribution of inclusions in steel by the spark discharge emission spectroscopy according to the present invention. It is a light emitting section 20 composed of a discharge device 1, an analysis sample 2 and a counter electrode 3.
And a spectroscope 30 including a diffraction grating 7 for splitting an emission spectrum line into a characteristic spectrum line of each element, a detector 6 for detecting the spectrum line for each element, and an analog value of the spectrum line emitted for each spark discharge. Is converted into a digital value and is subjected to photometric processing, and a composition processing unit 5 for converting composition into particle size distribution and composition identification from spectral line intensity. Further, the arithmetic processing 5 includes a terminal (CRT,
Printer, keyboard, etc.) is also attached. Here, the embodiment will be described with an example in which the particle size distribution of the alumina-based inclusions is measured.

【0018】まず、試料2と対電極3との間で、200
0回スパーク放電し、スパーク放電毎の発光を分光した
スペクトル線を検出器6で検出し、金属Al及び酸素の
発光スペクトル線強度をそれぞれ測光する。その際、酸
素の発光スペクトル線強度値の大きさにより、各スパー
ク放電毎のAlの発光が介在物によるものか否かを判断
し、酸素の発光スペクトル線強度が一定値以上でない場
合は、介在物によるものでないと見なして測光を行わな
い。
First, between the sample 2 and the counter electrode 3, 200
The spark discharge is performed 0 times, and the spectrum line obtained by dispersing the light emission for each spark discharge is detected by the detector 6, and the emission spectrum line intensities of metal Al and oxygen are measured. At that time, it is judged from the magnitude of the emission line intensity value of oxygen whether or not the emission of Al in each spark discharge is due to inclusions. Do not perform photometry because it is not due to a thing.

【0019】酸素の発光スペクトル線強度が一定値以上
の場合には、演算処理装置5において、測光したAlの
発光スペクトル線強度にあらかじめ設定したAlの検量
線を適用して、Al濃度を算出する。このAl濃度に、
対応する放電の蒸発量を乗ずることで、該放電により蒸
発した介在物中のAlの重量が算出される。そこで、ア
ルミナ(Al23 )中のAlの分子構成比で除してア
ルミナ介在物としての重量に変換し、さらに密度で除し
て介在物の体積を導き、該介在物が球状であると仮定
し、粒径に変換する。最後に、全てのスパーク放電が終
了したときには、変換されたデータの合計が介在物の粒
度分布として得られることになる。
When the emission spectrum line intensity of oxygen is a certain value or more, the arithmetic processing unit 5 calculates the Al concentration by applying a preset Al calibration curve to the measured emission spectrum line intensity of Al. . With this Al concentration,
By multiplying the evaporation amount of the corresponding discharge, the weight of Al in the inclusions evaporated by the discharge is calculated. Then, it is divided by the molecular composition ratio of Al in alumina (Al 2 O 3 ) to be converted into the weight as an alumina inclusion, and further divided by the density to derive the volume of the inclusion, and the inclusion is spherical. Assuming that, it is converted into a particle size. Finally, when all the spark discharges have ended, the sum of the converted data will be obtained as the particle size distribution of inclusions.

【0020】[0020]

【実施例】軸受鋼のアルミナ系介在物を、上述した本発
明に係る方法(酸素でモニタ)で測定した例を図4に、
従来通りの顕微鏡試験法で測定した例を図5に示す。一
方、酸素の発光スペクトル線強度をモニターせずに、全
てのスパーク放電で得たAlの発光スペクトル線強度か
ら定めた粒度分布の測定例を図6に示す。図4、図5及
び図6の比較より明らかなように、図4に示した本発明
による測定結果は、図5に示す従来の顕微鏡試験法によ
る測定結果とよく一致しており、酸素の発光スペクトル
線強度で各放電毎の発光スペクトル線が酸化物によるか
否かを判断することが有用であることがわかる。
EXAMPLE An example in which an alumina-based inclusion of bearing steel was measured by the above-described method according to the present invention (monitoring with oxygen) is shown in FIG.
FIG. 5 shows an example measured by a conventional microscope test method. On the other hand, FIG. 6 shows a measurement example of the particle size distribution determined from the emission spectrum line intensities of Al obtained in all spark discharges without monitoring the emission spectrum line intensities of oxygen. As is clear from the comparison between FIG. 4, FIG. 5 and FIG. 6, the measurement result according to the present invention shown in FIG. 4 is in good agreement with the measurement result according to the conventional microscope test method shown in FIG. It can be seen that it is useful to judge from the spectral line intensity whether or not the emission spectral line for each discharge is due to an oxide.

