JPH0943150A - Method for measuring composition and particle size distribution of inclusion of metal - Google Patents

Method for measuring composition and particle size distribution of inclusion of metal

Info

Publication number
JPH0943150A
JPH0943150A JP7190676A JP19067695A JPH0943150A JP H0943150 A JPH0943150 A JP H0943150A JP 7190676 A JP7190676 A JP 7190676A JP 19067695 A JP19067695 A JP 19067695A JP H0943150 A JPH0943150 A JP H0943150A
Authority
JP
Japan
Prior art keywords
inclusions
particle size
metal
emission
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7190676A
Other languages
Japanese (ja)
Inventor
Takashi Sugihara
孝志 杉原
Takashi Matsumura
孝 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7190676A priority Critical patent/JPH0943150A/en
Publication of JPH0943150A publication Critical patent/JPH0943150A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Abstract

PROBLEM TO BE SOLVED: To quickly and accurate measure the compositions and particle size distributions of inclusions scattered in a metal by finding the intensity values of the inclusions by dividing the intensity values of emission spectral lines obtained at every spark and converting the intensity values into particle sizes on the basis of the data of a standard sample. SOLUTION: By causing spark discharge, for example, 1,000 times between a sample 2 set in a light emitting section 20 and a counter electrode 3, spectral lines dispersed 7 at every spark discharge are received by means of a photomultiplier (detector) and the light emitting intensities of metallic elements (Al, Si, Mn, etc.) and oxygen are measured while the intensities are time-resolved into those of a metallic part and those of a nonmetallic inclusion part. An arithmetic processor 5 ranks the measured light emitting intensities of the metallic elements by converting the intensities into particle sizes by using a calibration curve plotted in advance by using standard samples having known particle size distributions and finds the compositions and particle size distributions of the inclusions by integrating obtained data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非金属介在物(以
下、介在物)の組成及び粒度分布測定方法に関し、特に
発光分光分析法を利用して、金属材料中に分散、存在す
る介在物を同定、評価する金属材料品質管理用試験や検
査に好適な測定技術に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the composition and particle size distribution of non-metallic inclusions (hereinafter referred to as inclusions), and in particular, inclusions that are dispersed and present in a metal material by using emission spectroscopy. It relates to a measurement technique suitable for a quality control test and inspection for identifying and evaluating a metal material.

【0002】[0002]

【従来の技術】鋳片等の鋼材は、内部に種々の組成の介
在物が存在しており、その介在物の組成及び粒径は、鋼
材の品質、特に大きく影響するため、当該組成及び粒度
を同定し、評価することが重要である。特に、ワイヤ
軸、軸受材や深絞り材等の鋼製品では、例えば粒径1μ
m以上の比較的大きい介在物が鋼中に多く存在すると、
介在物を起点に割れが生じ易く、また、製品の疲労特性
が著しく低下する。そのため、これら鋼製品には高い清
浄度が要求され、製鋼段階の各工程において鋼中の介在
物の組成と粒径分布を正確、かつ迅速に把握し、評価す
る必要がある。
2. Description of the Related Art Steel materials such as cast slabs have inclusions of various compositions inside, and the composition and particle size of the inclusions greatly affect the quality of the steel material, especially the composition and particle size. Is important to identify and evaluate. Especially for steel products such as wire shafts, bearing materials and deep drawing materials
If there are many relatively large inclusions of m or more in the steel,
Cracks tend to occur starting from the inclusions, and the fatigue properties of the product are significantly reduced. Therefore, high cleanliness is required for these steel products, and it is necessary to accurately and promptly grasp and evaluate the composition and grain size distribution of inclusions in the steel in each step of the steelmaking stage.

【0003】一般に多用される鋼中介在物の存在状態の
評価方法としては、JIS G 0555 に規定され
た顕微鏡試験方法がある。この方法は、鏡面研磨仕上げ
した供試材を顕微鏡で目視観察するものであるが、試料
の作製及び測定に1日ないし2日も要し、迅速性に欠け
ると共に、目視による官能検査であるため介在物組成の
識別が困難であるという欠点がある。近年、コンピュー
タを利用した画像解析方法が開発され、該顕微鏡試験方
法に適用して測定の迅速化が進められているが、試料の
作製は従来と同様に時間を要し、また研磨疵やゴミの付
着により測定誤差も生じ易い欠点は、今だ解消されてい
ない。
As a commonly used evaluation method for the existence state of inclusions in steel, there is a microscopic test method defined in JIS G 0555. This method involves visually observing the sample material that has been mirror-polished with a microscope, but it takes one or two days to prepare and measure the sample, which is not quick and is a visual sensory test. There is a drawback that it is difficult to identify the composition of inclusions. In recent years, an image analysis method using a computer has been developed and is being applied to the microscope test method to accelerate the measurement. However, it takes time to prepare a sample as in the conventional method, and polishing flaws and dusts are required. The drawback that measurement errors are likely to occur due to the adherence of is still unsolved.