【0021】また、上記図4〜6の結果を得るために要
した測定時間は、それぞれ、であり、本発明による鋼中
介在物の粒度分布測定方法の場合が、他の測定方法に比
べて著しく短かった。なお、本実施例では、介在物をA
23 としたが、本発明は、AlN,CaO,SiO
2 ,Si34 等、鋼中に分散するほとんどの粒径1μ
m以上の介在物を対象とすることができる。
The measurement times required to obtain the results shown in FIGS. 4 to 6 are, respectively, and the case of the method for measuring the particle size distribution of inclusions in steel according to the present invention is higher than that of the other measurement methods. It was extremely short. In the present embodiment, the inclusion is A
It was a l 2 O 3, present invention, AlN, CaO, SiO
Most particle size 1μ dispersed in steel, such as 2 , Si 3 N 4
Inclusions of m or more can be targeted.

【0022】[0022]

【発明の効果】以上述べたように、本発明により、金属
材料中に分散して存在する非金属介在物の粒径分布を、
迅速かつ精度よく測定することができた。また、本発明
を多元素同時定量型発光分光分析装置に付設した場合、
操業管理用の成分分析と同時に該介在物の測定を同時に
行うことができることから、試験業務の効率化や精錬工
程での歩留りの向上、製造コストの低減に大きな効果が
ある。
As described above, according to the present invention, the particle size distribution of non-metallic inclusions dispersedly present in a metal material can be
We were able to measure quickly and accurately. Further, when the present invention is attached to a multi-element simultaneous quantitative emission spectroscopic analyzer,
Since the inclusions can be measured at the same time as the component analysis for operation control, it has a great effect on the efficiency of the test work, the improvement of the yield in the refining process, and the reduction of the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】スパーク放電毎のAlの地金部及び介在物部の
発光スペクトル線の1例を示す図である。
FIG. 1 is a diagram showing an example of emission spectrum lines of an ingot metal portion and an inclusion portion of Al for each spark discharge.

【図2】レーザ回折法により得られた介在物の粒度分布
の1例を示す図である。
FIG. 2 is a diagram showing an example of a particle size distribution of inclusions obtained by a laser diffraction method.

【図3】発光分光分析装置の概略構成図を示す図であ
る。
FIG. 3 is a diagram showing a schematic configuration diagram of an emission spectroscopy analyzer.

【図4】発光分光分析法により得られた介在物の粒度
(酸素の発光強度のモニターあり)を示す図である。
FIG. 4 is a diagram showing the particle size of inclusions (with a monitor of the emission intensity of oxygen) obtained by emission spectroscopy.

【図5】顕微鏡試験法によりれられた介在物の粒度分布
を示す図である。
FIG. 5 is a diagram showing a particle size distribution of inclusions obtained by a microscopic examination method.

【図6】発光分光分析法により得られた介在物の粒度分
布(酸素の発光強度のモニターなし)を示す図である。
FIG. 6 is a diagram showing a particle size distribution of inclusions obtained by emission spectroscopy (without monitoring the emission intensity of oxygen).

【符号の説明】[Explanation of symbols]

1 放電装置 2 分析試料 3 対電極 4 測光装置 5 演算処理装置 6 検出器 7 回折格子 8 スリット 9 端末機 20 発光部 30 分光部 DESCRIPTION OF SYMBOLS 1 Discharge device 2 Analytical sample 3 Counter electrode 4 Photometric device 5 Arithmetic processing device 6 Detector 7 Diffraction grating 8 Slit 9 Terminal device 20 Light emitting part 30 Spectroscopic part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不活性ガス雰囲気中で金属試料と対電極
との間で多数回のスパーク放電を行い、金属試料中に存
在する介在物を発光分光分析するに際し、 1回の放電で得た発光スペクトル線の中から、介在物形
成元素の固有スペクトル線を選択し、該固有スペクトル
線強度から予め設定している検量線により当該元素の濃
度を求めると共に、金属試料重量を測定して放電1回当
たりの蒸発量を定め、当該元素の濃度と該放電1回当た
りの該蒸発量とから該放電で蒸発した介在物重量を算出
し、該重量を介在物の密度で除すことによって1個の球
形介在物の体積としてから粒径に換算処理し、この操作
を多数回繰り返して金属試料中に存在する介在物の粒度
分布を定めることを特徴とする金属中介在物の粒度分布
測定方法。
1. Spark discharge was carried out a large number of times between a metal sample and a counter electrode in an inert gas atmosphere, and inclusions present in the metal sample were analyzed by emission spectroscopy. From the emission spectrum line, the characteristic spectrum line of the inclusion forming element is selected, the concentration of the element is obtained from the characteristic spectrum line intensity by a preset calibration curve, and the weight of the metal sample is measured to discharge 1. Determine the amount of evaporation per operation, calculate the weight of inclusions evaporated by the discharge from the concentration of the element and the amount of evaporation per discharge, and divide the weight by the density of inclusions to obtain one The method for measuring the particle size distribution of inclusions in a metal is characterized by determining the particle size distribution of the inclusions present in the metal sample by converting the volume of the spherical inclusions into a particle size, and repeating this operation many times.
【請求項2】 上記介在物形成元素を、同時に測定した
酸素又は窒素の固有スペクトル線強度の大きさでモニタ
ーして検出することを特徴とする請求項1記載の金属中
介在物の粒度分布測定方法。
2. The particle size distribution measurement of inclusions in a metal according to claim 1, wherein the inclusion forming element is detected by monitoring the intensity of the characteristic spectral line intensity of oxygen or nitrogen simultaneously measured. Method.
JP7191985A 1995-07-27 1995-07-27 Particle size distribution measurement method for inclusions in metal Expired - Fee Related JP2978089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7191985A JP2978089B2 (en) 1995-07-27 1995-07-27 Particle size distribution measurement method for inclusions in metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7191985A JP2978089B2 (en) 1995-07-27 1995-07-27 Particle size distribution measurement method for inclusions in metal

Publications (2)

Publication Number Publication Date
JPH0943151A true JPH0943151A (en) 1997-02-14
JP2978089B2 JP2978089B2 (en) 1999-11-15

Family

ID=16283718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7191985A Expired - Fee Related JP2978089B2 (en) 1995-07-27 1995-07-27 Particle size distribution measurement method for inclusions in metal

Country Status (1)

Country Link
JP (1) JP2978089B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071036A1 (en) * 2001-03-06 2002-09-12 Nsk Ltd. Method for measuring particle size of inclusion in metal by emission spectrum intensity of element constituting inclusion in metal, and method for forming particle size distribution of inclusion in metal, and apparatus for executing that method
JP2004068147A (en) * 2002-06-10 2004-03-04 Nippon Steel Corp Method and apparatus for eliminating metallic surface flaw and metallic product having clean surface layer
CN100343657C (en) * 2003-02-25 2007-10-17 鞍钢股份有限公司 Spectral analysis method for online detecting size distribution of inclusions in steel
CN111982930A (en) * 2020-08-26 2020-11-24 马鞍山钢铁股份有限公司 Method for testing rapid grading of DIN 50602-inclusion K method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071036A1 (en) * 2001-03-06 2002-09-12 Nsk Ltd. Method for measuring particle size of inclusion in metal by emission spectrum intensity of element constituting inclusion in metal, and method for forming particle size distribution of inclusion in metal, and apparatus for executing that method
JP2004068147A (en) * 2002-06-10 2004-03-04 Nippon Steel Corp Method and apparatus for eliminating metallic surface flaw and metallic product having clean surface layer
CN100343657C (en) * 2003-02-25 2007-10-17 鞍钢股份有限公司 Spectral analysis method for online detecting size distribution of inclusions in steel
CN111982930A (en) * 2020-08-26 2020-11-24 马鞍山钢铁股份有限公司 Method for testing rapid grading of DIN 50602-inclusion K method
CN111982930B (en) * 2020-08-26 2022-04-01 马鞍山钢铁股份有限公司 Method for testing rapid grading of DIN 50602-inclusion K method

Also Published As

Publication number Publication date
JP2978089B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JP4315975B2 (en) Noise component removal method
JP2978089B2 (en) Particle size distribution measurement method for inclusions in metal
US11609191B2 (en) Analyzer
JP5387536B2 (en) How to create a calibration curve
JP3671600B2 (en) Method for measuring particle size distribution of oxide inclusions in metals
JP4537253B2 (en) Determination of nonmetallic inclusion composition by emission spectroscopy
JPH0961357A (en) Method for quantitatively determining minute nonmetal inclusion by emission spectro analysis
JPH0943150A (en) Method for measuring composition and particle size distribution of inclusion of metal
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JP3187346U (en) Luminescence analyzer
CN100343656C (en) Spectral analysis method for online detecting the number and content of inclusions in steel
JP2012026745A (en) ACCURATE QUANTITATIVE METHOD FOR SOL.Al IN STEEL AND PROCESS OPERATION METHOD OF ACCURATE QUANTITATIVE METHOD FOR SOL.Al IN STEEL
US6480274B1 (en) Method of analyzing oxygen and oxide in metallic material
JPH0961356A (en) Emission spectrometric analyzing method
US20030168132A1 (en) Method for measuring particle size of inclusion in metal by emission spectrum intensity of element constituting inclusion in metal, and method for forming particle size distribution of inclusion in metal, and apparatus for executing that method
CN1525159A (en) Spectral analysis method for online detecting size distribution of inclusions in steel
JP2007178321A (en) Evaluation method of macrosegregation due to emission spectral analysis
JP2006258633A (en) Analyzer
JP5304705B2 (en) Inclusion analysis method by emission spectroscopy
US5599407A (en) Method for estimating inclusion content of metals using reflectance
JP2005265544A (en) Method for measuring particle size distribution of alumina enclosure in steel material
JPH10267848A (en) Method for emission spectroscopic analysis
JP2002275523A (en) Refined state of steel method for determining
JPH10153594A (en) Simple method for identifying steel kind
JP3972307B2 (en) Ni emission spectroscopic analysis method and steel making method using this method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

LAPS Cancellation because of no payment of annual fees