【0004】また、別の評価方法として、臭素−メタノ
ール法や温硝酸法等のように、化学分析手法で介在物を
鋼中から分離して評価することも行われている。しかし
ながら、これらの方法は、旧来の所謂化学分析手法を利
用するため迅速性にかけ、製造される多種多様な鋼材を
大量に分析し、評価するには適さないという問題があっ
た。さらに、電子プローブマイクロアナライザー(EP
MA)を用いて鋼中介在物を評価する方法もあるが、こ
の方法も、電子プローブによる操作や各種演算処理等の
複雑な手順を必要とするため測定の迅速性に欠け、大量
の試験材を処理するのには不向きであった。
As another evaluation method, inclusions are separated from steel by a chemical analysis method and evaluated, such as a bromine-methanol method and a warm nitric acid method. However, these methods have a problem that they are not suitable for analyzing and evaluating a large amount of various manufactured steel materials in a large amount because they use the conventional so-called chemical analysis method and are therefore quick. In addition, electronic probe microanalyzer (EP
There is also a method of evaluating inclusions in steel using MA), but this method also requires complicated procedures such as operation with an electronic probe and various arithmetic processes, and therefore lacks swiftness of measurement and a large amount of test material. Was unsuitable for processing.

【0005】そこで、大量の鋼材中の介在物を迅速に評
価するため、従来より、発光分光分析法を利用した鋼中
介在物の測定法がいくつか提案されている(例えば、
「鉄と鋼」vol.73(1987)S969,S97
0,及び「CAMP−ISIJ」vol.7(199
4)1292,1293等)。また、特開平4−238
250号公報は、放電により得られた発光パルスのう
ち、放電初期の0〜数百パルス程度を時系列的に計測
し、得られた発光パルス中で定める強度範囲に該当する
発光パルスを測定対象として、金属中介在物の存在個
数、直径、含有量、平均直径を所定の式に基づき求める
方法を開示している。
Therefore, in order to rapidly evaluate the inclusions in a large amount of steel materials, several methods for measuring inclusions in steel using emission spectroscopy have been conventionally proposed (for example,
"Iron and steel" vol. 73 (1987) S969, S97
0, and "CAMP-ISIJ" vol. 7 (199
4) 1292, 1293, etc.). Also, Japanese Patent Application Laid-Open No. 4-238
The publication No. 250 measures, in a time series, about 0 to several hundreds of pulses at the initial stage of discharge, among emission pulses obtained by discharge, and measures an emission pulse corresponding to an intensity range defined in the obtained emission pulses. As a method, a method for determining the number of inclusions in the metal, the diameter, the content, and the average diameter based on a predetermined formula is disclosed.

【0006】しかしながら、これらの発光分光分析法
は、試料に応じたスパーク放電条件により発光させ、分
光した後、含有元素のそれぞれのスペクトル線波長及び
強度から介在物の組成やその量を決定するものであり、
介在物の粒径までは測定できなかったり、また、測定対
象となる介在物はアルミナ系介在物に限定されており、
さらに、測定元素もAl及びマトリックスであるFe等
の金属元素のみで、アルミナ以外の介在物や介在物を構
成する非金属元素、加えて介在物以外の元素を分析、評
価することができない。従って、従来は、鋼中の介在物
を迅速かつ精度よく評価できる技術がなく、介在物組成
及び粒径を測定して、その結果を工程管理へ反映させ、
所望の品質の鉄鋼材を得ることが困難であった。
However, these emission spectroscopic analysis methods determine the composition and the amount of inclusions from the spectral line wavelengths and intensities of the contained elements after the light is emitted under the conditions of spark discharge according to the sample and the light is dispersed. And
The particle size of the inclusions cannot be measured, and the inclusions to be measured are limited to alumina-based inclusions.
Further, the measurement elements are only metal elements such as Al and Fe that is a matrix, and it is impossible to analyze and evaluate inclusions other than alumina, non-metal elements forming inclusions, and elements other than inclusions. Therefore, conventionally, there is no technique for quickly and accurately evaluating inclusions in steel, the inclusion composition and grain size are measured, and the results are reflected in process control.
It was difficult to obtain a desired quality steel material.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑みてなされたもので、スパーク放電式発光分光分析
方法を用いての金属中に分散、存在する介在物の組成及
び粒度分布を迅速かつ正確に測定する方法を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is possible to quickly determine the composition and particle size distribution of inclusions dispersed and present in a metal by using a spark discharge type emission spectroscopy. The purpose is to provide a method for accurate and accurate measurement.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明は、不活性ガス雰囲気中で、金属試料と対電極との間
で多数回のスパーク放電を行い、金属試料中に存在する
介在物を発光分光分析するに際し、通常のデータ処理で
各元素の含有量を求めておくと共に、前記スパーク放電
毎に得られる発光スペクトル線の強度値を、予め設定し
ている放電時間で各元素の固溶体分と介在物分に分割し
て求め、該介在物分の強度値を予め標準試料で求めた強
度値と粒径間の関係に基づき粒径に変換し、この操作を
多数回の放電毎に繰返し、積算して金属中に存在する介
在物の粒度分布を定めることを特徴とする金属中介在物
の組成及び粒度分布測定方法である。また、本発明は、
前記介在物の構成元素のうち、非金属元素が酸素又は窒
素である金属中介在物の組成及び粒度分布測定方法でも
ある。
According to the present invention for achieving the above-mentioned object, inclusions existing in a metal sample are generated by performing a large number of spark discharges between a metal sample and a counter electrode in an inert gas atmosphere. In the emission spectroscopic analysis, while determining the content of each element in the usual data processing, the intensity value of the emission spectrum line obtained for each spark discharge, the solid solution of each element at the preset discharge time And the inclusions, the intensity value of the inclusions is converted to a particle size based on the relationship between the intensity value and the particle size obtained in advance with a standard sample, and this operation is performed every many discharges. It is a method for measuring the composition and particle size distribution of inclusions in a metal, which is characterized by repeating and integrating to determine the particle size distribution of the inclusions present in the metal. Also, the present invention
Among the constituent elements of the inclusions, it is also a method for measuring the composition and particle size distribution of inclusions in a metal in which the non-metal element is oxygen or nitrogen.

【0009】その結果、発光分光分析法によって、金属
中介在物の組成及び粒度分布を従来に比べ迅速且つ正確
に測定することが可能になった。以下、発明に至る経緯
もまじえ、本発明の内容を説明する。鋼材等金属材料中
の介在物の組成は、当該金属材料の品質特性を左右する
ため、その組成の調整を精度よく行う必要がある現状に
おいては、該金属材料を化学分析してその成分を知り、
その成分に応じて製鋼段階で経験に基づき組成調整を行
うか、あるいは、製品検査において合否を判定し、不合
格品を排除する等によって対処している。そこで、発明
者らは、もっと迅速な方法で処置するため、発光分光分
析法を見直すことにした。
As a result, the composition and particle size distribution of the inclusions in the metal can be measured more quickly and accurately by the emission spectroscopy. Hereinafter, the content of the present invention will be described, including the circumstances leading to the invention. Since the composition of inclusions in a metallic material such as steel material affects the quality characteristics of the metallic material, under the present circumstances where it is necessary to adjust the composition with high accuracy, the metallic material is chemically analyzed to determine its composition. ,
Depending on the composition, the composition is adjusted based on experience in the steelmaking stage, or the product inspection is used to determine whether it is acceptable or not, and rejected products are eliminated. Therefore, the inventors decided to review the emission spectroscopic analysis method in order to perform treatment in a more rapid manner.

【0010】スパーク放電式発光分光分析は、試料中の
多くの元素を同時に分析することができる分析法であ
る。通常、この分析法は、金属材料の地金(介在物以外
の部分)中の各元素の平均含有量を定量することに用い
られており、精度のよい測定を行うために、スパーク放
電により発光した各元素からのスペクトル線強度のデー
タのうち、異常なスペクトル線強度は削除してデータ処
理している。何故ならば、この異常な強度を示すスペク
トル線は、スパーク放電が地金と介在物との境界で選択
的な放電を起すためと考えられているからである(例え
ば、「鉄と鋼」vol.66(1980)p1401−
1405,「鉄と鋼」vol.73(1987)p14
19−1424)。
Spark discharge optical emission spectrometry is an analytical method capable of simultaneously analyzing many elements in a sample. Normally, this analysis method is used to quantify the average content of each element in the metal ingots (portions other than inclusions) of metal materials, and in order to perform accurate measurement, light emission by spark discharge Abnormal spectral line intensities are deleted from the spectral line intensity data from each of the above elements and processed. This is because the spectral line showing this abnormal intensity is considered to be because the spark discharge causes a selective discharge at the boundary between the metal and the inclusion (for example, "iron and steel" vol. .66 (1980) p1401-
1405, "Iron and Steel," vol. 73 (1987) p14
19-1424).

【0011】ところで、鋼材を発光分光分析した後に得
られたAlの発光スペクトル線を前記異常な強度を示す
ものも削除せずに、スパーク放電毎に図1(A)に示す
が、地金部からのスペクトル線強度に比較して、介在物
のスペクトル線強度は大きいものとなる。さらに、これ
らのデータを地金部と介在物の発光スペクトル線強度の
出現度数で整理すると、図1(B)に示したものとな
る。図1(C)は、このことを理解し易くしたものであ
る。
By the way, the emission spectrum line of Al obtained after the emission spectral analysis of the steel material is shown for each spark discharge in FIG. 1 (A) without deleting the one showing the above-mentioned abnormal intensity. The spectral line intensity of the inclusions is greater than the spectral line intensity from the. Furthermore, when these data are arranged by the appearance frequency of the emission spectrum line intensity of the metal and the inclusion, it becomes the one shown in FIG. 1 (B). FIG. 1 (C) makes this easier to understand.

【0012】次に、発明者は、1回のスパーク放電期間
内の各元素の発光スペクトル線強度と発光時間との関係
データを多数求め、それを図2(A)に地金部、図2
(B)に介在物のアルミニウム及び酸素の例で示した。
これらの関係を、理解に便利なように、一枚の図で整理
したのが、図2(C)である。図2(C)によれば、地
金の場合は、放電の初期に金属元素であるAlが発光す
るが、非金属元素であるO(酸素)は地金中に存在しな
いためほとんど発光しないことがわかる。一方、介在物
の場合は、放電の後期になって金属元素であるAlが発
光し、ほぼ同時期に非金属元素であるO(酸素)も発光
することが認められる。この現象は、地金部と介在物の
沸点の差による発光するまでの時間に差が生じること、
及び介在物の大きさ(容積)でスパーク放電による溶融
蒸発時間に差を生じ、しかも介在物が大きい場合には発
光している時間も長いことに起因すると推測された。
Next, the inventor obtained a large number of relational data between the emission spectrum line intensity of each element and the emission time within one spark discharge period, and the obtained data are shown in FIG.
An example of inclusions of aluminum and oxygen is shown in (B).
FIG. 2C is a diagram in which these relationships are organized for convenience of understanding. According to FIG. 2 (C), in the case of metal, Al, which is a metal element, emits light at the initial stage of discharge, but O (oxygen), which is a non-metal element, hardly emits light because it is not present in the metal. I understand. On the other hand, in the case of inclusions, it is recognized that Al, which is a metal element, emits light in the latter stage of discharge, and O (oxygen), which is a non-metal element, also emits light at about the same time. This phenomenon is that there is a difference in the time until light emission due to the difference in the boiling points of the metal and inclusions,
It was speculated that this is because the size (volume) of the inclusions causes a difference in the melting and evaporation time due to the spark discharge, and when the inclusions are large, the light emission time is long.

【0013】そこで、発明者らは、介在物への選択放電
を行い、同一元素の介在物中と地金中での含有量差と、
それらの物性による発光現象の時間差に起因する発光ス
ペクトル線の強度差及び発光時間差に着目することによ
り、介在物の組成及び粒径を測定できると判断した。即
ち、図2(B)に示したように、介在物を形成する各元
素の発光スペクトル線強度を同時に測定することによっ
て、介在物の種類(組成)を同定し、さらに、それらの
スペクトル線強度の度合から該介在物の粒径を類推する
ことが可能と考えた。
Therefore, the inventors have performed selective discharge to the inclusions, and have a difference in the content of the same element between the inclusions and the metal,
It was judged that the composition and particle size of the inclusions can be measured by focusing on the difference in the intensity of the emission spectrum line and the difference in emission time due to the time difference in the emission phenomenon due to their physical properties. That is, as shown in FIG. 2B, the emission spectrum line intensities of the elements forming the inclusions are simultaneously measured to identify the type (composition) of the inclusions, and further, the spectral line intensities of the inclusions are identified. It was considered possible to infer the particle size of the inclusions from the degree of.

【0014】図3に具体的な測定例を示すが、発光開始
(この場合はスパーク放電の開始)から60μmsec
で時間的に測光を分割できるようにした場合の、60μ
msecにより前(地金部)の発光強度と、60μms
ecより後(介在物部)の発光強度をAlで示した。図
3より、放電初期(60μmsecより前)には異常な
発光強度はほとんど出現せず、放電後の後期(60μm
secより後)に以上に高い発光強度が出現することが
確認できた。
A specific measurement example is shown in FIG. 3. 60 μmsec from the start of light emission (in this case, the start of spark discharge).
60μ when the photometry can be divided by time
The emission intensity of the front (bare part) by msec and 60 μms
The emission intensity after ec (inclusion part) is shown by Al. From FIG. 3, an abnormal emission intensity hardly appeared in the early stage of discharge (before 60 μmsec), and in the latter stage of discharge (60 μm).
It was confirmed that an even higher emission intensity appears after (sec).

【0015】また、図4は介在物の形成元素の発光スペ
クトル線強度を放電順に示したものである。図4によれ
ば、符号(c)で示すスペクトル線強度からAl23
の介在物の存在を同定でき、符号(f)で示すスペクト
ル線強度からAl23 −Si−MnO−CaOの介在
物を、符号(a)で示すスペクトル線強度からSi−M
nOの介在物を、また符号(c)ではAl23 単独の
存在を同定できることがわかる。
FIG. 4 shows the emission spectrum line intensities of inclusion forming elements in the order of discharge. According to FIG. 4, from the spectral line intensity indicated by the symbol (c), Al 2 O 3
The presence of inclusions can be identified, and the inclusion of Al 2 O 3 —Si—MnO—CaO can be identified from the spectrum line intensity indicated by the symbol (f), and Si-M can be identified from the spectrum line intensity indicated by the symbol (a).
It can be seen that the inclusion of nO and the presence of Al 2 O 3 alone can be identified by the code (c).

【0016】次に、図4のそれぞれの元素の発光強度
を、図1(B)と同様な演算処理により、発光強度と出
現度数の度数分布に変換した。そして、この発光強度を
段階的にランク付けし、介在物の粒径を表わす指数とす
るが、そのためには、予め介在物組成と粒径が既知の標
準試料で発光分光分析を行い、それぞれの元素の発光強
度を求めて、粒径に対応するように発光強度を段階的に
ランク付けし、これらランク付けした発光強度を粒径の
基準値として用いる。つまり、標準試料で各元素の発光
強度と粒径間との関係に関する検量線を作製し、実測の
発光強度との対比で粒径に変換する。最終的には、すべ
ての放電のデータを積算して、その出現度数により介在
物組成と粒度分布を定めるのである。
Next, the emission intensity of each element in FIG. 4 was converted into a frequency distribution of emission intensity and appearance frequency by the same arithmetic processing as in FIG. 1 (B). Then, the emission intensities are ranked stepwise and used as an index representing the particle size of inclusions. For that purpose, emission spectroscopic analysis is performed using a standard sample in which the composition and particle size of inclusions are known in advance, and The luminescence intensity of the element is obtained, and the luminescence intensity is ranked stepwise so as to correspond to the particle size, and these ranked luminescence intensities are used as the reference value of the particle size. That is, a standard curve is used to prepare a calibration curve regarding the relationship between the emission intensity of each element and the particle size, and the calibration curve is converted into the particle size in comparison with the actually measured emission intensity. Finally, the data of all discharges are integrated and the composition of inclusions and particle size distribution are determined by the frequency of appearance.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図6は、本発明に係るスパーク放電
式発光分光分析法による鋼中介在物の組成及び粒度分布
を測定した装置を模式的に示したものである。それは、
放電装置1、分析試料(電極でもある)2、及び対電極
3とからなる発光部20と、発光スペクトル線を各元素
の固有スペクトル線に分光する回折格子7、それぞれの
元素毎にスペクトル線を検出する検出器(フォトマルチ
プライア)6等からなる分光器30と、スパーク放電毎
に発光したスペクトル線のアナログ量をディジタルに変
換して、測光処理を行う測光装置4やスペクトル線強度
からの組成同定、粒度分布に変換する演算処理装置5と
で構成されている。また、該演算処理装置5には、上記
装置の操作指示や測定結果の出力に用いる端末機9(C
RT、プリンター、キーボード等)も付設されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 6 schematically shows an apparatus for measuring the composition and particle size distribution of inclusions in steel by the spark discharge emission spectroscopy according to the present invention. that is,
A light emitting unit 20 including a discharge device 1, an analysis sample (also an electrode) 2, and a counter electrode 3, a diffraction grating 7 for splitting an emission spectrum line into a characteristic spectrum line of each element, and a spectrum line for each element A spectroscope 30 including a detector (photomultiplier) 6 for detecting, a photometric device 4 for performing a photometric process by converting the analog amount of the spectral line emitted at each spark discharge into a digital signal, and a composition from the spectral line intensity. It is composed of an arithmetic processing unit 5 for identification and conversion into a particle size distribution. In addition, the arithmetic processing unit 5 has a terminal 9 (C
RT, printer, keyboard, etc.) are also attached.

【0018】図6に示した発光分光分析装置において、
発光部20に試料2を設置し、端末機9より始動を指令
することで自動的に発光分光分析を開始し、その測定結
果を端末機9に出力させる。まず、試料2と対電極3と
の間で1000回のスパーク放電を行い、該スパーク放
電毎に分光したスペクトル線をフォトマルチプライアで
受光し、金属元素(Al、Si、Mn、Ti、Ca)及
びO(酸素)の発光強度を地金部と介在物に時間分解
し、それぞれ測光する。その際得た発光強度は、図3に
例示したようになる。なお、発光スペクトルが地金部と
介在物のいずれのものであるかの判定は、Oの発光強度
を介在物の指標として用い、Oの発光強度が地金部と同
レベルの時は、介在物とみなさず、金属元素の発光強度
は測光しないことにする。
In the emission spectroscopic analyzer shown in FIG. 6,
The sample 2 is installed in the light emitting unit 20, and the start-up command is issued from the terminal device 9 to automatically start the emission spectroscopic analysis and output the measurement result to the terminal device 9. First, a spark discharge is performed 1000 times between the sample 2 and the counter electrode 3, and a spectral line separated for each spark discharge is received by a photomultiplier, and a metal element (Al, Si, Mn, Ti, Ca) is received. And the emission intensity of O (oxygen) are time-resolved into a bare metal part and inclusions, and photometry is performed respectively. The emission intensity obtained at that time is as illustrated in FIG. The emission spectrum of the ingot is determined by using the emission intensity of O as an index of the inclusion. When the emission intensity of O is at the same level as that of the intrusion, the presence of the emission is detected. Since it is not regarded as an object, the emission intensity of the metal element is not measured.

【0019】次に、演算処理装置5において、測光した
金属元素のそれぞれの発光強度を、予め粒径分布の既知
の標準試料により作成してある前記検量線を用いて、粒
径としてランク付けし、これらのデータを積算すること
で介在物の組成と粒度分布を得た。なお、該検量線は、
介在物の組成毎に多数必要である。
Next, in the arithmetic processing unit 5, the emission intensity of each of the photometric metal elements is ranked as a particle size by using the calibration curve prepared in advance by a standard sample having a known particle size distribution. The composition and particle size distribution of inclusions were obtained by integrating these data. The calibration curve is
A large number is required for each composition of inclusions.

【0020】[0020]

【実施例】図7(A)は、軸受鋼中のアルミナ系介在物
を、本発明に係る組成及び粒度分布測定法で求めた例で
あり、X軸に予め作成した検量線より得られた粒径を、
Y軸に介在物の出現度数をとって、該アルミナ介在物の
粒度分布を示したものである。一方、図7(B)は、従
来の顕微鏡試験法によって同一試料で得た粒度分布を示
している。
EXAMPLE FIG. 7 (A) is an example of the alumina-based inclusions in the bearing steel obtained by the composition and particle size distribution measuring method according to the present invention, which was obtained from a calibration curve prepared in advance on the X-axis. Particle size,
The frequency of appearance of inclusions is plotted on the Y-axis, and the particle size distribution of the alumina inclusions is shown. On the other hand, FIG. 7B shows the particle size distribution obtained from the same sample by the conventional microscopic examination method.

【0021】図7(A)及び図7(B)から明らかなよ
うに、本発明に係る測定方法による結果は、顕微鏡試験
法による結果とよく一致し、本発明に係る方法で、鋼中
介在物の組成と粒径の分布測定が正確に行うことができ
る。なお、本発明に係る方法での測定は、測定開始から
終了までの所要時間は約20秒間であり、試料の調整時
間も含め約5分間以内であり、従来の顕微鏡試験法が1
日ないし2日であったのに比べ大幅な短縮となり、介在
物評価の迅速化要求に十分対応することができる。
As is clear from FIGS. 7 (A) and 7 (B), the results obtained by the measuring method according to the present invention are in good agreement with the results obtained by the microscopic examination method. The composition and particle size distribution of the product can be accurately measured. In the measurement by the method according to the present invention, the time required from the start to the end of measurement is about 20 seconds, and the adjustment time of the sample is about 5 minutes or less.
Compared with one or two days, the time is significantly shortened, and it is possible to sufficiently meet the demand for speedy evaluation of inclusions.

【0022】[0022]

【発明の効果】以上述べたように、本発明により、金属
中介在物の組成及び粒径分布を迅速且つ精度よく測定す
ることが可能となった。また、多元素同時定量型の発光
分光分析装置に本発明に係る方法を付設することができ
るので、操業管理用の成分分析と同時に介在物の測定評
価を行うことができ、試験業務の効率化や、精錬工程で
の歩留り向上、製造コストの低減への効果も大きい。
As described above, according to the present invention, the composition and particle size distribution of inclusions in a metal can be measured quickly and accurately. In addition, since the method according to the present invention can be attached to a multi-element simultaneous quantitative emission spectroscopic analyzer, it is possible to analyze and evaluate inclusions at the same time as component analysis for operation management, and improve efficiency of test work. It also has a great effect on improving the yield in the refining process and reducing the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電回数と発光スペクトル線強度との関係を示
す図であり、(A)は放電順に発光強度を、(B)は該
発光強度の出現度数分布を、(C)は(B)図を模式的
に示したものである。
FIG. 1 is a diagram showing the relationship between the number of discharges and emission line intensity, where (A) shows emission intensity in the order of discharge, (B) shows appearance frequency distribution of the emission intensity, and (C) shows (B). The figure is shown schematically.

【図2】AlとO(酸素)の1回の放電で発光している
時間(発光時間)と発光強度との関係を示す図であり、
(A)は地金部の発光挙動、(B)は介在物の発光挙
動、(C)は(B)を模式的に表わした図である。
FIG. 2 is a diagram showing a relationship between a time (light emission time) during which light is emitted by one discharge of Al and O (oxygen) and light emission intensity;
(A) is a diagram schematically showing a light emission behavior of a bare metal portion, (B) is a light emission behavior of inclusions, and (C) is a diagram schematically showing (B).

【図3】Alに関して発光毎に地金部と介在物に分離
(発光後60μmsecで分離)した場合の、地金部及
び介在物部の発光強度と発光回数との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the emission intensity of the bare metal portion and the inclusion portion and the number of times of light emission when Al is separated into a bare metal portion and inclusions at each emission (60 μmsec after light emission).

【図4】介在物形成元素(O、Al、Si、Mn、C
a)の放電順と発光強度との関係を示す図である。
FIG. 4 Inclusion-forming elements (O, Al, Si, Mn, C
It is a figure which shows the relationship between the discharge order and light emission intensity of a).

【図5】発光強度と介在物粒径との関係を示す検量線で
ある。
FIG. 5 is a calibration curve showing the relationship between emission intensity and particle size of inclusions.

【図6】本発明を実施した発光分光分析装置の概略を示
す図である。
FIG. 6 is a diagram showing an outline of an emission spectroscopic analysis apparatus embodying the present invention.

【図7】軸受鋼中介在物の粒度分布を実際に測定した結
果であり、(A)は本発明に係る方法、(B)は従来の
顕微鏡試験法による。
FIG. 7 is a result of actually measuring a particle size distribution of inclusions in bearing steel, (A) is a method according to the present invention, and (B) is a conventional microscope test method.

【符号の説明】[Explanation of symbols]

1 放電装置 2 試料 3 対電極 4 測光装置 5 データ処理装置 6 検出器 7 回折格子 8 スリット 9 端末機 20 発光部 30 分光器 DESCRIPTION OF SYMBOLS 1 Discharge device 2 Sample 3 Counter electrode 4 Photometric device 5 Data processing device 6 Detector 7 Diffraction grating 8 Slit 9 Terminal device 20 Light emitting part 30 Spectrometer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不活性ガス雰囲気中で、金属試料と対電
極との間で多数回のスパーク放電を行い、金属試料中に
存在する介在物を発光分光分析するに際し、 通常のデータ処理で各元素の含有量を求めておくと共
に、前記スパーク放電毎に得られる発光スペクトル線の
強度値を、予め設定している放電時間で各元素の固溶体
分と介在物分に分割して求め、該介在物分の強度値を予
め標準試料で求めた強度値と粒径間の関係に基づき粒径
に変換し、この操作を多数回の放電毎に繰返し、積算し
て金属中に存在する介在物の粒度分布を定めることを特
徴とする金属中介在物の組成及び粒度分布測定方法。
1. In an inert gas atmosphere, spark discharge is performed a large number of times between a metal sample and a counter electrode, and when the inclusions present in the metal sample are analyzed by emission spectroscopy, each data is processed by ordinary data processing. In addition to determining the content of the element, the intensity value of the emission spectrum line obtained for each spark discharge is divided into a solid solution component and an inclusion component of each element at a preset discharge time, The intensity value of the substance is converted into a particle size based on the relationship between the intensity value and the particle size obtained in advance with a standard sample, and this operation is repeated every many discharges, and the inclusions present in the metal are integrated after integration. A composition of inclusions in metal and a method for measuring particle size distribution, characterized by defining a particle size distribution.
【請求項2】 前記介在物の構成元素のうち、非金属元
素が酸素又は窒素である請求項1記載の金属中介在物の
組成及び粒度分布測定方法。
2. The composition and particle size distribution measuring method of inclusions in a metal according to claim 1, wherein the non-metal element among the constituent elements of the inclusions is oxygen or nitrogen.
JP7190676A 1995-07-26 1995-07-26 Method for measuring composition and particle size distribution of inclusion of metal Withdrawn JPH0943150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7190676A JPH0943150A (en) 1995-07-26 1995-07-26 Method for measuring composition and particle size distribution of inclusion of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7190676A JPH0943150A (en) 1995-07-26 1995-07-26 Method for measuring composition and particle size distribution of inclusion of metal

Publications (1)

Publication Number Publication Date
JPH0943150A true JPH0943150A (en) 1997-02-14

Family

ID=16262038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7190676A Withdrawn JPH0943150A (en) 1995-07-26 1995-07-26 Method for measuring composition and particle size distribution of inclusion of metal

Country Status (1)

Country Link
JP (1) JPH0943150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071036A1 (en) * 2001-03-06 2002-09-12 Nsk Ltd. Method for measuring particle size of inclusion in metal by emission spectrum intensity of element constituting inclusion in metal, and method for forming particle size distribution of inclusion in metal, and apparatus for executing that method
CN100343657C (en) * 2003-02-25 2007-10-17 鞍钢股份有限公司 Spectral analysis method for online detecting size distribution of inclusions in steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071036A1 (en) * 2001-03-06 2002-09-12 Nsk Ltd. Method for measuring particle size of inclusion in metal by emission spectrum intensity of element constituting inclusion in metal, and method for forming particle size distribution of inclusion in metal, and apparatus for executing that method
CN100343657C (en) * 2003-02-25 2007-10-17 鞍钢股份有限公司 Spectral analysis method for online detecting size distribution of inclusions in steel

Similar Documents

Publication Publication Date Title
JP2978089B2 (en) Particle size distribution measurement method for inclusions in metal
JPH0943150A (en) Method for measuring composition and particle size distribution of inclusion of metal
JP3671600B2 (en) Method for measuring particle size distribution of oxide inclusions in metals
JP5454403B2 (en) Sol. A method for highly accurate determination of Al and sol. Process operation method of high-precision determination method of Al
JP4537253B2 (en) Determination of nonmetallic inclusion composition by emission spectroscopy
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JP4506524B2 (en) Optical emission spectrometer
JPH0961357A (en) Method for quantitatively determining minute nonmetal inclusion by emission spectro analysis
JPH0961356A (en) Emission spectrometric analyzing method
US6480274B1 (en) Method of analyzing oxygen and oxide in metallic material
US5599407A (en) Method for estimating inclusion content of metals using reflectance
JP3323768B2 (en) Analysis of trace amounts of lead in stainless steel by emission spectroscopy
JP5304705B2 (en) Inclusion analysis method by emission spectroscopy
JP2000019118A (en) Method for quantitatively determining element concentration in metallic material
JPH0862139A (en) Emission spectral analysis
JPH10267848A (en) Method for emission spectroscopic analysis
JP2002275523A (en) Refined state of steel method for determining
JPH11160240A (en) Quantitative determination method for shape of positive element in metal by emission spectrochemical analysis
JPH04238250A (en) Quick evaluation method for intra-metal inclusion by emission spectral analysis method
JP2697462B2 (en) Emission spectroscopy method and apparatus
JPH08145891A (en) Emission spectrophotometer
JP2005265544A (en) Method for measuring particle size distribution of alumina enclosure in steel material
TW202400989A (en) Method for emission spectrochemical analysis of antimony in metal material, method for measuring concentration of antimony in molten steel during refining and production method of steel raw material
JPH0915157A (en) Emission spectroscopic analysis method
JPH0348751A (en) Method for evaluating composition of inclusion by emission spectrochemical analysis

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001